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1. Introduction

Consider the linear equations of the form

Ax = b, (1.1)

where x, b ∈ Cn and A ∈ Cn×n is a complex symmetric matrix, whose form is

A = W + iT, (1.2)
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and W,T ∈ Rn×n are real symmetric matrices, with W being positive definite and T positive
semidefinite. Here and in the sequel we use i =

√
−1 to denote the imaginary unit. We assume T , 0,

which implies that A is non-Hermitian. Such kind of linear systems arise in many problems in
scientific computing and engineering applications. For more detailed descriptions, we refer to [1, 8,
15, 22] and the references therein.

The Hermitian and skew-Hermitian parts of the complex symmetric matrix A ∈ Cn×n are given by

H =
1
2

(A + A∗) = W and S =
1
2

(A − A∗) = iT

respectively, hence, A ∈ Cn×n is non-Hermitian, but positive definite matrix. Here A∗ is used to denote
the conjugate transpose of the matrix A. Based on the Hermitian and skew-Hermitian splitting (HSS)

A = H + S

of the matrix A ∈ Cn×n, Bai et al. [2] gave HSS iteration method, which is as follows:

The HSS Iteration Method [2]. Let x(0) ∈ Cn be arbitrary initial guess. For k = 0, 1, 2, ... until the
sequence of iterates {x(k)}∞k=0 ⊂ C

n converges, compute the next iterate x(k+1) according to the following
procedure: {

(αI + W)x(k+ 1
2 ) = (αI − iT )x(k) + b,

(αI + iT )x(k+1) = (αI −W)x(k+ 1
2 ) + b.

(1.3)

where α is a given positive constant and I is the identity matrix.

However, a potential difficulty with the HSS iteration method is the need to solve the shifted
skew-Hermitian sub-system of linear equations at each iteration step, which is as difficult as that of
the original problem; see [2,3,7,10,12–14,16,31] for more detailed descriptions about the HSS
iteration method and its variants. Recently, by making use of the special structure of the coefficient
matrix A ∈ Cn×n, Bai et al. established the following modified HSS iteration (MHSS) method and a
preconditioned MHSS (PMHSS) method for solving the complex symmetric linear system (1.1–1.2)
in an analogous fashion to the HSS iteration scheme in [8] and [6], respectively. Concerning the
stationary MHSS iteration method and PMHSS iteration method, Bai et al. [6,8] analyzed the
convergence. In 2013, based on the ideas of [6] and [26], Li et al. presented a new approach named as
the lopsided PMHSS (LPMHSS) iteration method to solve the complex symmetric linear system of
linear equation (1–2). In 2015, Wu concerned with several variants of the HSS iterative method in
[29]. In 2015, Cao et al. studied two variants of the PMHSS iterative method for a class of complex
symmetric indefinite linear systems in [22]. In 2018, Chen and Ma constructed the generalized
shift-splitting (GSS) preconditioner, and gave the corresponding theoretical analysis and numerical
experiments in [21]. In 2019, Li and Ma gave the efficient parameterized rotated shift-splitting
preconditioner and Euler preconditioner SHSS iterative method for a class of complex symmetric
linear systems [24,25].
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Let u = x + iy and b = p + iq where x, y, p, q ∈ Rn. Then from [1,31] we know that the complex
linear system (1) can be recast as the following two-by-two block real equivalent formulation

A

(
x
y

)
=

(
W −T
T W

) (
x
y

)
=

(
p
q

)
, (1.4)

The system of linear equations (1.4) can be seen as a special case of the generalized saddle point
problems [19].

To further generalize the GSS iteration method and accelerate its convergence rate, based on the
generalized shift-splitting (GSS) preconditioner, we generalize their algorithms and further study the
two-sweep shift-splitting (TSSS) preconditioner for complex symmetric linear systems.

The organization of the paper is as follows. In Section 2 we provide the two-sweep shift-splitting
(TSSS) preconditioner for complex symmetric linear system (1–2). In Section 3, we establish the
convergence of the two-sweep shift-splitting iteration method. Finally, in section 4, one example is
provided to demonstrate the feasibility and effectiveness of TSSS preconditioner.

2. The two-sweep shift-splitting preconditioner

In 2018, based on the iterative methods studied in [20,22,30], Chen and Ma [21] constructed the
generalized shift-splitting of the matrixA, which is as follows:

A =
1
2

(
αI + W −T

T βI + W

)
−

1
2

(
αI −W T
−T βI −W

)
, (2.1)

where α > 0 and β > 0 are two real constants and I is the identity matrix (with appropriate
dimension). By this special splitting, the following generalized shift-splitting iterative method can be
defined for solving the generalized saddle point problems (1.3):

Algorithm 1: The generalized shift-splitting iterative method [21] Given an initial guess u0, for
k = 0, 1, 2, ..., until {uk} converges, compute

1
2

(
αI + W −T

T βI + W

)
uk+1 =

1
2

(
αI −W T
−T βI −W

)
uk +

(
p
q

)
, (2.2)

where α > 0 and β > 0 are two given positive constants.

In this paper, to further generalize the GSS iteration method and accelerate its convergence rate,
we propose the two-sweep shift-splitting iterative method, which is as follows:

Algorithm 2: The two-sweep shift-splitting iterative (TSSS) method Given an initial guess u0, for
k = 0, 1, 2, ..., until {uk} converges, compute

1
2

(
αI + W −T

T βI + W

)
uk+ 1

2 = 1
2

(
αI −W T
−T βI −W

)
uk +

(
p
q

)
,

uk+1 = (1 − γ)uk+ 1
2 + γuk.

(2.3)
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where α > 0, β > 0 and γ ≥ 0 are three given constants.

Remark 2.1. Obviously, when γ = 0, the two-sweep shift-splitting iterative (TSSS) method reduces
to the generalized shift-splitting iterative (GSS) method. So, TSSS method is the extension of GSS
method. When choosing appropriate patameter γ, TSSS method will have fast convergence speed.

By simple calculation, the iteration format of the two-sweep shift-splitting iteration is

uk+1 = T uk + 2(1 − γ)
(
αI + W −T

T βI + W

)−1 (
p
q

)
(2.4)

where

T = (1 − γ)
(
αI + W −T

T βI + W

)−1 (
αI −W T
−T βI −W

)
+ γ

(
Im 0
0 In

)
(2.5)

Through further analysis, we can find that Algorithm 2 is actually the following splitting:

1
2(1 − γ)

(
αI + W −T

T βI + W

)
uk+1 =

1
2(1 − γ)

(
αI + (2γ − 1)W (1 − 2γ)T

(2γ − 1)T βI + (2γ − 1)W

)
uk +

(
p
q

)
,

The splitting preconditioner corresponds to the two-sweep shift-splitting iteration (2.5) is given by

PTSSS =
1

2(1 − γ)

(
αI + W −T

T βI + W

)
which is called the two-sweep shift-splitting preconditioner for the generalized saddle point matrixA.

3. Convergence of TSSS method

In this section, we will study the convergence of the two-sweep shift-splitting iteration method,
which is motivated by the corresponding results in [30]. Let ρ(T ) denote the spectral radius of the
matrix T . Then the two-sweep shift-splitting iteration converges if and only if ρ(T ) < 1. Let λ be an
eigenvalue of T and [φ∗, ψ∗]T be the corresponding eigenvector. Then we have{

[αI + (2γ − 1)W]φ + (1 − 2γ)Tψ = λ(αI + W)φ − λTψ,
(2γ − 1)Tφ + [βI + (2γ − 1)W]ψ = λTφ + λ(βI + W)ψ.

(3.1)

To study the convergence of the two-sweep shift-splitting iteration method, two lemmas are given.

Lemma 3.1. Let W ∈ Rn×n be a symmetric positive definite matrix, and T ∈ Rn×n be a symmetric
positive semidefinite matrix. Let T be defined as in (2.5) with α > 0, β > 0 and γ ≥ 0. If λ is an
eigenvalue of the iteration matrix T , then λ , ±1.
Proof. At first, we assume that γ , 1. If λ = 1, then from Eq. (3.1), we can obtain

(2 − 2γ)Tψ = (2 − 2γ)Wφ⇒ Wφ − Tψ = 0. (3.2)

and
(2γ − 2)Wψ = (2 − 2γ)Tφ⇒ Tφ + Wψ = 0. (3.3)
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By similar proving process to Lemma 2.1 in [21], we can get λ , 1.
Then, we will prove λ , −1. If λ = −1, from Eq. (3.1) we can obtain

2αφ + 2γWφ = 2γTψ. (3.4)

and
2βψ + 2γWψ = −2γTφ. (3.5)

Multiplying both sides of (3.4) and (3.5) by φ∗ and ψ∗, respectively. Then we have

αφ∗φ + γφ∗Wφ = γφ∗Tψ. (3.6)

and
βψ∗ψ + γψ∗Wψ = −γψ∗Tφ⇒ βψ∗ψ + γψ∗Wψ = −γφ∗Tψ. (3.7)

Add up the two sides of the Eq. (3.6) and (3.7), we can obtain

(αφ∗φ + γφ∗Wφ) + (βψ∗ψ + γψ∗Wψ) = 0. (3.8)

Since W is a symmetric positive define matrix and T is a symmetric positive semidefinite matrix, and
φ∗φ ≥ 0, ψ∗ψ ≥ 0, we can get ψ = 0 and φ = 0. Since, the corresponding vector cannot be zero, which
a contradiction. So, we can get λ , −1.

Lemma 3.2. Let W ∈ Rn×n be a symmetric positive definite matrix, and T ∈ Rn×n be a symmetric
positive semidefinite matrix. Let λ be an eigenvalue of the iteration matrix T (with
α > 0, β > 0, 0 ≤ γ < 1) and [φ∗, ψ∗]T be the corresponding eigenvector with φ, ψ ∈ Cn×n. Then if
ψ = 0, we have |λ| < 1.
Proof. If ψ = 0, then from (3.1) we get

(αI + W)−1[αI + (2γ − 1)W]φ = λφ. (3.9)

Since W is symmetric positive definite and 0 ≤ γ < 1, then by [12] we can obtain

|λ| ≤‖ (αI + W)−1[αI + (2γ − 1)W] ‖2< 1. (3.10)

Theorem 3.3. Let W ∈ Rn×n be a symmetric positive definite matrix, and T ∈ Rn×n be a symmetric
positive semidefinite matrix. Let ρ(T ) denote the spectral radius of the two-sweep shift-splitting
iteration matrix T . Then it holds that

ρ(T ) < 1,∀α > 0, β > 0, 0 ≤ γ < 1. (3.11)

i.e., the two-sweep shift-splitting iterative method converges to the unique solution of the generalized
saddle point problems (1.3).
Proof. Let λ be an eigenvalue of the iteration matrix T (with α > 0, β > 0, 0 ≤ γ < 1) and [φ∗, ψ∗]T be
the corresponding eigenvector with φ, ψ ∈ Cn×n.

If ψ = 0, then from Lemma 3.2 we can obtain |λ| < 1.
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If ψ , 0, without loss of generality let ||ψ||2 = 1. Multiplying both sides of the second equation in
Eq. (3.1) by ψ∗ yields

(2γ − 1)(Tψ)∗φ + β + (2γ − 1)ψ∗Wψ = λ(Tψ)∗φ + λ(β + ψ∗Wψ). (3.12)

If Tψ = 0, then Eq. (3.12) implies

|λ| =

∣∣∣∣∣β + (2γ − 1)ψ∗Wψ

β + ψ∗Wψ

∣∣∣∣∣ < 1. (3.13)

If Tψ , 0, by Lemma 3.1 we have λ , −1. Then we can get from the first equation in Eq. (3.1) that
φ = 0 and

Tψ =
α(λ − 1)

1 − 2γ + λ
φ + Wφ. (3.14)

Substituting (3.14) into (3.12), we can obtain

(1 − λ)β + (2γ − 1 − λ)ψ∗Wψ = (λ + 1 − 2γ)(α
λ̄ − 1

1 − 2γ + λ̄
φ∗φ + φ∗Wφ). (3.15)

Here, λ̄ denotes the conjugate of λ. Let ς = ψ∗Wψ, ϕ = φ∗φ, χ = φ∗Wφ, we can obtain from Eq. (3.15)

ωβ + αω̄ϕ = ς + χ. (3.16)

where ω = 1−λ
λ+1−2γ . Since α, β, ς, ϕ, χ > 0 and 0 ≤ γ < 1, from Eq. (3.16) we have

Re(ω) =
ς + χ

β + αϕ
> 0. (3.17)

where Re(ω) denotes real part of ω. So, we can obtain

|λ| =
1 − ω + 2γω

1 + ω
=

√
[1 + (2γ − 1)Re(ω)]2 + [(2γ − 1)Im(ω)]2

[1 + Re(ω)]2 + [Im(ω)]2 < 1. (3.18)

where Re(ω) and Im(ω) denote real part and imaginary part of ω, respectively.

Remark 3.1. [20,22,30] From Theorem 3.3, we know that the two-sweep shift-splitting iterative
method is convergent unconditionally. However, the convergence of the stationary iteration is
typically too slow for the method to be competitive. For this reason, we propose using the Krylov
subspace method to accelerate the convergence of the iteration. In particular, Krylov subspace
methods apply techniques that involve orthogonal projections onto subspaces of the form

K(A, b) ≡ span{b,Ab,A2b, ...,An−1b, ...}.

The conjugate gradient method (CG), minimum residual method (MINRES) and generalized minimal
residual method (GMRES) are all common iterative Krylov subspace methods. The CG method is used
for symmetric, positive definite matrices, MINRES for symmetric and possibly indefinite matrices and
GMRES for unsymmetric matrices.
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4. Numerical examples

In this section, we present one example to illustrate the convergence about the generalized
shift-splitting iterative (GSS) method and the two-sweep shift-splitting iterative (TSSS) method to
solve the linear systems (1.3) when choosing different parameters. Moreover, we define iteration step
as It, relative residual error as Res and spectral radius as ρ. All numerical examples are carried out in
Matlab 7.0. In our experiments, all runs with respect to both GSS method and PSS method are started
from initial vector ((x(0))T , (y(0))T )T = 0, and terminated if the current iteration satisfy RES < 10−6.

Example 4.1. [8] Consider the linear system of equations (1.1) with

T = I ⊗ V + V ⊗ I and W = 10(I ⊗ VC + VC ⊗ I) + 9(e1eT
l + eleT

1 ) ⊗ I,

where V = tridiag(−1, 2,−1) ∈ Rl×l,VC = V − e1eT
l − eleT

1 ∈ R
l×l and e1 and el are the first and last

unit vectors in Rl, respectively. Here T and K correspond to the five-point centered difference matrices
approximating the negative Laplacian operator with homogeneous Dirichlet boundary conditions and
periodic boundary conditions, respectively, on a uniform mesh in the unit square [0, 1]× [0, 1] with the
mesh-size h = 1

l+1 .

In Figures 1–3, we report the eigenvalue distribution for the generalized shift-splitting iterative
(GSS) method and the two-sweep shift-splitting iterative (TSSS) method for different parameter,
respectively. In Tables 1–2, we report iteration counts, relative residual and spectral radius about the
generalized shift-splitting iterative (GSS) method and the two-sweep shift-splitting iterative (TSSS)
method when choosing different parameters. Figures 1–3 and Tables 1–2 show that PSS iterative
method have better convergence than GSS iterative method for Example 4.1. Moreover, we can find
that TSSS iterative method will have good convergence when parameters γ is selected near 0.5, and
have slow convergence or diverge when parameters γ is selected near 1.

5. Conclusion

Based on the generalized shift-splitting (GSS) preconditioner, the authors generalize their
algorithms and further study the two-sweep shift-splitting (TSSS) preconditioner for complex
symmetric linear systems. Moreover, by similar theoretical analysis, we obtain that the two-sweep
shift-splitting iterative method is unconditionally convergent. In finally, we present one example to
illustrate the convergence about the generalized shift-splitting iterative (GSS) method and the
two-sweep shift-splitting iterative (TSSS) method to solve the linear systems (1.3) when choosing
different parameters.
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Figure 1. The eigenvalue distribution for the generalized shift-splitting iterative (GSS)
method when α = 0.002, β = 0.001(the first), the two-sweep shift-splitting iterative (TSSS)
method when α = 0.002, β = 0.001, γ = 0.1(the second),α = 0.002, β = 0.001, γ = 0.3(the
third) and α = 0.002, β = 0.001, γ = 0.5(the fourth), respectively. Here, l = 16.
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Figure 2. The eigenvalue distribution for the two-sweep shift-splitting iterative (TSSS)
method when α = 0.02, β = 0.001, γ = 0.7(the first),α = 0.02, β = 0.001, γ = 0.8(the
second), α = 0.02, β = 0.001, γ = 0.9(the third) and α = 0.02, β = 0.001, γ = 1.1(the fourth),
respectively. Here, l = 16.
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Figure 3. The eigenvalue distribution for the generalized shift-splitting iterative (GSS)
method when α = 0.003, β = 0.002(the first), the two-sweep shift-splitting iterative (TSSS)
method when α = 0.003, β = 0.002, γ = 0.1(the second),α = 0.003, β = 0.002, γ = 0.3(the
third), α = 0.003, β = 0.002, γ = 0.5(the fourth) and α = 0.003, β = 0.002, γ = 0.7(the fifth),
respectively. Here, l = 16.
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Table 1. Iteration counts, relative residual and spectral radius about the generalized shift-
splitting iterative (GSS) method and the two-sweep shift-splitting iterative (TSSS) method
when choosing different parameters. Here, l = 16.

α β γ ρ It Res
0.002 0.001 1 1.0005 −− −−

0.002 0.001 0.1 0.8004 103 8.2570 × 10−7

0.002 0.001 0.3 0.4003 25 8.9081 × 10−7

0.002 0.001 0.5 7.2510 × 10−4 2 2.0118 × 10−7

0.002 0.001 0.7 0.4004 25 8.9033 × 10−7

0.002 0.001 0.8 0.6003 45 8.2200 × 10−7

0.002 0.001 0.9 0.8001 103 8.2479 × 10−7

0.002 0.001 1.1 1.2 −− −−

Table 2. Iteration counts, relative residual and spectral radius about the generalized shift-
splitting iterative (GSS) method and the two-sweep shift-splitting iterative (TSSS) method
when choosing different parameters. Here, l = 16.

α β γ ρ It Res
0.003 0.002 1 1.0008 −− −−

0.003 0.002 0.1 0.8007 103 8.22625 × 10−7

0.003 0.002 0.3 0.4006 25 8.9103 × 10−7

0.003 0.002 0.5 0.0011 2 4.8962 × 10−7

0.003 0.002 0.7 0.4006 25 8.9023 × 10−7
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