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Abstract: In this paper, we continue to introduce new properties of principal MS -algebras deal
with congruence relations via MS -congruence pairs. Necessary and sufficient conditions for a pair
of congruences (θ1, θ2) ∈ Con(L◦◦) × Conlat(D(L)) to become an MS -congruence pair of a principal
MS -algebra (principal Stone algebra) L are obtained. We describe the lattice of all MS -congruence
pairs of a principal MS -algebra L which induced by the Boolean elements of L. We introduce certain
special congruence Ψ on a principal MS -algebra and its related properties which are useful for the
topic of this paper. A characterization of 2-permutable congruences using MS -congruence pairs of
principal MS -algebras is established. Finally, a characterization of n-permutability of congruences of
principal MS -algebras is given, which is a generalization of the characterization of 2-permutability of
congruences of such algebras.
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1. Introduction

MS -algebras were considered by T. S. Blyth and J. C. Varlet [15] as a common properties of de
Morgan algebras and Stone algebras. T. S. Blyth and J. C. Varlet [16] described the lattice Λ(MS ) of
all subclasses of the class MS of all MS -algebras by identities.

A. Badawy, D. Guffová and M. Haviar [10] introduced and characterized the class of principal
MS -algebras and the class of decomposable MS -algebras by means of principal MS -triples and
decomposable MS -triples, respectively. They obtained a one-to-one correspondence between principal
MS -algebras (decomposable MS -algebras) and principal MS -triples (decomposable MS -triples).
Moreover, they proved that the class of principal MS -algebras is a subclass of the class of
decomposable MS -algebras.
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A. Badawy [6] established the relationship between de Morgan filters and congruences of a
decomposable MS -algebra. A. Badawy [3] introduced the notion of dL-filters of a principal MS -
algebra and characterized certain congruences in terms of dL-filters. Recently, A. Badawy, M. Haviar
and M. Ploščica [11] introduced and described the notions of congruence pairs and perfect extensions
of principal MS -algebras. They characterized the lattice of congruences of a principal MS -algebra in
terms of congruence pairs. In 2021, S. El-Assar and A. Badawy [19] characterized permutability of
congruences and strong extensions of decomposable MS -algebras by means of congruence pairs.

We review in Section 2 many basic concepts and results that we are using throughout this article.
We give an example (Example 2.1) to determine the principsl MS -triple (L◦◦,D(L), ϕL) assosiated with
a certain principal MS -algebra L. In Section 3, we give equivalent conditions for a pair of congruence
(θ1, θ2) ∈ Con(L◦◦) × Conlat(D(L)) to become an MS -congruence pair of a principal MS -algebra L,
where θ1 is a congruence on a de Morgan algebra L◦◦ and θ2 is a lattice congruence on the lattice
D(L). Also, we characterize the lattice of all MS - congruence pairs which are induced by the Boolean
elements of a principal MS -algebra. In Section 4, we discuss many properties of the congruence
relation Ψ which defined on a principal MS -algebra L by

(a, b) ∈ Ψ⇔ a◦ = b◦ ⇔ a◦◦ = b◦◦.

We prove that Ψ permutes with each congruence relation θ on L. Also, we characterize 2-permutability
of congruences (briefly permutability) by means of MS -congruence pairs. We illustrate Examples 3.1
and 4.1 to clarify Theorems 3.1 and 4.4, respectively. Also, Example 4.2 introduces certain principal
MS -algebra L, which has not 2-permutable congruences as well as D(L) has not also 2-permutable
congruences. In Section 5, A characterization of n-permutability of congruences of a principal MS -
algebra is given, which is a generalization of the characterization of 2-permutability of congruences of
such algebras.

2. Preliminaries

In this section, we recall some specific definitions and remarkable results which are discussed in
previous articles [10, 14–17, 19].

Definition 2.1. [16] A de Morgan algebra is an algebra (L;∨,∧,− , 0, 1) of type (2,2,1,0,0), where
(L;∨,∧, 0, 1) is a bounded distributive lattice and the unary operation − satisfying:

(1) a = a, (2) (a ∨ b) = a ∧ b, (3) 1 = 0.

Definition 2.2. [15] A Stone algebra is an algebra (L;∨,∧,∗ , 0, 1) of type (2, 2, 1, 0, 0), where
(L;∨,∧, 0, 1) is a bounded distributive lattice and the unary operation ∗ satisfying:

(1) (a ∧ b)∗ = a∗ ∨ b∗, (2) a∗ ∨ a∗∗ = 1, (3) 1∗ = 0.

Definition 2.3. [15] An MS -algebra is an algebra (L;∨,∧,◦ , 0, 1) of type (2,2,1,0,0), where
(L;∨,∧, 0, 1) is a bounded distributive lattice and a unary operation ◦ satisfying:

(1) a ≤ a◦◦, (2) (x ∧ y)◦ = x◦ ∨ y◦, (3) 1◦ = 0.

The class MS of all MS -algebras is equational. A de Morgan algebra is an MS -algebra satisfying
the identity, a = a◦◦. The class S of a Stone algebra is a subclass of MS satisfying a ∧ a◦ = 0.

The basic properties of MS -algebras which were shown in [15] are given in the following theorem.
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Theorem 2.1. Let a, b be any two elements of an MS -algebra L. Then

(1) 0◦◦ = 0 and 1◦◦ = 1,

(2) a ≤ b⇒ b◦ ≤ a◦,

(3) a◦◦◦ = a◦,

(4) a◦◦◦◦ = a◦◦,

(5) (a ∨ b)◦ = a◦ ∧ b◦,

(6) (a ∨ b)◦◦ = a◦◦ ∨ b◦◦,

(7) (a ∧ b)◦◦ = a◦◦ ∧ b◦◦.

An element a of an MS -algebra L is called a closed element of L if a = a◦◦ and an element d ∈ L is
called a dense element of L if d◦ = 0.

Theorem 2.2. Let L be an MS -algebra. Then

(1) the set L◦◦ = {a ∈ L : a = a◦◦} of all closed elements of L is a de Morgan subalgebra of L, see [17],

(2) the set D(L) = {a ∈ L : a◦ = 0} of all dense elements of L is a principal filter of L, see [10].

Definition 2.4. [10] An MS -algebra (L;∨,∧,◦ , 0, 1) is called a principal MS -algebra if it satisfies
the following conditions:

(1) the filter D(L) is principal, that is, there exists an element dL ∈ L such that D(L) = [dL),

(2) a = a◦◦ ∧ (a ∨ dL), for all a ∈ L.

A principal MS -algebra L is a principal Stone algebra if x◦ ∨ x◦◦ = 1, for all x ∈ L.

Definition 2.5. [8] A principal MS -triple is (M,D, ϕ), where

(1) M is a de Morgan algebra,

(2) D is a bounded distributive lattice,

(3) ϕ is a (0, 1)-lattice homomorphism from M into D.

Lemma 2.1. [10] Let L be a principal MS -algebra. Define a map ϕL : L◦◦ → [dL) by the following
rule

ϕL(a) = a ∨ dL, for all a ∈ L◦◦.

Then ϕL is a (0, 1)-lattice homomorphism.

Example 2.1. Consider the MS -algebra L in Figure 1.

Figure 1. L is a principal MS -algebra.
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It is clear that L is a principal MS -algebra with the smallest dense element z. Then the principal
triple (L◦◦,D(L) = [z), ϕL) which associated with L is given in Figure 2.

Figure 2. (L◦◦,D(L), ϕL) is a principal MS -triple.

Definition 2.6. [22] An equivalence relation θ on a lattice L is called a lattice congruence if (a, b) ∈ θ
and (c, d) ∈ θ imply (a ∨ c, b ∨ d) ∈ θ and (a ∧ c, b ∧ d) ∈ θ.

Definition 2.7. An equivalence relation θ on an MS -algebra L is called a congruence on L if

(1) θ is a lattice congruence,

(2) (a, b) ∈ θ implies (a◦, b◦) ∈ θ.

We use Conlat(L) for the lattice of all lattice congruences of a lattice (L;∨,∧) and Con(L) for the
lattice of all congruences of an MS -algebra (L;∨,∧,◦ , 0, 1).

Definition 2.8. Let L be a lattice and θ ∈ Conlat(L). Then we define the principal congruence generated
by (a, b) which denoted by θ(a, b) as follows:

θ(a, b) =
∧
{θ ∈ Conlat(L) : (a, b) ∈ θ}.

If L is an MS -algebra and θ ∈ Con(L), then

θ(a, b) =
∧
{θ ∈ Con(L) : (a, b) ∈ θ}.

Let L be an MS -algebra. Then (θL◦◦ , θD(L)) ∈ Con(L◦◦) × Conlat(D(L)), where θL◦◦ and θD(L) are the
restrictions of θ ∈ Con(L) to L◦◦ and D(L), respectively. It is clear that θL◦◦ is a congruence relation on
a de Morgan algebra L◦◦ and θD(L) is a lattice congruence on a lattice D(L).

The symbols 5L and 4L will be used for the universal congruence L×L and the equality congruence
on L, respectively.

The concept of MS -congruence pairs is given as follows:

Definition 2.9. [11] Let L be a principal MS -algebra with a smallest dense element dL. A pair of
congruences (θ1, θ2) ∈ Con(L◦◦) ×Conlat(D(L)) will be called an MS -congruence pairs if

(a, b) ∈ θ1 implies (a ∨ dL, b ∨ dL) ∈ θ2.

A characterization of congruences on a principal MS -algebra via MS -congruence pairs is given in
the following theorem.

Theorem 2.3. [11] Let L be a principal MS -algebra with the smallest dense element dL. For every
congruence θ on L, the restrictions of θ to L◦◦ and D(L) determine the MS -congruence pair (θL◦◦ , θD(L)).

Conversely, every MS -congruence pair (θ1, θ2) uniquely determines a congruence θ on L satisfying
θL◦◦ = θ1 and θD(L) = θ2. Such congruence can be defined by the rule
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(x, y) ∈ θ if and only if (x◦, y◦) ∈ θ1 and (x ∨ dL, y ∨ dL) ∈ θ2.

Throughout this paper, dL denotes to the smallest dense element of a principal MS -algebra L.
For extra information of MS -algebras, principal MS -algebras and decomposable MS -algebras, we

refer the reader to [1–9, 12–18, 20–24].

3. Characterization of MS -congruence pairs

In this section, we characterize MS -congruence pairs of a principal MS -algebra and a principal
Stone algebra. Also, we describe the lattice of all MS -congruence pairs which induced by the Boolean
elements of a principal MS -algebra, in fact such lattice forms a Boolean algebra on it is own.

Lemma 3.1. Let L be a principal MS -algebra and (θ1, θ2) be an MS -congruence pair. Then

(a, b) ∈ θ1 and (x, y) ∈ θ2 imply (a ∨ x, b ∨ y) ∈ θ2.

Proof. Let (a, b) ∈ θ1 and (x, y) ∈ θ2. Then (a∨dL, b∨dL) ∈ θ2 (by Definition 2.9) and (x, y) ∈ θ2 imply
that (a ∨ x ∨ dL, b ∨ y ∨ dL) ∈ θ2. Therefore (a ∨ x, b ∨ y) ∈ θ2 as x, y ≥ dL. �

Now, we give an important characterization of MS -congruence pairs of a principal MS -algebra.

Theorem 3.1. Let L be a principal MS -algebra with the smallest dense element dL. Then the following
statements are equivalent:

(1) (θ1, θ2) is an MS -congruence pair of L,

(2) ConϕL(L) ⊆ θ2, where

ConϕL(θ1) = {(ϕL(a), ϕL(b)) : (a, b) ∈ θ1} and ϕL(a) = a ∨ dL,∀a ∈ L◦◦.

Proof. (1 ⇒ 2) Let (θ1, θ2) be an MS -congruence pair of L and (x, y) ∈ ConϕL(θ1). Then (x, y) =

(ϕL(a), ϕL(b)) = (a ∨ dL, b ∨ dL), where (a, b) ∈ θ1. Since (a, b) ∈ θ1, then (a ∨ dL, b ∨ dL) ∈ θ2, by (1).
Thus (x, y) ∈ θ2. So ConϕL(θ1) ⊆ θ2.
(2 ⇒ 1) Let Con(θ1) ⊆ θ2. We prove that (θ1, θ2) is an MS -congruence pair of L. Let (a, b) ∈ θ1. Then
by (2), (a ∨ dL, b ∨ dL) = (ϕL(a), ϕL(b)) ∈ θ2. �

A characterization of congruence pairs of a principal Stone algebra is given in the following.

Theorem 3.2. Let L be a principal Stone algebra. Let (θ1, θ2) ∈ Con(L◦◦) × Conlat(D(L)). Then the
following statements are equivalent:

(1) (θ1, θ2) is an MS -congruence pair of L,

(2) ConϕL(θ1) ⊆ θ2,

(3) (a, 1) ∈ θ1 and u ≥ a, u ∈ D(L) imply (u, 1) ∈ θ2.

Proof. In Theorem 3.1, we proved that (1) and (2) are equivalent.
(2⇒ 3) Let ConϕL(θ1) ⊆ θ2. Let (a, 1) ∈ θ1 and u ≥ a, u ∈ D(L). Then (ϕL(a), ϕL(1)) ∈ θ2 by (2). Thus
(a ∨ dL, 1) ∈ θ2.
Now (a ∨ dL, 1) ∈ θ2 and (u, u) ∈ θ2, u ≥ a, u ∈ D(L) imply (a ∨ u ∨ dL, 1 ∨ u) ∈ θ2. Thus (u, 1) ∈ θ2 as
u ≥ a, dL.

AIMS Mathematics Volume 8, Issue 9, 19857–19875.



19862

(3⇒ 1) Since L is a Stone algebra then L◦◦ is a Boolean subalgebra of L and hence a∨ a◦ = 1 for each
a ∈ L◦◦. Suppose (3) holds and (a, b) ∈ θ1. Then (b◦, b◦) ∈ θ1 implies (a ∨ b◦, b ∨ b◦) = (a ∨ b◦, 1) ∈ θ1

and (a ∨ a◦, b ∨ a◦) = (b ∨ a◦, 1) ∈ θ1. Therefore (β, 1) ∈ θ1, where β = (a ∨ b◦) ∧ (a◦ ∨ b). It is clear
that β ∈ L◦◦ and β ∧ a = β ∧ b = a ∧ b. Since β ≤ β ∨ dL ∈ D(L) and (β, 1) ∈ θ1 then (β ∨ dL, 1) ∈ θ2

by (3). Thus (a∨ dL, a∨ dL)∧ (1, β∨ dL) ∈ θ2 implies (a∨ dL, (a∧ β)∨ dL) = (a∨ dL, (a∧ b)∨ dL) ∈ θ2.
Similarly, we can get (b∨ dL, (b∧ β)∨ dL) = (b∨ dL, (a∧ b)∨ dL) ∈ θ2. Then (b∨ dL, b∨ dL) ∈ θ2. �

Example 3.1. Consider the principal MS -algebra L in Example 2.1 (Figure 1). The lattices Con(L)
and A(L) of all congruences of L and all MS -congruence pairs of L are given in Figure 3, respectively.

Figure 3. The congruence lattices Con(L) and A(L).

Where,

4L ={(x, x) : x ∈ L},

α ={{0, c, a}, {x, y, z}, {b, d, 1}},
β ={{0, c, a}, {x, b, y, d, z, 1}},
γ ={{0, x, b}, {c, y, d}, {a, z, 1}},
δ ={{0}, {c}, {a}, {x, b}, {y, d}, {z, 1}},
OL =L × L.

And

A(L) ={(4L◦◦ ,4D(L)), (αL◦◦ , αD(L)), (βL◦◦ , βD(L)), (γL◦◦ , γD(L)), (δL◦◦ , δD(L)), (OL◦◦ ,OD(L))}
={(4L◦◦ ,4D(L)), ({{0, c, a}, {b, d, 1}},4D(L)), ({{0, c, a}, {b, d, 1}},OD(L)),

({{a, 1}, {c, d}, {0, b}},OD(L)), (4L◦◦ ,OD(L)), (OL◦◦ ,OD(L))}.

It is clear that Con(L) isomorphic to A(L) under the isomorphism θ 7−→ (θL◦◦ , θD(L)).

A subset I of a lattice L with 0 is called an ideal of L if

(1) 0 ∈ I, (2) a ∨ b ∈ I, ∀a, b ∈ I,

(3) I is an down-set, that is, if x ≤ y, y ∈ I and x ∈ L, then x ∈ I.

A principal ideal of L generated by a ∈ L is defined by

(a] = {x ∈ L : x ≤ a}.
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A subset F of a lattice L with 1 is called a filter of L if

(1) 1 ∈ F, (2) a ∧ b ∈ F, ∀a, b ∈ F,

(3) F is an up-set, that is, if x ≥ y, y ∈ F and x ∈ L, then x ∈ F.

A principal filter of L generated by a ∈ L is defined by

[a) = {x ∈ L : x ≥ a}.

Definition 3.1. Let θ be a lattice congruence on a bounded lattice L. Then we have the following
important subsets

(i) The Kernel of θ (Kerθ) is the set {x ∈ L : (x, 0) ∈ θ}, which is an ideal of L,

(ii) The Cokernel of θ (Cokerθ) is the set {x ∈ L : (x, 1) ∈ θ}, which is a filter of L.

Definition 3.2. [7] An element c of an MS -algebra L is called a Boolean element of L if c ∨ c◦ = 1.

It is ready seen that the set B(L) = {c : c ∨ c◦ = 1} of all Boolean elements of L forms a Boolean
subalgebra of L◦◦.

Lemma 3.2. Let c be a Boolean element of a principal MS -algebra L. Then

(1) θ(0, c) is a principal congruence relation on L◦◦ with Ker θ(0, c) = (c], where

(a, b) ∈ θ(0, c)⇔ a ∧ c◦ = b ∧ c◦,

(2) θ(ϕL(c), 1) is a principal congruence relation on D(L) with Coker θ(ϕL(c), 1) = [ϕL(c)), where

(x, y) ∈ θ(ϕL(c), 1)⇔ x ∧ (c ∨ dL) = y ∧ (c ∨ dL).

Proof.

(1) It is easy to check that θ(0, c) is a principal congruence relation on L◦◦ with Ker θ(0, c) = (c].

(2) It is easy to show that θ(ϕL(c), 1) is an equivalence relation on D(L). Let (x, y), (m, n) ∈ θ(ϕL(c), 1).
Thus x∧ (c∨ dL) = y∧ (c∨ dL) and m∧ (c∨ dL) = n∧ (c∨ dL). Then, we get (x∧m, y∧ n) ∈ θ(ϕL(c), 1)
and (x ∨ m, y ∨ n) ∈ θ(ϕL(c), 1). Therefore θ(ϕL(c), 1) is a principal congruence on the lattice D(L).
Also, we have

Coker (θ(ϕL(c), 1)) ={x ∈ D(L) : (x, 1) ∈ θ(ϕL(c), 1)}
={x ∈ D(L) : x ∧ (c ∨ dL) = 1 ∧ (c ∨ dL)}
={x ∈ D(L) : x ∧ (c ∨ dL) = c ∨ dL}

={x ∈ D(L) : x ≥ c ∨ dL}

=[c ∨ dL) = [ϕL(c)).

�

Now, we observe that every Boolean element c of a principal MS -algebra L associated with the
MS -congruence pair of the form (θ(0, c), θ(ϕL(c◦), 1)).

Theorem 3.3. Let L be a principal MS -algebra and c ∈ L◦◦. Then c is a Boolean element of L if and
only if (θ(0, c), θ(ϕL(c◦), 1)) is an MS -congruence pair of L.
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Proof. Let c be a Boolean element of L. We proved that θ(0, c) and θ(ϕL(c◦), 1) are MS -congruence on
L◦◦ and lattice congruence on D(L), respectively (Lemma 3.2). To show that (θ(0, c), θ(ϕL(c◦), 1)) is an
MS -congruence pair, let (x, y) ∈ θ(0, c). Then

(x, y) ∈ θ(0, c)⇒ x ∧ c◦ = y ∧ c◦

⇒ (x ∧ c◦) ∨ dL = (y ∧ c◦) ∨ dL

⇒ (x ∨ dL) ∧ (c◦ ∨ dL) = (y ∨ dL) ∧ (c◦ ∨ dL)
⇒ (x ∨ dL, y ∨ dL) ∈ θ(ϕL(c◦), 1).

Conversely, let (θ(0, c), θ(ϕL(c◦), 1)) be an MS -congruence pair. Since (0, c) ∈ θ(0, c) then c∧c◦=0∧
c◦ = 0. Now, c ∨ c◦ = (c◦ ∧ c)◦ = 1. Therefore c is a Boolean element. �

The basic properties of principal congruence relations θ(0, a) and θ(ϕL(a), 1),∀a ∈ B(L) are given
in the following:

Lemma 3.3. Let a, b be Boolean elements of a principal MS -algebra L. Then

(1) a ≤ b if and only if θ(0, a) ⊆ θ(0, b),

(2) a = b if and only if θ(0, a) = θ(0, b),

(3) θ(0, 0) = 4L◦◦ and θ(0, 1) = OL◦◦ ,

(4) θ(0, a) ∨ θ(0, b) = θ(0, a ∨ b),

(5) θ(0, a) ∩ θ(0, b) = θ(0, a ∧ b).

Lemma 3.4. Let L be a principal MS -algebra. Then for every a, b ∈ B(L), we have

(1) a ≤ b implies θ(ϕL(a◦), 1) ⊆ θ(ϕL(b◦), 1),

(2) θ(ϕL(a◦), 1) ∨ θ(ϕL(b◦), 1) = θ(ϕL(a ∨ b)◦, 1),

(3) θ(ϕL(a◦), 1) ∧ θ(ϕL(b◦), 1) = θ(ϕL(a ∧ b)◦, 1),

(4) θ(ϕL(0), 1) = OD(L) and θ(ϕL(1), 1) = 4D(L).

Proof.

(1) Let a ≤ b. Then a◦ ≥ b◦. Let (x, y) ∈ θ(ϕL(a◦), 1) then x ∧ (a◦ ∨ dL) = y ∧ (a◦ ∨ dL). Now

x ∧ (b◦ ∨ dL) =x ∧ ((a◦ ∧ b◦) ∨ dL)
=x ∧ {(a◦ ∨ dL) ∧ (b◦ ∨ dL)}
=x ∧ (a◦ ∨ dL) ∧ (b◦ ∨ dL)
=y ∧ (a◦ ∨ dL) ∧ (b◦ ∨ dL)
=y ∧ {(a◦ ∧ b◦) ∨ dL}

=y ∧ (b◦ ∨ dL).

Then (x, y) ∈ θ(ϕL(b◦), 1). Therefore θ(ϕL(a◦), 1) ⊆ θ(ϕL(b◦), 1).

(2) Since a, b ≤ a ∨ b then by (1), we have

θ(ϕL(a◦), 1), θ(ϕL(b◦), 1) ⊆ θ(ϕL(a ∨ b)◦, 1).
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Then θ(ϕL(a ∨ b)◦, 1) is an upper bound of θ(ϕL(a◦), 1) and θ(ϕL(b◦), 1). Let θ(ϕL(c◦), 1) be an upper
bound of θ(ϕL(a◦), 1) and θ(ϕL(b◦), 1).
Then θ(ϕL(a◦), 1), θ(ϕL(b◦), 1) ⊆ θ(ϕL(c◦), 1) implies ϕL(c◦) ≤ ϕL(a◦), ϕL(b◦). Thus ϕL(c◦) ≤ ϕL(a◦ ∧
b◦) = ϕL(a ∨ b)◦ and hence θ(ϕL(a ∨ b)◦, 1) ⊆ θ(ϕL(c◦), 1). Therefore θ(ϕL(a ∨ b)◦, 1) is the least upper
bound of θ(ϕL(a◦), 1) and θ(ϕL(b◦), 1).

(3) Since a ∧ b ≤ a, b then by (1) θ(ϕL(a ∧ b)◦, 1) ⊆ θ(ϕL(a◦), 1), θ(ϕL(b◦), 1). Then θ(ϕL(a ∧ b)◦, 1)
is a lower bound of θ(ϕL(a◦), 1) and θ(ϕL(b◦), 1). Let θ(ϕL(c◦), 1) be a lower bound of θ(ϕL(a◦), 1)
and θ(ϕL(b◦), 1). Then θ(ϕL(c◦), 1) ⊆ θ(ϕL(a◦), 1), θ(ϕL(b◦), 1) implies ϕL(a◦), ϕL(b◦) ≤ ϕL(c◦). Thus
ϕL(a∧b)◦ = ϕL(a◦)∨ϕL(b◦) ≤ ϕL(c◦) and hence θ(ϕL(c◦), 1) ⊆ θ(ϕ(a∧b)◦, 1). Therefore θ(ϕL(a∧b)◦, 1)
is the greatest lower bound of θ(ϕL(a◦), 1) and θ(ϕL(b◦), 1).

(4) Since dL, 1 ∈ θ(dL, 1), then θ(dL, 1) = D(L) × D(L) = OD(L). Also, let (x, y) ∈ θ(ϕL(1), 1) then
x ∧ (1 ∨ dL) = y ∧ (1 ∨ dL). It follows, x = y and hence θ(ϕL(1), 1) = 4D(L). �

Theorem 3.4. Let L be a principal MS -algebra. Consider the subsets H and G of Con(L◦◦) and
Con(D(L)), respectively as follows:

H = {θ(0, a) : a ∈ B(L)}, G = {θ(ϕL(a), 1) : a ∈ B(L)}.

Then we have

(1) (H;∨,∧, ′ ,4L◦◦ ,OL◦◦) is a Boolean algebra, where (θ(0, a))′ = θ(a◦, 0),

(2) (G;∨,∧, ′ ,4D(L),ODL) is a Boolean algebra, where (θ(ϕL(a), 1))′ = θ(ϕL(a◦), 1).

Proof.

(1) Since θ(0, 0) = 4L◦◦ and θ(0, 1) = OL◦◦ . Then OL◦◦ , 4L◦◦ ∈ H.Let θ(0, a), θ(0, b) ∈ H. Then we get

θ(0, a) ∨ θ(0, b) = θ(0, a ∨ b),

and

θ(0, a) ∧ θ(0, b) = θ(0, a ∧ b).

Therefore H is a bounded lattice. Since B(L) is a Boolean algebra, then a◦ ∈ B(L) for all a ∈ B(L).
Thus θ(0, a◦) ∈ H. Then we have

θ(0, a) ∨ [θ(0, a)]′ = θ(0, a) ∨ θ(0, a◦) = θ(0, a ∨ a◦) = θ(0, 1) = OL◦◦ ,

and

θ(0, a) ∧ [(0, a)]′ = θ(0, a) ∧ θ(0, a◦) = θ(ϕL(0, a ∧ a◦) = θ(0, 0) = 4L◦◦ .

Therefore (H;∨,∧,′ ,4L◦◦ ,OL◦◦) is a Boolean algebra.

(2) We have 4D(L) = θ(ϕL(1), 1) ∈ G and OD(L) = θ(ϕL(0), 1) = OD(L) ∈ G. Let θ(ϕL(a), 1), θ(ϕL(b), 1) ∈
G. Then we get

θ(ϕL(a), 1) ∨ θ(ϕL(b), 1) = θ(ϕL(a ∧ b), 1),

AIMS Mathematics Volume 8, Issue 9, 19857–19875.



19866

and

θ(ϕL(a), 1) ∧ θ(ϕL(b), 1) = θ(ϕL(a ∨ b), 1).

Therefore G is a bounded lattice. Since B(L) is a Boolean algebra, then a◦ ∈ B(L) for all a ∈ B(L).
Thus θ(ϕL(a◦), 1) ∈ G. Then we have

θ(ϕL(a), 1) ∨ [θ(ϕL(a), 1)]′ = θ(ϕL(a), 1) ∨ θ(ϕL(a◦), 1) = θ(ϕL(a ∧ a◦), 1) = θ(ϕL(0), 1) = OD(L),

and

θ(ϕL(a), 1) ∧ [θ(ϕL(a), 1)]′ = θ(ϕL(a), 1) ∧ θ(ϕL(a◦), 1) = θ(ϕL(a ∨ a◦), 1) = θ(ϕL(1), 1) = 4D(L).

Therefore (G;∨,∧,′ ,4DL ,ODL) is a Boolean algebra. �

Let L be a principal MS -algebra. Let A(L) be the lattice of all MS -congruence pairs of L. We
consider a subset A′(L) of A(L) as follows:

A′(L) = {(θ(0, a), θ(ϕL(a◦), 1)) : a ∈ B(L)}.

From the above results, we observe that the set A′(L) of all MS -congruence pairs induced by the
Boolean elements of a principal MS -algebra forms bounded sublattice of the lattice A(L). Moreover
A′(L) is a Boolean algebra on its own.

Theorem 3.5. Let L be a principal MS -algebra. Then (A′(L);∨,∧,
′

, 0A′(L), 1A′(L)) is a Boolean
algebra, where

(θ(0, a), θ(ϕL(a◦), 1)) ∨ (θ(0, b), θ(ϕL(b◦), 1)) =(θ(0, a ∨ b), θ(ϕL(a ∨ b)◦, 1)),
(θ(0, a), θ(ϕL(a◦), 1) ∧ (θ(0, b), θ(ϕL(b◦), 1)) =(θ(0, a ∧ b), θ(ϕL(a ∧ b)◦, 1)),

[(θ(0, a), θ(ϕL(a◦), 1))]′ =(θ(0, a◦), θ(ϕL(a), 1)),
1A′(L) =(OL◦◦ ,4D(L)),
0A′(L) =(4L◦◦ ,4D(L)).

Example 3.2. Consider the principal MS -algebra L in Example 2.1. The lattices B(L) and A′(L) of all
Boolean elements of L and all MS -congruence pairs of L of the form (θ(0, a), θ(ϕL(a◦), 1)), a ∈ B(L)
are given in the following Figure 4, respectively.

Figure 4. The lattices B(L) and A′(L).

It is clear that B(L) and A(L) are isomorphic Boolean algebras under the isomorphism a 7−→
(θ(0, a), θ(a◦ ∨ z, 1)). Also, A′(L) is a bounded sublattice of A(L).
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4. 2-permutability of principal MS -algebras

In this section, we characterize the notion of 2-permutability of congruences of a principal MS -
algebra by means of MS -congruence pairs.

Let L be an algebra. We say the congruences θ,Φ ∈ Con(L) are 2-permutable if θ◦Φ = Φ◦θ, that is,
(x, a) ∈ θ and (a, y) ∈ Φ, x, y, a ∈ L imply (x, b) ∈ Φ and (b, y) ∈ θ for some b ∈ L. We call the algebra
L has 2-permutable congruences (briefly permutable) if every pair of congruences of L permute.

Lemma 4.1. A principal MS -algebra L has 2-permutable congruences if and only if every pair of
principle congruences of L permute.

Proof. Assume that every pair of principal congruences on L permute. Let θ and Φ be arbitrary
congruences on L and (a, b) ∈ (θ ◦ Φ), a, b ∈ L. Then (a, t) ∈ θ and (t, b) ∈ Φ for some t ∈ L.
Then (a, t) ∈ θ(a, t) and (t, b) ∈ θ(t, b) imply that (a, b) ∈ θ(a, t) ◦ θ(t, b). Thus (a, b) ∈ θ(t, b) ◦ θ(a, t).
Since θ(a, t) ⊆ θ and θ(t, b) ⊆ Φ, then (a, b) ∈ (Φ ◦ θ). Therefore θ and Φ permute. The second
implication is obvious. �

Define a relation Ψ on a principal MS -algebra L as follows:

(a, b) ∈ Ψ⇔ a◦ = b◦ ⇔ a◦◦ = b◦◦.

Theorem 4.1. Let L be a principal MS -algebra with the smallest dense element dL. Then

(1) Ψ is a congruence relation on L with Ker Ψ = {0} and Coker Ψ = D(L),

(2) Ψ is closed congruence on L, that is, (x, x◦◦) ∈ Ψ,∀x ∈ L,

(3) max [x]Ψ = x◦◦, x ∈ L, where [x]Ψ = {y ∈ L : y◦◦ = x◦◦} is the congruence class of x modulo Ψ.

Proof.

(1) One can check that Ψ is a congruence relation on L. Now, we have

KerΨ = {a ∈ L : (a, 0) ∈ Ψ} = {a ∈ L : a◦ = 1} = {0},

and

CokerΨ = {z ∈ L : (z, 1) ∈ Ψ} = {z ∈ L : z◦ = 1} = D(L) = [dL).

(2) Since x◦◦◦◦ = x◦◦ then x◦◦ ∈ [x]Ψ. Thus (x◦◦, x) ∈ Ψ.

(3) Let y ∈ [x]Ψ. Then y ≤ y◦◦ = x◦◦ and x◦◦ ∈ [x]Ψ. Thus x◦◦ is the greatest member of the congruence
class [x]Ψ. �

Theorem 4.2. Let L be a principal MS -algebra. Then

(1) L/Ψ is a de Morgan algebra,

(2) L/Ψ and L◦◦ are isomorphic de Morgan algebras.
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Proof.

(1) It is ready seen that (L/Ψ;∨,∧, {0},D(L)) is a bounded distributive lattice, where L/Ψ = {[a]Ψ : a ∈
L} is the set of all congruence classes module Ψ and

[a]Ψ ∨ [b]Ψ =[a ∨ b]Ψ,

[a]Ψ ∧ [b]Ψ =[a ∧ b]Ψ.

Define � on L/Ψ by ([a]Ψ)� = [a◦]Ψ,∀a ∈ L. We have

([0]Ψ)� =[1]Ψ,

([a]Ψ)�� =[a◦◦]Ψ = [a]Ψ,

([a]Ψ ∧ [b]Ψ)� =([a]Ψ)� ∨ ([b]Ψ)�.

Then L/Ψ is a de Morgan algebra.

(2) Define g : L◦◦ → L/Ψ by

g(a) = [a]Ψ,∀a ∈ L◦◦.

Let a, b ∈ L◦◦ and a = b. Then a◦◦ = b◦◦ implies [a]Ψ = [b]Ψ. It follows that g is well defined map of
L◦◦ into L/Ψ. Let a, b ∈ L◦◦, we get

g(a ∨ b) = [a ∨ b]Ψ = [a]Ψ ∨ [b]Ψ = g(a) ∨ g(b),

g(a ∧ b) = [a ∧ b]Ψ = [a]Ψ ∧ [b]Ψ = g(a) ∧ g(b),

and

g(a◦) = [a◦]Ψ = ([a]Ψ)� = (g(a))�.

Let [a]Ψ = [b]Ψ. Then a◦◦ = b◦◦ implies a = b. Therefore g is an injective map. Let [a]Ψ ∈ L/Ψ. Then
[x]Ψ = [x◦◦]Ψ = g(x). Then g is a surjective map. This deduce that g is an isomorphism of de Morgan
algebras. �

Now, we observe that Ψ satisfies the following property,

Ψ ◦ θ = θ ◦ Ψ for all θ ∈ Con(L).

Theorem 4.3. Let L be a principal MS -algebra. Then Ψ permutes with each congruence of L.

Proof. We prove that Ψ ◦ θ = θ ◦Ψ for all θ ∈ Con(L). Let (a, b) ∈ Ψ ◦ θ. Then (a, z) ∈ Ψ and (z, b) ∈ θ
for some z ∈ L. It follows that a◦◦ = z◦◦ and (z, b) ∈ θ. Now

(z, b) ∈ θ ⇒ (z◦◦, b◦◦) ∈ θ and (a ∨ dL, a ∨ dL) ∈ θ
⇒ (a◦◦ ∧ (a ∨ dL), b◦◦ ∧ (a ∨ dL)) ∈ θ
⇒ (a, b◦◦ ∧ (a ∨ dL)) ∈ θ (as a = a◦◦ ∧ (a ∨ dL))

Since [b◦◦ ∧ (a ∨ dL)]◦◦ = b◦◦, then (b◦◦ ∧ (a ∨ dL), b) ∈ Ψ. Therefore (a, b◦◦ ∧ (a ∨ dL)) ∈ θ and
(b◦◦ ∧ (a ∨ dL), b) ∈ Ψ. imply (a, b) ∈ θ ◦ Ψ. Then Ψ ◦ θ = θ ◦ Ψ, ∀θ ∈ Con(L). �
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Lemma 4.2. Let L be a principal MS -algebra. Then

(1) 4L permutes with every congruence on L,

(2) OL permutes with every congruence on L.

Proof.

(1) Let (a, b) ∈ θ ◦ 4L. Then (a, t) ∈ θ and (t, b) ∈ 4L for some t ∈ L. Thus (a, t) ∈ θ and t = b. Then
(a, a) ∈ 4L and (a, b) ∈ θ imply (a, b) ∈ 4L ◦ θ. Therefore θ ◦ 4L = 4L ◦ θ.

(2) It is obvious. �

In the following theorem, we characterize 2-permutability of congruences of a principal MS -algebra
L using MS -congruence pairs.

Theorem 4.4. Let L be a principal MS -algebra. Then the following conditions are equivalent:

(1) L has 2-permutable congruences.

(2) L◦◦ and D(L) have 2-permutable congruences.

Proof. To prove the conditions (1) and (2) are equivalent, we show that the two congruences θ ,Φ ∈

Con(L) are 2-permutable if and only if their restrictions θL◦◦ , ΦL◦◦ and θD(L), ΦD(L) have 2-permutable
congruences on L◦◦ and D(L), respectively. Firstly, suppose that θ ,Φ have 2-permutable congruences
on L. Let (x, z) ∈ θL◦◦ ◦ ΦL◦◦ . Then there exist y ∈ L◦◦ such that (x, y) ∈ θL◦◦ and (y, z) ∈ ΦL◦◦ . Then
we have (x, y) ∈ θ and (y, z) ∈ Φ. Since θ,Φ are 2-permutable, then there exists a ∈ L such that
(x, a) ∈ Φ and (a, y) ∈ θ. We get (x, a◦◦) = (x◦◦, a◦◦) ∈ ΦL◦◦ and (a◦◦, z◦◦) ∈ θL◦◦ . Therefore θL◦◦ , ΦL◦◦

are 2-permutable. Also, to prove that θD(L), ΦD(L) are 2-permutable, let (x, z) ∈ θD(L) ◦ΦD(L). Then there
exist y ∈ D(L) such that (x, y) ∈ θD(L) and (y, z) ∈ ΦD(L). Then we have (x, y) ∈ θ and (y, z) ∈ Φ. Since
θ,Φ are 2-permutable, there exists a ∈ L such that

(x, a) ∈ Φ and (a, z) ∈ θ ⇒ (x, a ∨ dL) = (x ∨ dL, a ∨ dL) ∈ Φ and (a ∨ dL, z ∨ dL) ∈ θ
⇒ (x, a ∨ dL) ∈ Φ and (a ∨ dL, z) ∈ θ,
⇒ (x, a ∨ dL) ∈ ΦD(L) and (a ∨ dL, z) ∈ θD(L), as x, a ∨ dL, z ∈ D(L)
⇒ (x, z) ∈ ΦD(L) ◦ θD(L).

Thus θD(L), ΦD(L) have 2-permutable congruences on D(L).
Conversely, let θ ,Φ ∈ Con(L). Assume that θL◦◦ , ΦL◦◦ and θD(L), ΦD(L), have 2-permutable

congruences on L◦◦ and D(L), respectively. Let (x, z) ∈ θ ◦ Φ. Suppose that x, y, z ∈ L with (x, y) ∈ θ
and (y, z) ∈ Φ. Then, by using Theorem 2.3, we get the following statements.

(x◦◦, y◦◦), (y◦◦, z◦◦) ∈ ΦL◦◦ , (x ∨ dL, y ∨ dL), (y ∨ dL, z ∨ dL) ΦD(L).

Since θL◦◦ , ΦL◦◦ have 2-permutable congruences on L◦◦, there exists an element a ∈ L◦◦ such that

(x◦◦, a) ∈ ΦL◦◦ and (a, z◦◦) ∈ θL◦◦ .

Since θD(L),ΦD(L) have 2-permutable congruences on D(L), there exists e ∈ D(L) such that (x∨ dL, e) ∈
ΦDL and (e, z ∨ dL) ∈ θDL). It follows that (x◦◦, a) ∈ Φ, (a, z◦◦) ∈ θ and (x ∨ dL, e) ∈ Φ, (e, z ∨ dL) ∈ θ.
Since L is a principal MS -algebra we have

x = x◦◦ ∧ (x ∨ dL) and z = z◦◦ ∧ (z ∨ dL).
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Since θ,Φ are compatible with the ∧ operation, then (x◦◦, a) ∈ Φ and (x ∨ dL, e) ∈ Φ imply (x, a ∧ e) =

(x◦◦∧ (x∨dL), a∧e) ∈ Φ. Also (a, z◦◦) ∈ θ and (e, z∨dL) ∈ θ imply (a∧e, z) = (a∧e, z◦◦∧ (z∨dL)) ∈ θ.
Consequently, we deduce that (x, a∧ e) ∈ Φ and (a∧ e, z) ∈ θ , a∧ e ∈ L. Then (x, z) ∈ Φ◦ θ, and hence
θ, Φ are 2-permutable. �

Now, we construct two examples to clarify the above theorem.

Example 4.1. Consider the principal MS -algebra L in Example 2.1 (Figure 1). From Table 1, we show
that L has 2-permutable congruences. Also, Tables 2 and 3 show that L◦◦and D(L) have 2-permutable
congruences, respectively. Where αL◦◦ = βL◦◦ and δL◦◦ = 4L◦◦ .

Table 1. (Con(L); ◦).

◦ 4L α β γ δ OL

4L 4L α β γ δ OL

α α α β OL β OL

β β β β OL β OL

γ γ OL OL γ OL OL

δ δ β β OL δ OL

OL OL OL OL OL OL OL

Table 2. (Con(L◦◦); ◦).

◦ 4L◦◦ αL◦◦ γL◦◦ OL◦◦

4L◦◦ 4L◦◦ αL◦◦ γL◦◦ OL◦◦

αL◦◦ αL◦◦ αL◦◦ OL◦◦ OL◦◦

γL◦◦ γL◦◦ OL◦◦ γL◦◦ OL◦◦

OL◦◦ OL◦◦ OL◦◦ OL◦◦ OL◦◦

Table 3. (Con(D(L)); ◦).

◦ 4D(L) OD(L)

4D(L) 4D(L) OD(L)

OD(L) OD(L) OD(L)

In the following example, we give a principal MS -algebra L which has not 2-permutable
congruences as well as D(L) has not also 2-permutable congruences.

Example 4.2. Consider the principal MS -algebra L in Figure 5.
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Figure 5. L is a principal MS -algebra with D(L) = [z).

It is clear that D(L) = {z, z1, 1} and L◦◦ = {0, c, a, b, d, 1}. Consider θ,Φ ∈ Con(L) as follows:

θ = 4L ∪ {{x1, b}, {y1, d}, {z1, 1}},
Φ = 4L ∪ {{x, x1}, {y, y1}, {z, z1}}.

We observe that θ ◦ Φ , Φ ◦ θ as (z, 1) ∈ Φ ◦ θ but (z, 1) < θ ◦ Φ.
Then L has not 2-permutable congruences and D(L) has not 2-permutable congruences as θD(L) ◦

ΦD(L) , ΦD(L) ◦ θD(L).

5. n-permutability of principal MS -algebras

We generalize the concept of 2-permutability to the concept of n-permutability of congruences of
principal MS -algebras.

Definition 5.1. A principal MS -algebra L is said to have n-permutable congrunces if every two
congruences θ,Φ of L are n-permutable, that is,

θ ◦ Φ ◦ θ ◦ ... = Φ ◦ θ ◦ Φ ◦ ...(n times).

At first, we need the following two lemmas.

Lemma 5.1. Let L be a principal MS - algebra with the smallest dense element dL. Let θ,Φ be two
congruences on L. Then we have

(i) (θ ◦ Φ ◦ θ ◦ ...)L◦◦ = θL◦◦ ◦ ΦL◦◦ ◦ ...(n times),

(ii) (θ ◦ Φ ◦ θ ◦ ...)D(L) = θD(L) ◦ ΦD(L) ◦ ...(n times).

Proof.

(i) Recall that θL◦◦ ,ΦL◦◦ are the restrictions of θ,Φ on L◦◦, respectively. Let a, b ∈ L◦◦ and (a, b) ∈
(θL◦◦ ◦ ΦL◦◦ ◦ ...). Then there exist c1, c2, ..., cn−1 ∈ L◦◦ such that

(a, c1) ∈ θL◦◦ , (c1, c2) ∈ ΦL◦◦ , ..., (cn−1, b) ∈ Ψ,where Ψ =

{
θL◦◦ , if n odd,

ΦL◦◦ , if n even.

Then

(a, c1) ∈ θ, (c1, c2) ∈ Φ, ..., (cn−1, b) ∈ Ψ,where Ψ =

{
θ, if n odd,

Φ, if n even.

Then (a, b) ∈ (θ ◦ Φ ◦ θ ◦ ...) and hence (a, b) ∈ (θ ◦ Φ ◦ θ ◦ ...)L◦◦ . Therefore
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θL◦◦ ◦ ΦL◦◦ ◦ θL◦◦ ... ⊆ (θ ◦ Φ ◦ θ ◦ ...)L◦◦ .

Conversely, let a, b ∈ L◦◦ such that (a, b) ∈ (θ ◦ Φ ◦ θ ◦ ...)L◦◦ . Then (a, b) ∈ (θ ◦ Φ ◦ θ ◦ ...). Then
there exist c1, c2, ..., cn−1 ∈ L such that

(a, c1) ∈ θL◦◦ , (c1, c2) ∈ ΦL◦◦ , ..., (cn−1, b) ∈ Ψ,where Ψ =

{
θL◦◦ , if n odd,

ΦL◦◦ , if n even.

Then we get

(a, c1
◦◦) ∈ θ, (c1

◦◦, c2
◦◦) ∈ Φ, ..., (cn−1

◦◦, b) ∈ Ψ,where Ψ =

{
θ, if n odd,

Φ, if n even.

Since c1
◦◦, c2

◦◦, ..., cn−1
◦◦ ∈ L◦◦, we have

(a, c1
◦◦) ∈ θL◦◦ , (c1

◦◦, c2
◦◦) ∈ ΦL◦◦ , ..., (cn−1

◦◦, b) ∈ Ψ,where Ψ =

{
θL◦◦ , if n odd,

ΦL◦◦ , if n even.

Therefore

(a, b) ∈ (θL◦◦ ◦ ΦL◦◦ ◦ θL◦◦ ◦ ...)

and hence

(θ ◦ Φ ◦ θ ◦ ...)L◦◦ ⊆ θL◦◦ ◦ ΦL◦◦ ◦ θL◦◦ ◦ ...(n times).

Then we get

(θ ◦ Φ ◦ θ ◦ ...)L◦◦ = θL◦◦ ◦ ΦL◦◦ ◦ θL◦◦ ◦ ...(n times).

(ii) Take x, y ∈ D(L), let (x, y) ∈ (θD(L) ◦ ΦD(L) ◦ ΦD(L) ◦ θD(L) ◦ ...). Then (x, y) ∈ (θ ◦ Φ ◦ θ ◦ ...) and
hence (a, b) ∈ (θ ◦ Φ ◦ θ ◦ ...)D(L). Then (θ ◦ Φ ◦ θ ◦ ...) ⊆ (θ ◦ Φ ◦ θ ◦ ...)D(L).

Conversely, let (x, y) ∈ (θ ◦ Φ ◦ θ ◦ ...)D(L), then (x, y) ∈ (θ ◦ Φ ◦ ...). There exist d1, d2, ...dn−1 ∈ L,
such that

(x, d1) ∈ θ, (d1, d2) ∈ Φ, ..., (dn−1, y) ∈ ψ,where ψ =

{
θ, if n odd,

Φ, if n even.

Since x, y ≥ dL, we get,

(x, d1) = (x ∨ dL, d1 ∨ dL) ∈ θD(L), (d1 ∨ dL, d2 ∨ dL) ∈ ΦD(L), ...,

(dn−1, b ∨ dL1) = (dn−1, y) ∈ ψ,where ψ =

{
θD(L), if n odd,

ΦD(L), if n even.

Hence (x, y) ∈ (θD(L) ◦ ΦD(L) ◦ θD(L) ◦ ...). Then the required equality is proved. �

Lemma 5.2. Let θ and Φ be congruences on a principal MS -algebra L. Let ψ denoted to the relation
θ ◦ Φ ◦ θ ◦ ...(n times). Then (a, b) ∈ ψ and (c, d) ∈ ψ imply (a ∧ c, b ∧ d) ∈ ψ.
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Proof. Let (a, b) ∈ ψ and (c, d) ∈ ψ. Then there exist a1, a2, ..., an−1,

c1, c2, ..., cn−1 ∈ L such that

(a, a1) ∈ θ, (a1, a2) ∈ Φ, ..., (an−1, b) ∈ Ψ,where Ψ =

{
θ, if n odd,

Φ, if n even.

And

(c, c1) ∈ θ, (c1, c2) ∈ Φ, ..., (cn−1, d) ∈ Ψ,where Ψ =

{
θ, if n odd,

Φ, if n even.

Since θ,Φ are congruence on L then we get,

(a ∧ c, a1 ∧ c1) ∈ θ, (a1 ∧ c1, a2 ∧ c2) ∈ Φ, ..., (an−1 ∧ cn−1, b ∧ d) ∈ Ψ,where Ψ =

{
θ, if n odd,

Φ, if n even.

Thus (a ∧ c, b ∧ d) ∈ ψ. �

Now, a characterization of n-permutability of principal MS -algebras is given.

Theorem 5.1. Two congruences θ,Φ on a principal MS -algebra L are n-permutable if and only if
their restrictions θL◦◦ ,ΦL◦◦ and θD(L),ΦD(L) with respect to L◦◦ and D(L) respectively are n-permutable.

Proof. Let L has n-permutable congruences. Let θ,Φ be any two congruences on L. Then by (i) and (ii)
of Lemma 5.1, respectively, we have

θL◦◦ ◦ ΦL◦◦ ◦ θL◦◦ ◦ ... = (θ ◦ Φ ◦ θ ◦ ...)L◦◦ = (Φ ◦ θ ◦ Φ ◦ ...)L◦◦ = ΦL◦◦ ◦ θL◦◦ ◦ ΦL◦◦ ◦ ...,

and

θD(L) ◦ ΦD(L) ◦ θD(L) ◦ ... = (θ ◦ Φ ◦ θ ◦ ...)D(L) = (Φ ◦ θ ◦ Φ ◦ ...)D(L) = ΦD(L) ◦ θD(L) ◦ ΦD(L) ◦ ....

Therefore L◦◦ and D(L) have n-permutable congruences.
Conversely, let L◦◦ and D(L) have n-permutable congruences. If (a, b) ∈ (θ ◦ Φ ◦ θ ◦ ...), using

Theorem 2.3, we get

(a◦◦, b◦◦) ∈ (θ ◦ Φ ◦ θ ◦ ...)L◦◦ ,

and

(a ∨ dL, b ∨ dL) ∈ (θ ◦ Φ ◦ θ ◦ ...)DL .

By lemma 5.1, we get

(a◦◦, b◦◦) ∈ (θL◦◦ ◦ ΦL◦◦ ◦ θL◦◦ ◦ ...),

and

(a ∨ dL, b ∨ dL) ∈ (θD(L) ◦ ΦD(L) ◦ ΦD(L) ◦ ...).

Since θL◦◦ ,ΦL◦◦ and θD(L),ΦD(L) are n-permutable on L◦◦,D(L), respectively, we have

(a◦◦, b◦◦) ∈ (ΦL◦◦ ◦ θL◦◦ ◦ ΦL◦◦ ◦ ...),

and
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(a ∨ dL ≡ b ∨ dL) ∈ (ΦD(L) ◦ θD(L) ◦ ΦD(L) ◦ ...).

It follows that, (a◦◦, b◦◦) ∈ (Φ ◦ θ ◦Φ ◦ ...) and (a ∨ dL, b ∨ dL) ∈ (Φ ◦ θ ◦Φ ◦ ...). Since L is a principal
MS -algebra, then a = a◦◦ ∧ (a ∨ dL) and b = b◦◦ ∧ (b ∨ dL). By Lemma 5.2, we get

(a◦◦ ∧ (a ∨ dL), b) = (a, b) ∈ (Φ ◦ θ ◦ Φ ◦ ...).

Thus (θ ◦ Φ ◦ θ ◦ ...) ⊆ (Φ ◦ θ ◦ Φ ◦ ...). Similarly we can show that (Φ ◦ θ ◦ Φ ◦ ...) ⊆ (θ ◦ Φ ◦ θ ◦ ...).
Then L has n-permutable congruences. �

6. Conclusions

With the aid of the technique of MS -congruence pairs, many properties were investigated for
principal MS -algebras, deal with a characterization of congruence pairs of a principal MS -algebra
(a Stone algebra), a description of the lattice A(L) of all MS -congruence pairs of L via Boolean
elements of L, characterizations of 2-permutability and n-permutability of congruences of a principal
MS -algebra. This work leads us in the future to study many aspects of principal MS -algebras and
related structures, for instance, it can be applied to triple construction of principal MS -algebra, affine
and locally complete of principal MS -algebras.
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