

AIMS Mathematics, 8(9): 19857–19875. DOI:10.3934/math.20231012 Received: 31 March 2023 Revised: 31 May 2023 Accepted: 05 June 2023 Published: 14 June 2023

http://www.aimspress.com/journal/Math

Research article

Permutabitity of principal *MS* -algebras

Abd El-Mohsen Badawy¹ and Alaa Helmy^{2,*}

- ¹ Department of Mathematics Faculty of Science, Tanta University, Egypt
- ² Department of Mathematics Faculty of Science, Kafrelsheikh University, Egypt

* Correspondence: Email: alaahelmy555@yahoo.com.

Abstract: In this paper, we continue to introduce new properties of principal *MS*-algebras deal with congruence relations via *MS*-congruence pairs. Necessary and sufficient conditions for a pair of congruences $(\theta_1, \theta_2) \in Con(L^{\circ\circ}) \times Con_{lat}(D(L))$ to become an *MS*-congruence pair of a principal *MS*-algebra (principal Stone algebra) *L* are obtained. We describe the lattice of all *MS*-congruence pairs of a principal *MS*-algebra *L* which induced by the Boolean elements of *L*. We introduce certain special congruence Ψ on a principal *MS*-algebra and its related properties which are useful for the topic of this paper. A characterization of 2-permutable congruences using *MS*-congruence pairs of principal *MS*-algebras is established. Finally, a characterization of *n*-permutability of congruences of principal *MS*-algebras is given, which is a generalization of the characterization of 2-permutability of congruences of such algebras.

Keywords: *MS*-algebras; principal *MS*-algebras; congruence relation; *MS*-congruence pairs; 2-permutability of congruences; *n*-permutability of congruences **Mathematics Subject Classification:** 06D05, 06D30

1. Introduction

MS-algebras were considered by T. S. Blyth and J. C. Varlet [15] as a common properties of de Morgan algebras and Stone algebras. T. S. Blyth and J. C. Varlet [16] described the lattice $\Lambda(MS)$ of all subclasses of the class *MS* of all *MS*-algebras by identities.

A. Badawy, D. Guffová and M. Haviar [10] introduced and characterized the class of principal MS-algebras and the class of decomposable MS-algebras by means of principal MS-triples and decomposable MS-triples, respectively. They obtained a one-to-one correspondence between principal MS-algebras (decomposable MS-algebras) and principal MS-triples (decomposable MS-triples). Moreover, they proved that the class of principal MS-algebras is a subclass of the class of decomposable MS-algebras.

A. Badawy [6] established the relationship between de Morgan filters and congruences of a decomposable MS-algebra. A. Badawy [3] introduced the notion of d_L -filters of a principal MS-algebra and characterized certain congruences in terms of d_L -filters. Recently, A. Badawy, M. Haviar and M. Ploščica [11] introduced and described the notions of congruence pairs and perfect extensions of principal MS-algebras. They characterized the lattice of congruences of a principal MS-algebra in terms of congruence pairs. In 2021, S. El-Assar and A. Badawy [19] characterized permutability of congruences and strong extensions of decomposable MS-algebras by means of congruence pairs.

We review in Section 2 many basic concepts and results that we are using throughout this article. We give an example (Example 2.1) to determine the principal *MS*-triple $(L^{\circ\circ}, D(L), \varphi_L)$ assosiated with a certain principal *MS*-algebra *L*. In Section 3, we give equivalent conditions for a pair of congruence $(\theta_1, \theta_2) \in Con(L^{\circ\circ}) \times Con_{lat}(D(L))$ to become an *MS*-congruence pair of a principal *MS*-algebra *L*, where θ_1 is a congruence on a de Morgan algebra $L^{\circ\circ}$ and θ_2 is a lattice congruence on the lattice D(L). Also, we characterize the lattice of all *MS*- congruence pairs which are induced by the Boolean elements of a principal *MS*-algebra. In Section 4, we discuss many properties of the congruence relation Ψ which defined on a principal *MS*-algebra *L* by

$$(a,b) \in \Psi \Leftrightarrow a^{\circ} = b^{\circ} \Leftrightarrow a^{\circ \circ} = b^{\circ \circ}.$$

We prove that Ψ permutes with each congruence relation θ on L. Also, we characterize 2-permutability of congruences (briefly permutability) by means of MS-congruence pairs. We illustrate Examples 3.1 and 4.1 to clarify Theorems 3.1 and 4.4, respectively. Also, Example 4.2 introduces certain principal MS-algebra L, which has not 2-permutable congruences as well as D(L) has not also 2-permutable congruences. In Section 5, A characterization of *n*-permutability of congruences of a principal MSalgebra is given, which is a generalization of the characterization of 2-permutability of congruences of such algebras.

2. Preliminaries

In this section, we recall some specific definitions and remarkable results which are discussed in previous articles [10, 14–17, 19].

Definition 2.1. [16] A de Morgan algebra is an algebra $(L; \lor, \land, \bar{}, 0, 1)$ of type (2,2,1,0,0), where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation $\bar{}$ satisfying:

(1)
$$\overline{\overline{a}} = a$$
, (2) $\overline{(a \lor b)} = \overline{a} \land \overline{b}$, (3) $\overline{1} = 0$.

Definition 2.2. [15] A Stone algebra is an algebra $(L; \lor, \land, *, 0, 1)$ of type (2, 2, 1, 0, 0), where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation * satisfying:

(1)
$$(a \wedge b)^* = a^* \vee b^*$$
, (2) $a^* \vee a^{**} = 1$, (3) $1^* = 0$.

Definition 2.3. [15] An MS-algebra is an algebra $(L; \lor, \land, \circ, 0, 1)$ of type (2,2,1,0,0), where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and a unary operation \circ satisfying:

(1)
$$a \le a^{\circ \circ}$$
, (2) $(x \land y)^{\circ} = x^{\circ} \lor y^{\circ}$, (3) $1^{\circ} = 0$

The class *MS* of all *MS*-algebras is equational. A de Morgan algebra is an *MS*-algebra satisfying the identity, $a = a^{\circ\circ}$. The class *S* of a Stone algebra is a subclass of *MS* satisfying $a \wedge a^{\circ} = 0$.

The basic properties of *MS*-algebras which were shown in [15] are given in the following theorem.

Theorem 2.1. Let a, b be any two elements of an MS-algebra L. Then

(1) $0^{\circ\circ} = 0$ and $1^{\circ\circ} = 1$, (2) $a \le b \Rightarrow b^{\circ} \le a^{\circ}$, (3) $a^{\circ\circ\circ} = a^{\circ}$, (4) $a^{\circ\circ\circ\circ} = a^{\circ\circ}$, (5) $(a \lor b)^{\circ} = a^{\circ} \land b^{\circ}$,

 $(6) \ (a \lor b)^{\circ \circ} = a^{\circ \circ} \lor b^{\circ \circ},$

(7) $(a \wedge b)^{\circ \circ} = a^{\circ \circ} \wedge b^{\circ \circ}$.

An element *a* of an *MS*-algebra *L* is called a closed element of *L* if $a = a^{\circ \circ}$ and an element $d \in L$ is called a dense element of *L* if $d^{\circ} = 0$.

Theorem 2.2. Let L be an MS-algebra. Then

(1) the set $L^{\circ\circ} = \{a \in L : a = a^{\circ\circ}\}$ of all closed elements of L is a de Morgan subalgebra of L, see [17], (2) the set $D(L) = \{a \in L : a^{\circ} = 0\}$ of all dense elements of L is a principal filter of L, see [10].

Definition 2.4. [10] An MS-algebra $(L; \lor, \land, \circ, 0, 1)$ is called a principal MS-algebra if it satisfies the following conditions:

- (1) the filter D(L) is principal, that is, there exists an element $d_L \in L$ such that $D(L) = [d_L)$,
- (2) $a = a^{\circ \circ} \land (a \lor d_L)$, for all $a \in L$.

A principal *MS*-algebra *L* is a principal Stone algebra if $x^{\circ} \lor x^{\circ \circ} = 1$, for all $x \in L$.

Definition 2.5. [8] A principal MS-triple is (M, D, φ) , where

- (1) M is a de Morgan algebra,
- (2) *D* is a bounded distributive lattice,
- (3) φ is a (0, 1)-lattice homomorphism from M into D.

Lemma 2.1. [10] Let L be a principal MS-algebra. Define a map $\varphi_L : L^{\circ\circ} \to [d_L)$ by the following rule

 $\varphi_L(a) = a \lor d_L$, for all $a \in L^{\circ \circ}$.

Then φ_L *is a* (0, 1)*-lattice homomorphism.*

Example 2.1. Consider the MS-algebra L in Figure 1.

Figure 1. L is a principal MS-algebra.

It is clear that L is a principal MS-algebra with the smallest dense element z. Then the principal triple $(L^{\circ\circ}, D(L) = [z), \varphi_L)$ which associated with L is given in Figure 2.

Figure 2. $(L^{\circ\circ}, D(L), \varphi_L)$ is a principal *MS* -triple.

Definition 2.6. [22] An equivalence relation θ on a lattice *L* is called a lattice congruence if $(a, b) \in \theta$ and $(c, d) \in \theta$ imply $(a \lor c, b \lor d) \in \theta$ and $(a \land c, b \land d) \in \theta$.

Definition 2.7. An equivalence relation θ on an MS-algebra L is called a congruence on L if

(1) θ is a lattice congruence,

(2) $(a, b) \in \theta$ implies $(a^{\circ}, b^{\circ}) \in \theta$.

We use $Con_{lat}(L)$ for the lattice of all lattice congruences of a lattice $(L; \lor, \land)$ and Con(L) for the lattice of all congruences of an *MS*-algebra $(L; \lor, \land, \circ, 0, 1)$.

Definition 2.8. Let *L* be a lattice and $\theta \in Con_{lat}(L)$. Then we define the principal congruence generated by (a, b) which denoted by $\theta(a, b)$ as follows:

$$\theta(a,b) = \bigwedge \{\theta \in Con_{lat}(L) : (a,b) \in \theta \}.$$

If *L* is an *MS*-algebra and $\theta \in Con(L)$, then

$$\theta(a,b) = \bigwedge \{\theta \in Con(L) : (a,b) \in \theta \}.$$

Let *L* be an *MS*-algebra. Then $(\theta_{L^{\circ\circ}}, \theta_{D(L)}) \in Con(L^{\circ\circ}) \times Con_{lat}(D(L))$, where $\theta_{L^{\circ\circ}}$ and $\theta_{D(L)}$ are the restrictions of $\theta \in Con(L)$ to $L^{\circ\circ}$ and D(L), respectively. It is clear that $\theta_{L^{\circ\circ}}$ is a congruence relation on a de Morgan algebra $L^{\circ\circ}$ and $\theta_{D(L)}$ is a lattice congruence on a lattice D(L).

The symbols ∇_L and \triangle_L will be used for the universal congruence $L \times L$ and the equality congruence on L, respectively.

The concept of *MS*-congruence pairs is given as follows:

Definition 2.9. [11] Let L be a principal MS-algebra with a smallest dense element d_L . A pair of congruences $(\theta_1, \theta_2) \in Con(L^{\circ\circ}) \times Con_{lat}(D(L))$ will be called an MS-congruence pairs if

$$(a,b) \in \theta_1$$
 implies $(a \lor d_L, b \lor d_L) \in \theta_2$.

A characterization of congruences on a principal *MS*-algebra via *MS*-congruence pairs is given in the following theorem.

Theorem 2.3. [11] Let L be a principal MS-algebra with the smallest dense element d_L . For every congruence θ on L, the restrictions of θ to $L^{\circ\circ}$ and D(L) determine the MS-congruence pair ($\theta_{L^{\circ\circ}}, \theta_{D(L)}$).

Conversely, every MS-congruence pair (θ_1, θ_2) uniquely determines a congruence θ on L satisfying $\theta_{L^{\circ\circ}} = \theta_1$ and $\theta_{D(L)} = \theta_2$. Such congruence can be defined by the rule

Throughout this paper, d_L denotes to the smallest dense element of a principal MS-algebra L.

For extra information of MS-algebras, principal MS-algebras and decomposable MS-algebras, we refer the reader to [1-9, 12-18, 20-24].

3. Characterization of MS-congruence pairs

In this section, we characterize *MS*-congruence pairs of a principal *MS*-algebra and a principal Stone algebra. Also, we describe the lattice of all *MS*-congruence pairs which induced by the Boolean elements of a principal *MS*-algebra, in fact such lattice forms a Boolean algebra on it is own.

Lemma 3.1. Let *L* be a principal MS-algebra and (θ_1, θ_2) be an MS-congruence pair. Then

 $(a, b) \in \theta_1$ and $(x, y) \in \theta_2$ imply $(a \lor x, b \lor y) \in \theta_2$.

Proof. Let $(a, b) \in \theta_1$ and $(x, y) \in \theta_2$. Then $(a \lor d_L, b \lor d_L) \in \theta_2$ (by Definition 2.9) and $(x, y) \in \theta_2$ imply that $(a \lor x \lor d_L, b \lor y \lor d_L) \in \theta_2$. Therefore $(a \lor x, b \lor y) \in \theta_2$ as $x, y \ge d_L$.

Now, we give an important characterization of MS-congruence pairs of a principal MS-algebra.

Theorem 3.1. Let *L* be a principal MS -algebra with the smallest dense element d_L . Then the following statements are equivalent:

(1) (θ_1, θ_2) is an MS-congruence pair of L,

(2) $Con_{\omega_1}(L) \subseteq \theta_2$, where

$$Con_{\varphi_L}(\theta_1) = \{(\varphi_L(a), \varphi_L(b)) : (a, b) \in \theta_1\} and \varphi_L(a) = a \lor d_L, \forall a \in L^{\circ \circ}\}$$

Proof. $(1 \Rightarrow 2)$ Let (θ_1, θ_2) be an *MS*-congruence pair of *L* and $(x, y) \in Con_{\varphi_L}(\theta_1)$. Then $(x, y) = (\varphi_L(a), \varphi_L(b)) = (a \lor d_L, b \lor d_L)$, where $(a, b) \in \theta_1$. Since $(a, b) \in \theta_1$, then $(a \lor d_L, b \lor d_L) \in \theta_2$, by (1). Thus $(x, y) \in \theta_2$. So $Con_{\varphi_L}(\theta_1) \subseteq \theta_2$.

 $(2 \Rightarrow 1)$ Let $Con(\theta_1) \subseteq \theta_2$. We prove that (θ_1, θ_2) is an *MS*-congruence pair of *L*. Let $(a, b) \in \theta_1$. Then by $(2), (a \lor d_L, b \lor d_L) = (\varphi_L(a), \varphi_L(b)) \in \theta_2$.

A characterization of congruence pairs of a principal Stone algebra is given in the following.

Theorem 3.2. Let *L* be a principal Stone algebra. Let $(\theta_1, \theta_2) \in Con(L^{\circ\circ}) \times Con_{lat}(D(L))$. Then the following statements are equivalent:

(1) (θ_1, θ_2) is an MS-congruence pair of L,

(2)
$$Con_{\varphi_L}(\theta_1) \subseteq \theta_2$$
,

(3) $(a, 1) \in \theta_1$ and $u \ge a, u \in D(L)$ imply $(u, 1) \in \theta_2$.

Proof. In Theorem 3.1, we proved that (1) and (2) are equivalent.

 $(2 \Rightarrow 3)$ Let $Con_{\varphi_L}(\theta_1) \subseteq \theta_2$. Let $(a, 1) \in \theta_1$ and $u \ge a, u \in D(L)$. Then $(\varphi_L(a), \varphi_L(1)) \in \theta_2$ by (2). Thus $(a \lor d_L, 1) \in \theta_2$.

Now $(a \lor d_L, 1) \in \theta_2$ and $(u, u) \in \theta_2, u \ge a, u \in D(L)$ imply $(a \lor u \lor d_L, 1 \lor u) \in \theta_2$. Thus $(u, 1) \in \theta_2$ as $u \ge a, d_L$.

 $(3 \Rightarrow 1)$ Since *L* is a Stone algebra then $L^{\circ\circ}$ is a Boolean subalgebra of *L* and hence $a \lor a^{\circ} = 1$ for each $a \in L^{\circ\circ}$. Suppose (3) holds and $(a, b) \in \theta_1$. Then $(b^{\circ}, b^{\circ}) \in \theta_1$ implies $(a \lor b^{\circ}, b \lor b^{\circ}) = (a \lor b^{\circ}, 1) \in \theta_1$ and $(a \lor a^{\circ}, b \lor a^{\circ}) = (b \lor a^{\circ}, 1) \in \theta_1$. Therefore $(\beta, 1) \in \theta_1$, where $\beta = (a \lor b^{\circ}) \land (a^{\circ} \lor b)$. It is clear that $\beta \in L^{\circ\circ}$ and $\beta \land a = \beta \land b = a \land b$. Since $\beta \leq \beta \lor d_L \in D(L)$ and $(\beta, 1) \in \theta_1$ then $(\beta \lor d_L, 1) \in \theta_2$ by (3). Thus $(a \lor d_L, a \lor d_L) \land (1, \beta \lor d_L) \in \theta_2$ implies $(a \lor d_L, (a \land \beta) \lor d_L) = (a \lor d_L, (a \land b) \lor d_L) \in \theta_2$. Similarly, we can get $(b \lor d_L, (b \land \beta) \lor d_L) = (b \lor d_L, (a \land b) \lor d_L) \in \theta_2$. Then $(b \lor d_L, b \lor d_L) \in \theta_2$.

Example 3.1. Consider the principal MS-algebra L in Example 2.1 (Figure 1). The lattices Con(L) and A(L) of all congruences of L and all MS-congruence pairs of L are given in Figure 3, respectively.

Figure 3. The congruence lattices Con(L) and A(L).

Where,

$$\begin{split} & \triangle_L = \{(x, x) : x \in L\}, \\ & \alpha = \{\{0, c, a\}, \{x, y, z\}, \{b, d, 1\}\}, \\ & \beta = \{\{0, c, a\}, \{x, b, y, d, z, 1\}\}, \\ & \gamma = \{\{0, x, b\}, \{c, y, d\}, \{a, z, 1\}\}, \\ & \delta = \{\{0\}, \{c\}, \{a\}, \{x, b\}, \{y, d\}, \{z, 1\}\}, \\ & \nabla_L = L \times L. \end{split}$$

And

$$\begin{split} A(L) = &\{(\Delta_{L^{\circ\circ}}, \Delta_{D_{(L)}}), (\alpha_{L^{\circ\circ}}, \alpha_{D(L)}), (\beta_{L^{\circ\circ}}, \beta_{D(L)}), (\gamma_{L^{\circ\circ}}, \gamma_{D(L)}), (\delta_{L^{\circ\circ}}, \delta_{D(L)}), (\nabla_{L^{\circ\circ}}, \nabla_{D(L)})\} \\ = &\{(\Delta_{L^{\circ\circ}}, \Delta_{D_{(L)}}), (\{\{0, c, a\}, \{b, d, 1\}\}, \Delta_{D_{(L)}}), (\{\{0, c, a\}, \{b, d, 1\}\}, \nabla_{D(L)}), (\{a, 1\}, \{c, d\}, \{0, b\}\}, \nabla_{D(L)}), (\Delta_{L^{\circ\circ}}, \nabla_{D(L)}), (\nabla_{L^{\circ\circ}}, \nabla_{D(L)})\}. \end{split}$$

It is clear that Con(L) isomorphic to A(L) under the isomorphism $\theta \mapsto (\theta_{L^{\circ\circ}}, \theta_{D(L)})$.

A subset *I* of a lattice *L* with 0 is called an ideal of *L* if

(1) $0 \in I$, (2) $a \lor b \in I$, $\forall a, b \in I$, (3) *I* is an down-set, that is, if $x \le y$, $y \in I$ and $x \in L$, then $x \in I$.

A principal ideal of L generated by $a \in L$ is defined by

$$(a] = \{x \in L : x \le a\}.$$

AIMS Mathematics

A subset F of a lattice L with 1 is called a filter of L if

(1)
$$1 \in F$$
, (2) $a \wedge b \in F$, $\forall a, b \in F$,
(3) *F* is an up-set, that is, if $x \ge y$, $y \in F$ and $x \in L$, then $x \in F$

A principal filter of *L* generated by $a \in L$ is defined by

$$[a) = \{x \in L : x \ge a\}.$$

Definition 3.1. Let θ be a lattice congruence on a bounded lattice *L*. Then we have the following important subsets

(*i*) The Kernel of θ (Ker θ) is the set { $x \in L : (x, 0) \in \theta$ }, which is an ideal of L,

(*ii*) The Cokernel of θ (Coker θ) is the set { $x \in L : (x, 1) \in \theta$ }, which is a filter of L.

Definition 3.2. [7] An element c of an MS-algebra L is called a Boolean element of L if $c \lor c^{\circ} = 1$.

It is ready seen that the set $B(L) = \{c : c \lor c^\circ = 1\}$ of all Boolean elements of *L* forms a Boolean subalgebra of $L^{\circ\circ}$.

Lemma 3.2. Let c be a Boolean element of a principal MS-algebra L. Then (1) $\theta(0, c)$ is a principal congruence relation on $L^{\circ\circ}$ with Ker $\theta(0, c) = (c]$, where

 $(a,b) \in \theta(0,c) \Leftrightarrow a \wedge c^{\circ} = b \wedge c^{\circ},$

(2) $\theta(\varphi_L(c), 1)$ is a principal congruence relation on D(L) with Coker $\theta(\varphi_L(c), 1) = [\varphi_L(c))$, where

 $(x, y) \in \theta(\varphi_L(c), 1) \Leftrightarrow x \land (c \lor d_L) = y \land (c \lor d_L).$

Proof.

(1) It is easy to check that $\theta(0, c)$ is a principal congruence relation on $L^{\circ\circ}$ with Ker $\theta(0, c) = (c]$.

(2) It is easy to show that $\theta(\varphi_L(c), 1)$ is an equivalence relation on D(L). Let $(x, y), (m, n) \in \theta(\varphi_L(c), 1)$. Thus $x \land (c \lor d_L) = y \land (c \lor d_L)$ and $m \land (c \lor d_L) = n \land (c \lor d_L)$. Then, we get $(x \land m, y \land n) \in \theta(\varphi_L(c), 1)$ and $(x \lor m, y \lor n) \in \theta(\varphi_L(c), 1)$. Therefore $\theta(\varphi_L(c), 1)$ is a principal congruence on the lattice D(L). Also, we have

$$Coker (\theta(\varphi_L(c), 1)) = \{x \in D(L) : (x, 1) \in \theta(\varphi_L(c), 1)\}$$
$$= \{x \in D(L) : x \land (c \lor d_L) = 1 \land (c \lor d_L)\}$$
$$= \{x \in D(L) : x \land (c \lor d_L) = c \lor d_L\}$$
$$= \{x \in D(L) : x \ge c \lor d_L\}$$
$$= [c \lor d_L) = [\varphi_L(c)).$$

Now, we observe that every Boolean element *c* of a principal *MS*-algebra *L* associated with the *MS*-congruence pair of the form $(\theta(0, c), \theta(\varphi_L(c^\circ), 1))$.

Theorem 3.3. Let *L* be a principal MS-algebra and $c \in L^{\circ\circ}$. Then *c* is a Boolean element of *L* if and only if $(\theta(0, c), \theta(\varphi_L(c^\circ), 1))$ is an MS-congruence pair of *L*.

Proof. Let *c* be a Boolean element of *L*. We proved that $\theta(0, c)$ and $\theta(\varphi_L(c^\circ), 1)$ are *MS*-congruence on $L^{\circ\circ}$ and lattice congruence on D(L), respectively (Lemma 3.2). To show that $(\theta(0, c), \theta(\varphi_L(c^\circ), 1))$ is an *MS*-congruence pair, let $(x, y) \in \theta(0, c)$. Then

$$(x, y) \in \theta(0, c) \Rightarrow x \wedge c^{\circ} = y \wedge c^{\circ}$$

$$\Rightarrow (x \wedge c^{\circ}) \lor d_{L} = (y \wedge c^{\circ}) \lor d_{L}$$

$$\Rightarrow (x \lor d_{L}) \land (c^{\circ} \lor d_{L}) = (y \lor d_{L}) \land (c^{\circ} \lor d_{L})$$

$$\Rightarrow (x \lor d_{L}, y \lor d_{L}) \in \theta(\varphi_{L}(c^{\circ}), 1).$$

Conversely, let $(\theta(0, c), \theta(\varphi_L(c^\circ), 1))$ be an *MS*-congruence pair. Since $(0, c) \in \theta(0, c)$ then $c \wedge c^\circ = 0 \wedge c^\circ = 0$. Now, $c \vee c^\circ = (c^\circ \wedge c)^\circ = 1$. Therefore *c* is a Boolean element.

The basic properties of principal congruence relations $\theta(0, a)$ and $\theta(\varphi_L(a), 1), \forall a \in B(L)$ are given in the following:

Lemma 3.3. Let a, b be Boolean elements of a principal MS -algebra L. Then

(1) $a \leq b$ if and only if $\theta(0, a) \subseteq \theta(0, b)$, (2) a = b if and only if $\theta(0, a) = \theta(0, b)$, (3) $\theta(0, 0) = \Delta_{L^{\circ\circ}}$ and $\theta(0, 1) = \nabla_{L^{\circ\circ}}$, (4) $\theta(0, a) \vee \theta(0, b) = \theta(0, a \vee b)$, (5) $\theta(0, a) \cap \theta(0, b) = \theta(0, a \wedge b)$.

Lemma 3.4. Let *L* be a principal MS-algebra. Then for every $a, b \in B(L)$, we have

(1) $a \leq b$ implies $\theta(\varphi_L(a^\circ), 1) \subseteq \theta(\varphi_L(b^\circ), 1)$, (2) $\theta(\varphi_L(a^\circ), 1) \lor \theta(\varphi_L(b^\circ), 1) = \theta(\varphi_L(a \lor b)^\circ, 1)$, (3) $\theta(\varphi_L(a^\circ), 1) \land \theta(\varphi_L(b^\circ), 1) = \theta(\varphi_L(a \land b)^\circ, 1)$, (4) $\theta(\varphi_L(0), 1) = \nabla_{D(L)}$ and $\theta(\varphi_L(1), 1) = \Delta_{D(L)}$.

Proof.

(1) Let $a \le b$. Then $a^{\circ} \ge b^{\circ}$. Let $(x, y) \in \theta(\varphi_L(a^{\circ}), 1)$ then $x \land (a^{\circ} \lor d_L) = y \land (a^{\circ} \lor d_L)$. Now

$$x \wedge (b^{\circ} \vee d_{L}) = x \wedge ((a^{\circ} \wedge b^{\circ}) \vee d_{L})$$
$$= x \wedge \{(a^{\circ} \vee d_{L}) \wedge (b^{\circ} \vee d_{L})\}$$
$$= x \wedge (a^{\circ} \vee d_{L}) \wedge (b^{\circ} \vee d_{L})$$
$$= y \wedge (a^{\circ} \vee d_{L}) \wedge (b^{\circ} \vee d_{L})$$
$$= y \wedge \{(a^{\circ} \wedge b^{\circ}) \vee d_{L}\}$$
$$= y \wedge (b^{\circ} \vee d_{L}).$$

Then $(x, y) \in \theta(\varphi_L(b^\circ), 1)$. Therefore $\theta(\varphi_L(a^\circ), 1) \subseteq \theta(\varphi_L(b^\circ), 1)$. (2) Since $a, b \le a \lor b$ then by (1), we have

$$\theta(\varphi_L(a^\circ), 1), \ \theta(\varphi_L(b^\circ), 1) \subseteq \theta(\varphi_L(a \lor b)^\circ, 1).$$

AIMS Mathematics

Then $\theta(\varphi_L(a \lor b)^\circ, 1)$ is an upper bound of $\theta(\varphi_L(a^\circ), 1)$ and $\theta(\varphi_L(b^\circ), 1)$. Let $\theta(\varphi_L(c^\circ), 1)$ be an upper bound of $\theta(\varphi_L(a^\circ), 1)$ and $\theta(\varphi_L(b^\circ), 1)$.

Then $\theta(\varphi_L(a^\circ), 1), \theta(\varphi_L(b^\circ), 1) \subseteq \theta(\varphi_L(c^\circ), 1)$ implies $\varphi_L(c^\circ) \leq \varphi_L(a^\circ), \varphi_L(b^\circ)$. Thus $\varphi_L(c^\circ) \leq \varphi_L(a^\circ \land b^\circ) = \varphi_L(a \lor b)^\circ$ and hence $\theta(\varphi_L(a \lor b)^\circ, 1) \subseteq \theta(\varphi_L(c^\circ), 1)$. Therefore $\theta(\varphi_L(a \lor b)^\circ, 1)$ is the least upper bound of $\theta(\varphi_L(a^\circ), 1)$ and $\theta(\varphi_L(b^\circ), 1)$.

(3) Since $a \wedge b \leq a$, *b* then by (1) $\theta(\varphi_L(a \wedge b)^\circ, 1) \subseteq \theta(\varphi_L(a^\circ), 1), \theta(\varphi_L(b^\circ), 1)$. Then $\theta(\varphi_L(a \wedge b)^\circ, 1)$ is a lower bound of $\theta(\varphi_L(a^\circ), 1)$ and $\theta(\varphi_L(b^\circ), 1)$. Let $\theta(\varphi_L(c^\circ), 1)$ be a lower bound of $\theta(\varphi_L(a^\circ), 1)$ and $\theta(\varphi_L(b^\circ), 1)$. Then $\theta(\varphi_L(c^\circ), 1) \subseteq \theta(\varphi_L(a^\circ), 1), \theta(\varphi_L(b^\circ), 1)$ implies $\varphi_L(a^\circ), \varphi_L(b^\circ) \leq \varphi_L(c^\circ)$. Thus $\varphi_L(a \wedge b)^\circ = \varphi_L(a^\circ) \lor \varphi_L(b^\circ) \leq \varphi_L(c^\circ)$ and hence $\theta(\varphi_L(c^\circ), 1) \subseteq \theta(\varphi(a \wedge b)^\circ, 1)$. Therefore $\theta(\varphi_L(a \wedge b)^\circ, 1)$ is the greatest lower bound of $\theta(\varphi_L(a^\circ), 1)$ and $\theta(\varphi_L(b^\circ), 1)$.

(4) Since $d_L, 1 \in \theta(d_L, 1)$, then $\theta(d_L, 1) = D(L) \times D(L) = \nabla_{D(L)}$. Also, let $(x, y) \in \theta(\varphi_L(1), 1)$ then $x \wedge (1 \lor d_L) = y \wedge (1 \lor d_L)$. It follows, x = y and hence $\theta(\varphi_L(1), 1) = \Delta_{D(L)}$.

Theorem 3.4. Let L be a principal MS-algebra. Consider the subsets H and G of $Con(L^{\circ\circ})$ and Con(D(L)), respectively as follows:

$$H = \{\theta(0, a) : a \in B(L)\}, \quad G = \{\theta(\varphi_L(a), 1) : a \in B(L)\}.$$

Then we have

(1) $(H; \lor, \land, ', \bigtriangleup_{L^{\circ\circ}}, \bigtriangledown_{L^{\circ\circ}})$ is a Boolean algebra, where $(\theta(0, a))' = \theta(a^{\circ}, 0)$, (2) $(G; \lor, \land, ', \bigtriangleup_{D(L)}, \bigtriangledown_{D_{L}})$ is a Boolean algebra, where $(\theta(\varphi_{L}(a), 1))' = \theta(\varphi_{L}(a^{\circ}), 1)$.

Proof.

(1) Since $\theta(0,0) = \triangle_{L^{\infty}}$ and $\theta(0,1) = \nabla_{L^{\infty}}$. Then $\nabla_{L^{\infty}}, \triangle_{L^{\infty}} \in H$. Let $\theta(0,a), \theta(0,b) \in H$. Then we get

$$\theta(0,a) \vee \theta(0,b) = \theta(0,a \vee b),$$

and

$$\theta(0,a) \wedge \theta(0,b) = \theta(0,a \wedge b).$$

Therefore *H* is a bounded lattice. Since B(L) is a Boolean algebra, then $a^{\circ} \in B(L)$ for all $a \in B(L)$. Thus $\theta(0, a^{\circ}) \in H$. Then we have

$$\theta(0,a) \vee [\theta(0,a)]' = \theta(0,a) \vee \theta(0,a^\circ) = \theta(0,a \vee a^\circ) = \theta(0,1) = \nabla_{L^{\circ\circ}},$$

and

$$\theta(0,a) \wedge [(0,a)]' = \theta(0,a) \wedge \theta(0,a^\circ) = \theta(\varphi_L(0,a \wedge a^\circ) = \theta(0,0) = \triangle_{L^{\circ\circ}}.$$

Therefore $(H; \lor, \land, ', \bigtriangleup_{L^{\circ\circ}}, \bigtriangledown_{L^{\circ\circ}})$ is a Boolean algebra.

(2) We have $\triangle_{D(L)} = \theta(\varphi_L(1), 1) \in G$ and $\nabla_{D(L)} = \theta(\varphi_L(0), 1) = \nabla_{D(L)} \in G$. Let $\theta(\varphi_L(a), 1), \theta(\varphi_L(b), 1) \in G$. Then we get

$$\theta(\varphi_L(a), 1) \lor \theta(\varphi_L(b), 1) = \theta(\varphi_L(a \land b), 1),$$

AIMS Mathematics

and

$$\theta(\varphi_L(a), 1) \land \theta(\varphi_L(b), 1) = \theta(\varphi_L(a \lor b), 1).$$

Therefore *G* is a bounded lattice. Since B(L) is a Boolean algebra, then $a^{\circ} \in B(L)$ for all $a \in B(L)$. Thus $\theta(\varphi_L(a^{\circ}), 1) \in G$. Then we have

$$\theta(\varphi_L(a), 1) \vee [\theta(\varphi_L(a), 1)]' = \theta(\varphi_L(a), 1) \vee \theta(\varphi_L(a^\circ), 1) = \theta(\varphi_L(a \wedge a^\circ), 1) = \theta(\varphi_L(0), 1) = \nabla_{D(L)}$$

and

$$\theta(\varphi_L(a), 1) \wedge [\theta(\varphi_L(a), 1)]' = \theta(\varphi_L(a), 1) \wedge \theta(\varphi_L(a^\circ), 1) = \theta(\varphi_L(a \lor a^\circ), 1) = \theta(\varphi_L(1), 1) = \Delta_{D(L)}.$$

Therefore $(G; \lor, \land, ', \bigtriangleup_{D_L}, \bigtriangledown_{D_L})$ is a Boolean algebra.

Let *L* be a principal *MS*-algebra. Let A(L) be the lattice of all *MS*-congruence pairs of *L*. We consider a subset A'(L) of A(L) as follows:

$$A'(L) = \{ (\theta(0, a), \theta(\varphi_L(a^\circ), 1)) : a \in B(L) \}.$$

From the above results, we observe that the set A'(L) of all *MS*-congruence pairs induced by the Boolean elements of a principal *MS*-algebra forms bounded sublattice of the lattice A(L). Moreover A'(L) is a Boolean algebra on its own.

Theorem 3.5. Let L be a principal MS-algebra. Then $(A'(L); \lor, \land, \lor, 0_{A'(L)}, 1_{A'(L)})$ is a Boolean algebra, where

$$\begin{aligned} (\theta(0, a), \theta(\varphi_{L}(a^{\circ}), 1)) &\vee (\theta(0, b), \theta(\varphi_{L}(b^{\circ}), 1)) = (\theta(0, a \vee b), \theta(\varphi_{L}(a \vee b)^{\circ}, 1)), \\ (\theta(0, a), \theta(\varphi_{L}(a^{\circ}), 1) \wedge (\theta(0, b), \theta(\varphi_{L}(b^{\circ}), 1)) = (\theta(0, a \wedge b), \theta(\varphi_{L}(a \wedge b)^{\circ}, 1)), \\ [(\theta(0, a), \theta(\varphi_{L}(a^{\circ}), 1))]' = (\theta(0, a^{\circ}), \theta(\varphi_{L}(a), 1)), \\ 1_{A'(L)} = (\nabla_{L^{\circ\circ}}, \Delta_{D_{(L)}}), \\ 0_{A'(L)} = (\Delta_{L^{\circ\circ}}, \Delta_{D_{(L)}}). \end{aligned}$$

Example 3.2. Consider the principal MS -algebra L in Example 2.1. The lattices B(L) and A'(L) of all Boolean elements of L and all MS -congruence pairs of L of the form $(\theta(0, a), \theta(\varphi_L(a^\circ), 1)), a \in B(L))$ are given in the following Figure 4, respectively.

Figure 4. The lattices B(L) and A'(L).

It is clear that B(L) and A(L) are isomorphic Boolean algebras under the isomorphism $a \mapsto (\theta(0, a), \theta(a^{\circ} \lor z, 1))$. Also, A'(L) is a bounded sublattice of A(L).

AIMS Mathematics

Volume 8, Issue 9, 19857–19875.

4. 2-permutability of principal *MS*-algebras

In this section, we characterize the notion of 2-permutability of congruences of a principal MS-algebra by means of MS-congruence pairs.

Let *L* be an algebra. We say the congruences $\theta, \Phi \in Con(L)$ are 2-permutable if $\theta \circ \Phi = \Phi \circ \theta$, that is, $(x, a) \in \theta$ and $(a, y) \in \Phi$, $x, y, a \in L$ imply $(x, b) \in \Phi$ and $(b, y) \in \theta$ for some $b \in L$. We call the algebra *L* has 2-permutable congruences (briefly permutable) if every pair of congruences of *L* permute.

Lemma 4.1. A principal MS-algebra L has 2-permutable congruences if and only if every pair of principle congruences of L permute.

Proof. Assume that every pair of principal congruences on *L* permute. Let θ and Φ be arbitrary congruences on *L* and $(a,b) \in (\theta \circ \Phi)$, $a,b \in L$. Then $(a,t) \in \theta$ and $(t,b) \in \Phi$ for some $t \in L$. Then $(a,t) \in \theta(a,t)$ and $(t,b) \in \theta(t,b)$ imply that $(a,b) \in \theta(a,t) \circ \theta(t,b)$. Thus $(a,b) \in \theta(t,b) \circ \theta(a,t)$. Since $\theta(a,t) \subseteq \theta$ and $\theta(t,b) \subseteq \Phi$, then $(a,b) \in (\Phi \circ \theta)$. Therefore θ and Φ permute. The second implication is obvious.

Define a relation Ψ on a principal *MS*-algebra *L* as follows:

$$(a,b) \in \Psi \Leftrightarrow a^{\circ} = b^{\circ} \Leftrightarrow a^{\circ \circ} = b^{\circ \circ}.$$

Theorem 4.1. Let L be a principal MS-algebra with the smallest dense element d_L . Then

(1) Ψ is a congruence relation on L with Ker $\Psi = \{0\}$ and Coker $\Psi = D(L)$,

(2) Ψ is closed congruence on L, that is, $(x, x^{\circ \circ}) \in \Psi, \forall x \in L$,

(3) $max [x]_{\Psi} = x^{\circ\circ}, x \in L$, where $[x]_{\Psi} = \{y \in L : y^{\circ\circ} = x^{\circ\circ}\}$ is the congruence class of x modulo Ψ .

Proof.

(1) One can check that Ψ is a congruence relation on L. Now, we have

$$Ker\Psi = \{a \in L : (a, 0) \in \Psi\} = \{a \in L : a^{\circ} = 1\} = \{0\},\$$

and

$$Coker\Psi = \{z \in L : (z, 1) \in \Psi\} = \{z \in L : z^{\circ} = 1\} = D(L) = [d_L).$$

(2) Since $x^{\circ\circ\circ\circ} = x^{\circ\circ}$ then $x^{\circ\circ} \in [x]_{\Psi}$. Thus $(x^{\circ\circ}, x) \in \Psi$.

(3) Let $y \in [x]_{\Psi}$. Then $y \le y^{\circ\circ} = x^{\circ\circ}$ and $x^{\circ\circ} \in [x]_{\Psi}$. Thus $x^{\circ\circ}$ is the greatest member of the congruence class $[x]_{\Psi}$.

Theorem 4.2. Let L be a principal MS-algebra. Then

(1) L/Ψ is a de Morgan algebra,

(2) L/Ψ and $L^{\circ\circ}$ are isomorphic de Morgan algebras.

Proof.

(1) It is ready seen that $(L/\Psi; \lor, \land, \{0\}, D(L))$ is a bounded distributive lattice, where $L/\Psi = \{[a]_{\Psi} : a \in L\}$ is the set of all congruence classes module Ψ and

$$[a]_{\Psi} \lor [b]_{\Psi} = [a \lor b]_{\Psi},$$
$$[a]_{\Psi} \land [b]_{\Psi} = [a \land b]_{\Psi}.$$

Define \Box on L/Ψ by $([a]_{\Psi})^{\Box} = [a^{\circ}]_{\Psi}, \forall a \in L$. We have

$$([0]_{\Psi})^{\Box} = [1]_{\Psi},$$
$$([a]_{\Psi})^{\Box\Box} = [a^{\circ\circ}]_{\Psi} = [a]_{\Psi},$$
$$([a]_{\Psi} \wedge [b]_{\Psi})^{\Box} = ([a]_{\Psi})^{\Box} \vee ([b]_{\Psi})^{\Box}.$$

Then L/Ψ is a de Morgan algebra.

(2) Define $g: L^{\circ\circ} \to L/\Psi$ by

$$g(a) = [a]_{\Psi}, \forall a \in L^{\circ \circ}$$

Let $a, b \in L^{\circ\circ}$ and a = b. Then $a^{\circ\circ} = b^{\circ\circ}$ implies $[a]_{\Psi} = [b]_{\Psi}$. It follows that g is well defined map of $L^{\circ\circ}$ into L/Ψ . Let $a, b \in L^{\circ\circ}$, we get

$$g(a \lor b) = [a \lor b]_{\Psi} = [a]_{\Psi} \lor [b]_{\Psi} = g(a) \lor g(b),$$

$$g(a \wedge b) = [a \wedge b]_{\Psi} = [a]_{\Psi} \wedge [b]_{\Psi} = g(a) \wedge g(b),$$

and

$$g(a^{\circ}) = [a^{\circ}]_{\Psi} = ([a]_{\Psi})^{\Box} = (g(a))^{\Box}.$$

Let $[a]_{\Psi} = [b]_{\Psi}$. Then $a^{\circ\circ} = b^{\circ\circ}$ implies a = b. Therefore g is an injective map. Let $[a]_{\Psi} \in L/\Psi$. Then $[x]_{\Psi} = [x^{\circ\circ}]_{\Psi} = g(x)$. Then g is a surjective map. This deduce that g is an isomorphism of de Morgan algebras.

Now, we observe that Ψ satisfies the following property,

 $\Psi \circ \theta = \theta \circ \Psi$ for all $\theta \in Con(L)$.

Theorem 4.3. Let L be a principal MS-algebra. Then Ψ permutes with each congruence of L.

Proof. We prove that $\Psi \circ \theta = \theta \circ \Psi$ for all $\theta \in Con(L)$. Let $(a, b) \in \Psi \circ \theta$. Then $(a, z) \in \Psi$ and $(z, b) \in \theta$ for some $z \in L$. It follows that $a^{\circ\circ} = z^{\circ\circ}$ and $(z, b) \in \theta$. Now

$$(z,b) \in \theta \Rightarrow (z^{\circ\circ}, b^{\circ\circ}) \in \theta \text{ and } (a \lor d_L, a \lor d_L) \in \theta$$
$$\Rightarrow (a^{\circ\circ} \land (a \lor d_L), b^{\circ\circ} \land (a \lor d_L)) \in \theta$$
$$\Rightarrow (a, b^{\circ\circ} \land (a \lor d_L)) \in \theta \qquad (\text{as } a = a^{\circ\circ} \land (a \lor d_L))$$

Since $[b^{\circ\circ} \land (a \lor d_L)]^{\circ\circ} = b^{\circ\circ}$, then $(b^{\circ\circ} \land (a \lor d_L), b) \in \Psi$. Therefore $(a, b^{\circ\circ} \land (a \lor d_L)) \in \theta$ and $(b^{\circ\circ} \land (a \lor d_L), b) \in \Psi$. imply $(a, b) \in \theta \circ \Psi$. Then $\Psi \circ \theta = \theta \circ \Psi$, $\forall \theta \in Con(L)$.

AIMS Mathematics

Lemma 4.2. Let L be a principal MS-algebra. Then

(1) \triangle_L permutes with every congruence on L,

(2) ∇_L permutes with every congruence on L.

Proof.

(1) Let $(a, b) \in \theta \circ \Delta_L$. Then $(a, t) \in \theta$ and $(t, b) \in \Delta_L$ for some $t \in L$. Thus $(a, t) \in \theta$ and t = b. Then $(a, a) \in \Delta_L$ and $(a, b) \in \theta$ imply $(a, b) \in \Delta_L \circ \theta$. Therefore $\theta \circ \Delta_L = \Delta_L \circ \theta$.

(2) It is obvious.

In the following theorem, we characterize 2-permutability of congruences of a principal *MS*-algebra *L* using *MS*-congruence pairs.

Theorem 4.4. Let L be a principal MS-algebra. Then the following conditions are equivalent:

(1) L has 2-permutable congruences.

(2) $L^{\circ\circ}$ and D(L) have 2-permutable congruences.

Proof. To prove the conditions (1) and (2) are equivalent, we show that the two congruences θ , $\Phi \in Con(L)$ are 2-permutable if and only if their restrictions $\theta_{L^{\circ\circ}}$, $\Phi_{L^{\circ\circ}}$ and $\theta_{D(L)}$, $\Phi_{D(L)}$ have 2-permutable congruences on $L^{\circ\circ}$ and D(L), respectively. Firstly, suppose that θ , Φ have 2-permutable congruences on L. Let $(x, z) \in \theta_{L^{\circ\circ}} \circ \Phi_{L^{\circ\circ}}$. Then there exist $y \in L^{\circ\circ}$ such that $(x, y) \in \theta_{L^{\circ\circ}}$ and $(y, z) \in \Phi_{L^{\circ\circ}}$. Then we have $(x, y) \in \theta$ and $(y, z) \in \Phi$. Since θ , Φ are 2-permutable, then there exists $a \in L$ such that $(x, a) \in \Phi$ and $(a, y) \in \theta$. We get $(x, a^{\circ\circ}) = (x^{\circ\circ}, a^{\circ\circ}) \in \Phi_{L^{\circ\circ}}$ and $(a^{\circ\circ}, z^{\circ\circ}) \in \theta_{L^{\circ\circ}}$. Therefore $\theta_{L^{\circ\circ}}$, $\Phi_{L^{\circ\circ}}$ are 2-permutable. Also, to prove that $\theta_{D(L)}$, $\Phi_{D(L)}$ are 2-permutable, let $(x, z) \in \theta_{D(L)} \circ \Phi_{D(L)}$. Then there exist $y \in D(L)$ such that $(x, y) \in \theta_{D(L)}$ and $(y, z) \in \Phi_{D(L)}$. Then we have $(x, y) \in \theta$ and $(y, z) \in \Phi$. Since θ , Φ are 2-permutable, let $(x, z) \in \theta_{D(L)} \circ \Phi_{D(L)}$. Then there exist $y \in D(L)$ such that $(x, y) \in \theta_{D(L)}$ and $(y, z) \in \Phi_{D(L)}$. Then we have $(x, y) \in \theta$ and $(y, z) \in \Phi$. Since θ , Φ are 2-permutable, there exists $a \in L$ such that

$$(x, a) \in \Phi \text{ and } (a, z) \in \theta \Rightarrow (x, a \lor d_L) = (x \lor d_L, a \lor d_L) \in \Phi \text{ and } (a \lor d_L, z \lor d_L) \in \theta$$
$$\Rightarrow (x, a \lor d_L) \in \Phi \text{ and } (a \lor d_L, z) \in \theta,$$
$$\Rightarrow (x, a \lor d_L) \in \Phi_{D(L)} \text{ and } (a \lor d_L, z) \in \theta_{D(L)}, \text{ as } x, a \lor d_L, z \in D(L)$$
$$\Rightarrow (x, z) \in \Phi_{D(L)} \circ \theta_{D(L)}.$$

Thus $\theta_{D(L)}$, $\Phi_{D(L)}$ have 2-permutable congruences on D(L).

Conversely, let θ , $\Phi \in Con(L)$. Assume that $\theta_{L^{\circ\circ}}$, $\Phi_{L^{\circ\circ}}$ and $\theta_{D(L)}$, $\Phi_{D(L)}$, have 2-permutable congruences on $L^{\circ\circ}$ and D(L), respectively. Let $(x, z) \in \theta \circ \Phi$. Suppose that $x, y, z \in L$ with $(x, y) \in \theta$ and $(y, z) \in \Phi$. Then, by using Theorem 2.3, we get the following statements.

$$(x^{\circ\circ}, y^{\circ\circ}), (y^{\circ\circ}, z^{\circ\circ}) \in \Phi_{L^{\circ\circ}}, (x \lor d_L, y \lor d_L), (y \lor d_L, z \lor d_L) \Phi_{D(L)}.$$

Since $\theta_{L^{\circ\circ}}$, $\Phi_{L^{\circ\circ}}$ have 2-permutable congruences on $L^{\circ\circ}$, there exists an element $a \in L^{\circ\circ}$ such that

$$(x^{\circ\circ}, a) \in \Phi_{L^{\circ\circ}}$$
 and $(a, z^{\circ\circ}) \in \theta_{L^{\circ\circ}}$.

Since $\theta_{D(L)}$, $\Phi_{D(L)}$ have 2-permutable congruences on D(L), there exists $e \in D(L)$ such that $(x \lor d_L, e) \in \Phi_{D_L}$ and $(e, z \lor d_L) \in \theta_{D_L}$). It follows that $(x^{\circ\circ}, a) \in \Phi, (a, z^{\circ\circ}) \in \theta$ and $(x \lor d_L, e) \in \Phi, (e, z \lor d_L) \in \theta$. Since *L* is a principal *MS*-algebra we have

$$x = x^{\circ \circ} \land (x \lor d_L)$$
 and $z = z^{\circ \circ} \land (z \lor d_L)$.

AIMS Mathematics

Since θ , Φ are compatible with the \wedge operation, then $(x^{\circ\circ}, a) \in \Phi$ and $(x \lor d_L, e) \in \Phi$ imply $(x, a \land e) = (x^{\circ\circ} \land (x \lor d_L), a \land e) \in \Phi$. Also $(a, z^{\circ\circ}) \in \theta$ and $(e, z \lor d_L) \in \theta$ imply $(a \land e, z) = (a \land e, z^{\circ\circ} \land (z \lor d_L)) \in \theta$. Consequently, we deduce that $(x, a \land e) \in \Phi$ and $(a \land e, z) \in \theta$, $a \land e \in L$. Then $(x, z) \in \Phi \circ \theta$, and hence θ , Φ are 2-permutable.

Now, we construct two examples to clarify the above theorem.

Example 4.1. Consider the principal MS -algebra L in Example 2.1 (Figure 1). From Table 1, we show that L has 2-permutable congruences. Also, Tables 2 and 3 show that $L^{\circ\circ}$ and D(L) have 2-permutable congruences, respectively. Where $\alpha_{L^{\circ\circ}} = \beta_{L^{\circ\circ}}$ and $\delta_{L^{\circ\circ}} = \Delta_{L^{\circ\circ}}$.

0	Δ_L	α	β	γ	δ	∇_L	
Δ_L	Δ_L	α	β	γ	δ	∇_L	
α	α	α	β	∇_L	β	∇_L	
β	β	β	β	∇_L	β	∇_L	
γ	γ	∇_L	∇_L	γ	∇_L	∇_L	
δ	δ	β	β	∇_L	δ	∇_L	
∇_L							

Table 1. $(Con(L); \circ)$.

Table 2. $(Con(L^{\circ\circ}); \circ)$.

0	$\Delta_{L^{\circ\circ}}$	$\alpha_{L^{\circ\circ}}$	$\gamma_{L^{\circ\circ}}$	$\nabla_{L^{\circ\circ}}$
$\Delta_{L^{\circ\circ}}$	$\Delta_{L^{\circ\circ}}$	$lpha_{L^{\circ\circ}}$	$\gamma_{L^{\circ\circ}}$	$\nabla_{L^{\circ\circ}}$
$\alpha_{L^{\circ\circ}}$	$lpha_{L^{\circ\circ}}$	$lpha_{L^{\circ\circ}}$	$\nabla_{L^{\circ\circ}}$	$\nabla_{L^{\circ\circ}}$
$\gamma_{L^{\circ\circ}}$	$\gamma_{L^{\circ\circ}}$	$\nabla_{L^{\circ\circ}}$	$\gamma_{L^{\circ\circ}}$	$\nabla_{L^{\circ\circ}}$
$\nabla_{L^{\circ\circ}}$	$\nabla_{L^{\circ\circ}}$	$\nabla_{L^{\circ\circ}}$	$\nabla_{L^{\circ\circ}}$	$\nabla_{L^{\circ\circ}}$

Table 3. (*Con*(*D*(*L*)); ◦).

0	$\Delta_{D(L)}$	$\nabla_{D(L)}$
$\Delta_{D(L)}$	$\Delta_{D(L)}$	$\nabla_{D(L)}$
$\nabla_{D(L)}$	$\nabla_{D(L)}$	$\nabla_{D(L)}$

In the following example, we give a principal MS-algebra L which has not 2-permutable congruences as well as D(L) has not also 2-permutable congruences.

Example 4.2. Consider the principal MS-algebra L in Figure 5.

Figure 5. *L* is a principal *MS*-algebra with D(L) = [z].

It is clear that $D(L) = \{z, z_1, 1\}$ and $L^{\circ \circ} = \{0, c, a, b, d, 1\}$. Consider $\theta, \Phi \in Con(L)$ as follows:

$$\begin{split} \theta &= \bigtriangleup_L \cup \{\{x_1, b\}, \{y_1, d\}, \{z_1, 1\}\}, \\ \Phi &= \bigtriangleup_L \cup \{\{x, x_1\}, \{y, y_1\}, \{z, z_1\}\}. \end{split}$$

We observe that $\theta \circ \Phi \neq \Phi \circ \theta$ *as* $(z, 1) \in \Phi \circ \theta$ *but* $(z, 1) \notin \theta \circ \Phi$.

Then *L* has not 2-permutable congruences and D(L) has not 2-permutable congruences as $\theta_{D(L)} \circ \Phi_{D(L)} \neq \Phi_{D(L)} \circ \theta_{D(L)}$.

5. *n*-permutability of principal *MS*-algebras

We generalize the concept of 2-permutability to the concept of n-permutability of congruences of principal *MS*-algebras.

Definition 5.1. A principal MS-algebra L is said to have n-permutable congrunces if every two congruences θ , Φ of L are n-permutable, that is,

$$\theta \circ \Phi \circ \theta \circ \dots = \Phi \circ \theta \circ \Phi \circ \dots (n \text{ times}).$$

At first, we need the following two lemmas.

Lemma 5.1. Let *L* be a principal MS - algebra with the smallest dense element d_L . Let θ, Φ be two congruences on *L*. Then we have

(i) $(\theta \circ \Phi \circ \theta \circ ...)_{L^{\infty}} = \theta_{L^{\infty}} \circ \Phi_{L^{\infty}} \circ ...(n \text{ times}),$

(*ii*) $(\theta \circ \Phi \circ \theta \circ ...)_{D(L)} = \theta_{D(L)} \circ \Phi_{D(L)} \circ ...(n \text{ times}).$

Proof.

(i) Recall that $\theta_{L^{\circ\circ}}, \Phi_{L^{\circ\circ}}$ are the restrictions of θ, Φ on $L^{\circ\circ}$, respectively. Let $a, b \in L^{\circ\circ}$ and $(a, b) \in (\theta_{L^{\circ\circ}} \circ \Phi_{L^{\circ\circ}} \circ ...)$. Then there exist $c_1, c_2, ..., c_{n-1} \in L^{\circ\circ}$ such that

$$(a, c_1) \in \theta_{L^{\infty}}, (c_1, c_2) \in \Phi_{L^{\infty}}, ..., (c_{n-1}, b) \in \Psi, \text{ where } \Psi = \begin{cases} \theta_{L^{\infty}}, & \text{if } n \text{ odd,} \\ \Phi_{L^{\infty}}, & \text{if } n \text{ even.} \end{cases}$$

Then

$$(a, c_1) \in \theta, (c_1, c_2) \in \Phi, ..., (c_{n-1}, b) \in \Psi, \text{ where } \Psi = \begin{cases} \theta, & \text{if } n \text{ odd,} \\ \Phi, & \text{if } n \text{ even.} \end{cases}$$

Then $(a, b) \in (\theta \circ \Phi \circ \theta \circ ...)$ and hence $(a, b) \in (\theta \circ \Phi \circ \theta \circ ...)_{L^{\circ\circ}}$. Therefore

AIMS Mathematics

 $\theta_{L^{\circ\circ}} \circ \Phi_{L^{\circ\circ}} \circ \theta_{L^{\circ\circ}} \dots \subseteq (\theta \circ \Phi \circ \theta \circ \dots)_{L^{\circ\circ}}.$

Conversely, let $a, b \in L^{\circ\circ}$ such that $(a, b) \in (\theta \circ \Phi \circ \theta \circ ...)_{L^{\circ\circ}}$. Then $(a, b) \in (\theta \circ \Phi \circ \theta \circ ...)$. Then there exist $c_1, c_2, ..., c_{n-1} \in L$ such that

$$(a, c_1) \in \theta_{L^{\circ\circ}}, (c_1, c_2) \in \Phi_{L^{\circ\circ}}, \dots, (c_{n-1}, b) \in \Psi, \text{ where } \Psi = \begin{cases} \theta_{L^{\circ\circ}}, & \text{if } n \text{ odd,} \\ \Phi_{L^{\circ\circ}}, & \text{if } n \text{ even.} \end{cases}$$

Then we get

$$(a, c_1^{\circ\circ}) \in \theta, (c_1^{\circ\circ}, c_2^{\circ\circ}) \in \Phi, ..., (c_{n-1}^{\circ\circ}, b) \in \Psi, \text{ where } \Psi = \begin{cases} \theta, & \text{if } n \text{ odd,} \\ \Phi, & \text{if } n \text{ even.} \end{cases}$$

Since $c_1^{\circ\circ}, c_2^{\circ\circ}, ..., c_{n-1}^{\circ\circ} \in L^{\circ\circ}$, we have

$$(a, c_1^{\circ\circ}) \in \theta_{L^{\circ\circ}}, (c_1^{\circ\circ}, c_2^{\circ\circ}) \in \Phi_{L^{\circ\circ}}, ..., (c_{n-1}^{\circ\circ}, b) \in \Psi, \text{ where } \Psi = \begin{cases} \theta_{L^{\circ\circ}}, & \text{if } n \text{ odd,} \\ \Phi_{L^{\circ\circ}}, & \text{if } n \text{ even} \end{cases}$$

Therefore

 $(a,b)\in (\theta_{L^{\circ\circ}}\circ\Phi_{L^{\circ\circ}}\circ\theta_{L^{\circ\circ}}\circ\ldots)$

and hence

$$(\theta \circ \Phi \circ \theta \circ ...)_{L^{\infty}} \subseteq \theta_{L^{\infty}} \circ \Phi_{L^{\infty}} \circ \theta_{L^{\infty}} \circ ...(n \text{ times})$$

Then we get

$$(\theta \circ \Phi \circ \theta \circ ...)_{L^{\circ\circ}} = \theta_{L^{\circ\circ}} \circ \Phi_{L^{\circ\circ}} \circ \theta_{L^{\circ\circ}} \circ ...(n \text{ times})$$

(ii) Take $x, y \in D(L)$, let $(x, y) \in (\theta_{D(L)} \circ \Phi_{D(L)} \circ \Phi_{D(L)} \circ \theta_{D(L)} \circ ...)$. Then $(x, y) \in (\theta \circ \Phi \circ \theta \circ ...)$ and hence $(a, b) \in (\theta \circ \Phi \circ \theta \circ ...)_{D(L)}$. Then $(\theta \circ \Phi \circ \theta \circ ...) \subseteq (\theta \circ \Phi \circ \theta \circ ...)_{D(L)}$.

Conversely, let $(x, y) \in (\theta \circ \Phi \circ \theta \circ ...)_{D(L)}$, then $(x, y) \in (\theta \circ \Phi \circ ...)$. There exist $d_1, d_2, ...d_{n-1} \in L$, such that

$$(x, d_1) \in \theta, (d_1, d_2) \in \Phi, ..., (d_{n-1}, y) \in \psi$$
, where $\psi = \begin{cases} \theta, & \text{if } n \text{ odd,} \\ \Phi, & \text{if } n \text{ even} \end{cases}$

Since $x, y \ge d_L$, we get,

$$(x, d_1) = (x \lor d_L, d_1 \lor d_L) \in \theta_{D(L)}, (d_1 \lor d_L, d_2 \lor d_L) \in \Phi_{D(L)}, ..., (d_{n-1}, b \lor d_{L_1}) = (d_{n-1}, y) \in \psi, \text{ where } \psi = \begin{cases} \theta_{D(L)}, & \text{if } n \text{ odd,} \\ \Phi_{D(L)}, & \text{if } n \text{ even.} \end{cases}$$

Hence $(x, y) \in (\theta_{D(L)} \circ \Phi_{D(L)} \circ \theta_{D(L)} \circ ...)$. Then the required equality is proved.

Lemma 5.2. Let θ and Φ be congruences on a principal MS-algebra L. Let ψ denoted to the relation $\theta \circ \Phi \circ \theta \circ \dots (n \text{ times})$. Then $(a, b) \in \psi$ and $(c, d) \in \psi$ imply $(a \land c, b \land d) \in \psi$.

AIMS Mathematics

Volume 8, Issue 9, 19857-19875.

Proof. Let $(a, b) \in \psi$ and $(c, d) \in \psi$. Then there exist $a_1, a_2, ..., a_{n-1}$, $c_1, c_2, ..., c_{n-1} \in L$ such that

$$(a, a_1) \in \theta, (a_1, a_2) \in \Phi, ..., (a_{n-1}, b) \in \Psi$$
, where $\Psi = \begin{cases} \theta, & \text{if } n \text{ odd,} \\ \Phi, & \text{if } n \text{ even.} \end{cases}$

And

$$(c, c_1) \in \theta, (c_1, c_2) \in \Phi, ..., (c_{n-1}, d) \in \Psi$$
, where $\Psi = \begin{cases} \theta, & \text{if } n \text{ odd,} \\ \Phi, & \text{if } n \text{ even} \end{cases}$

Since θ , Φ are congruence on *L* then we get,

$$(a \wedge c, a_1 \wedge c_1) \in \theta, (a_1 \wedge c_1, a_2 \wedge c_2) \in \Phi, ..., (a_{n-1} \wedge c_{n-1}, b \wedge d) \in \Psi, \text{ where } \Psi = \begin{cases} \theta, & \text{if } n \text{ odd,} \\ \Phi, & \text{if } n \text{ even.} \end{cases}$$

Thus $(a \land c, b \land d) \in \psi$.

Now, a characterization of *n*-permutability of principal *MS*-algebras is given.

Theorem 5.1. Two congruences θ , Φ on a principal MS-algebra L are n-permutable if and only if their restrictions $\theta_{L^{\infty}}$, $\Phi_{L^{\infty}}$ and $\theta_{D(L)}$, $\Phi_{D(L)}$ with respect to L^{∞} and D(L) respectively are n-permutable.

Proof. Let *L* has n-permutable congruences. Let θ , Φ be any two congruences on *L*. Then by (*i*) and (*ii*) of Lemma 5.1, respectively, we have

$$\theta_{L^{\circ\circ}} \circ \Phi_{L^{\circ\circ}} \circ \theta_{L^{\circ\circ}} \circ \ldots = (\theta \circ \Phi \circ \theta \circ \ldots)_{L^{\circ\circ}} = (\Phi \circ \theta \circ \Phi \circ \ldots)_{L^{\circ\circ}} = \Phi_{L^{\circ\circ}} \circ \theta_{L^{\circ\circ}} \circ \Phi_{L^{\circ\circ}} \circ \ldots$$

and

$$\theta_{D(L)} \circ \Phi_{D(L)} \circ \theta_{D(L)} \circ \dots = (\theta \circ \Phi \circ \theta \circ \dots)_{D(L)} = (\Phi \circ \theta \circ \Phi \circ \dots)_{D(L)} = \Phi_{D(L)} \circ \theta_{D(L)} \circ \Phi_{D(L)} \circ \dots$$

Therefore $L^{\circ\circ}$ and D(L) have n-permutable congruences.

Conversely, let $L^{\circ\circ}$ and D(L) have n-permutable congruences. If $(a, b) \in (\theta \circ \Phi \circ \theta \circ ...)$, using Theorem 2.3, we get

$$(a^{\circ\circ}, b^{\circ\circ}) \in (\theta \circ \Phi \circ \theta \circ ...)_{L^{\circ\circ}},$$

and

$$(a \lor d_L, b \lor d_L) \in (\theta \circ \Phi \circ \theta \circ ...)_{D_L}.$$

By lemma 5.1, we get

$$(a^{\circ\circ}, b^{\circ\circ}) \in (\theta_{L^{\circ\circ}} \circ \Phi_{L^{\circ\circ}} \circ \theta_{L^{\circ\circ}} \circ ...),$$

and

$$(a \lor d_L, b \lor d_L) \in (\theta_{D(L)} \circ \Phi_{D(L)} \circ \Phi_{D(L)} \circ \dots)$$

Since $\theta_{L^{\circ\circ}}$, $\Phi_{L^{\circ\circ}}$ and $\theta_{D(L)}$, $\Phi_{D(L)}$ are n-permutable on $L^{\circ\circ}$, D(L), respectively, we have

$$(a^{\circ\circ}, b^{\circ\circ}) \in (\Phi_{L^{\circ\circ}} \circ \theta_{L^{\circ\circ}} \circ \Phi_{L^{\circ\circ}} \circ \dots),$$

and

AIMS Mathematics

Volume 8, Issue 9, 19857-19875.

$$(a \lor d_L \equiv b \lor d_L) \in (\Phi_{D(L)} \circ \theta_{D(L)} \circ \Phi_{D(L)} \circ \dots).$$

It follows that, $(a^{\circ\circ}, b^{\circ\circ}) \in (\Phi \circ \theta \circ \Phi \circ ...)$ and $(a \lor d_L, b \lor d_L) \in (\Phi \circ \theta \circ \Phi \circ ...)$. Since *L* is a principal *MS*-algebra, then $a = a^{\circ\circ} \land (a \lor d_L)$ and $b = b^{\circ\circ} \land (b \lor d_L)$. By Lemma 5.2, we get

$$(a^{\circ\circ} \land (a \lor d_L), b) = (a, b) \in (\Phi \circ \theta \circ \Phi \circ ...).$$

Thus $(\theta \circ \Phi \circ \theta \circ ...) \subseteq (\Phi \circ \theta \circ \Phi \circ ...)$. Similarly we can show that $(\Phi \circ \theta \circ \Phi \circ ...) \subseteq (\theta \circ \Phi \circ \theta \circ ...)$. Then *L* has n-permutable congruences.

6. Conclusions

With the aid of the technique of MS-congruence pairs, many properties were investigated for principal MS-algebras, deal with a characterization of congruence pairs of a principal MS-algebra (a Stone algebra), a description of the lattice A(L) of all MS-congruence pairs of L via Boolean elements of L, characterizations of 2-permutability and *n*-permutability of congruences of a principal MS-algebra. This work leads us in the future to study many aspects of principal MS-algebras and related structures, for instance, it can be applied to triple construction of principal MS-algebra, affine and locally complete of principal MS-algebras.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. M. Ahmed, A. Badawy, E. El-Seidy, A. Gaber, On principal *GK*₂-algebras, *Applied Mathematical Sciences*, **17** (2023), 205–219. http://dx.doi.org/10.12988/ams.2023.917390
- 2. T. Alemayehu, Y. Wondifraw, *MS*-Fuzzy ideals of *MS*-algebras, *J. Appl. Math. Inform.*, **39** (2021), 553–567. http://dx.doi.org/10.14317/jami.2021.553
- A. Badawy, d_L-Filters of principal MS-algebras, Journal of the Egyptian Mathematical Society, 23 (2015), 463–469. http://dx.doi.org/10.1016/j.joems.2014.12.008
- 4. A. Badawy, Regular double *MS*-algebras, *Appl. Math. Inf. Sci.*, **11** (2017), 115–122. http://dx.doi.org/10.18576/amis/110114
- 5. A. Badawy, Construction of a core regular double *MS*-algebra, *Filomat*, **20** (2020), 35–50. http://dx.doi.org/10.2298/FIL.2001035B
- 6. A. Badawy, Congruences and de Morgan filters of decomposable *MS*-algebras, *SE Asian Bull. Math.*, **43** (2019), 13–25.
- A. Badawy, M. Atallah, MS-intervals of an MS-algebra, Hacet. J. Math. Stat., 48 (2019), 1479– 1487. http://dx.doi.org/10.15672/HJMS.2018.590

- R. El-Fawal, Homomorphisms and subalgebras of decomposable MS-8. A. Badawy, (2017),algebras, Journal of the Egyptian Mathematical Society, 25 119-124. http://dx.doi.org/10.1016/j.joems.2016.10.001
- 9. A. Badawy, R. El-Fawal, Closure filters of decomposable *MS*-algebras, *SE Asian Bull. Math.*, **44** (2020), 177–194.
- 10. A. Badawy, D. Guffová, M. Haviar, Triple construction of decomposable *MS*-algebras, *Acta Universitatis Palackianae Olomucensis*, **51** (2012), 53–65.
- 11. A. Badawy, M. Haviar, M. Ploščica, Congruence pairs of principal *MS*-algebras and perfect extensions, *Math. Slovaca*, **70** (2020), 1275–1288. http://dx.doi.org/10.1515/ms-2017-0430
- 12. A. Badawy, S. Hussen, A. Gaber, Quadruple construction of decomposable double *MS*-algebras, *Math. Solvaca*, **70** (2020), 1041–1056. http://dx.doi.org/10.1515/ms-2017-0412
- 13. A. Badawy, M. Sambosiva Rao, Closure ideals of *MS*-algebras, *Chamchuri Journal of Mathematics*, **6** (2014), 31–46.
- 14. T. Blyth, *Lattices and ordered algebraic structures*, London: Springer Varlag, 2005. http://dx.doi.org/10.1007/b139095
- 15. T. Blyth, J. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, *Proc. Roy. Soc. Edinb. A*, **94** (1983), 301–308. http://dx.doi.org/10.1017/S0308210500015663
- 16. T. Blyth, J. Varlet, Subvarieties of the class of *MS*-algebras, *Proc. Roy. Soc. Edinb. A*, **95** (1983), 157–169. http://dx.doi.org/10.1017/s0308210500015869
- 17. T. Blyth, J. Varlet, Ockham algebras, London: Oxford University Press, 1994.
- 18. S. El-Assar, A. Badawy, Homomorphisms and subalgebras of *MS*-algebras, *Qatar Univ. Sci. J.*, **15** (1995), 279–285.
- S. El-Assar, A. Badawy, Congrunce pairs of decomposable *MS*-algebras, *Chin. Ann. Math. Ser. B*, 42 (2021), 561–574. http://dx.doi.org/10.1007/s11401-021-0278-1
- 20. R. El-Fawal, A. Badawy, A. Hassanein, On congruences of certain modular generalized MS-algebras, NeuroQuantology, 20 (2022),1448-1464. http://dx.doi.org/10.14704/NQ.2022.20.16.NQ880143
- M. Gehrke, C. Walker, E. Walker, Stone algebra extensions with bounded dense sets, *Algebra Univers.*, 37 (1997), 1–23. http://dx.doi.org/10.1007/PL00000326
- 22. G. Grätzer, Lattice theory: first concepts and distributive lattices, San Francisco: Dover, 1971.
- Y. Gubena, T. Alemayehu, Y. Wondifraw, Closure fuzzy filters of decomposable *MS*-algebras, *Topological Algebra and its Applications*, **10** (2022), 216–226. http://dx.doi.org/10.1515/taa-2022-0128
- T. Katriňák, Construction of regular double *p*-algebras, *Bull. Soc. Roy. Sci. Liege.*, 43 (1974), 283–290.

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)