Citation: Wei Gao, Mine Senel, Gulnur Yel, Haci Mehmet Baskonus, Bilgin Senel. New complex wave patterns to the electrical transmission line model arising in network system[J]. AIMS Mathematics, 2020, 5(3): 1881-1892. doi: 10.3934/math.2020125
[1] | H. Y. Donkeng, F. Kenmogne, D. Yemele,et al., Modulated compact-like pulse signals in a nonlinear electrical transmission line: A specific case studied, Chin. J. Phys., 55 (2017), 683-691. doi: 10.1016/j.cjph.2017.04.011 |
[2] | K. A. Abro, I. Khan, K. S. Nisar, Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit, Chaos Sol. Fract., 129 (2019), 40-45. doi: 10.1016/j.chaos.2019.08.001 |
[3] | H. L. Zhen, B. Tian, H. Zhong, et al., Dynamic behaviors and soliton solutions of the modified Zakharov-Kuznetsov equation in the electrical transmission line, Comput. Math. with Appl., 68 (2014), 579-588. doi: 10.1016/j.camwa.2014.06.021 |
[4] | A. B. T. Motcheyo, J. D. T. Tchameu, S. I. Fewo, et al., Chameleon's behavior of modulable nonlinear electrical transmission line, Commun Nonlinear Sci, 53 (2017), 22-30. doi: 10.1016/j.cnsns.2017.04.031 |
[5] | F. Kenmogne, D. Yemele, Exotic modulated signals in a nonlinear electrical transmission line: Modulated peak solitary wave and gray compacton, Chaos Sol. Fract., 45 (2012), 21-34. doi: 10.1016/j.chaos.2011.09.009 |
[6] | H. Kanaya, Y. Nakamura, R. K. Pokharela, et al., Development of electrically small planar antennas with transmission line based impedance matching circuit for a 2.4 GHz band, AEU-Int. J. Eletron. C., 65 (2011), 148-153. doi: 10.1016/j.aeue.2010.03.001 |
[7] | T. Kuusela, Soliton experiments in a damped ac-driven nonlinear electrical transmission line, Phys. Lett. A, 167 (1992), 54-59. doi: 10.1016/0375-9601(92)90625-V |
[8] | R. Uklejewski, Analysis of transmission of vibrations in a porous vibroisolator on the basis of electrical transmission line theory, J. Sound Vib., 113 (1987), 9-16. doi: 10.1016/S0022-460X(87)81336-6 |
[9] | M. Senel, B. Senel, L. Bilir, et al., The relation between electricity demand and the economic and demographic state: A multiple regression analysis, J. Energy Dev., 38 (2013), 257-274. |
[10] | E. Tala-Tebue, D. C. Tsobgni-Fozap, A. Kenfack-Jiotsa, et al., Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G'/G)-expansion method including the generalized Riccati equation, Eur. Phys. J. Plus, 129 (2014), 1-10. doi: 10.1140/epjp/i2014-14001-y |
[11] | E. Tala-Tebue, E. M. E. Zayed, New Jacobi elliptic function solutions, solitons and other solutions for the (2+1)-dimensional nonlinear electrical transmission line equation, Eur. Phys. J. Plus, 133 (2018), 1-7. doi: 10.1140/epjp/i2018-11804-8 |
[12] | C. Cattani, Harmonic wavelet solutions of the Schrodinger equation, Int. J. Fluid Mech., 30 (2003), 463-472. doi: 10.1615/InterJFluidMechRes.v30.i5.10 |
[13] | Z. Zhao, B. Han, Residual symmetry, Bucklund transformation and CRE solvability of a (2+1)- dimensional nonlinear system, Nonlinear Dyn., 94 (2018), 461-474. doi: 10.1007/s11071-018-4371-2 |
[14] | E. I. Eskitascioglu, M. B. Aktas, H. M. Baskonus, New complex and hyperbolic forms for AblowitzKaup-Newell-Segur wave equation with fourth order, Appl. Math. Nonlinear Sci., 4 (2019), 105-112. |
[15] | A. Yokus, H. M. Baskonus, T. A. Sulaiman, et al., Numerical simulation and solutions of the two a component second order KdV evolutionary system, Numer. Math. Part. Dif. E., 34 (2018), 211-227. doi: 10.1002/num.22192 |
[16] | A. Yokus, T. A. Sulaiman, M. T. Gulluoglu, et al., Stability analysis, numerical and exact solutions of the (1+1)-dimensional NDMBBM equation, Numer. Math. Part. Dif. E., 22 (2018), 1-10. |
[17] | Z. Zhao, B. Han, Lump solutions of a (3+1)-dimensional B-type KP equation and its dimensionally reduced equations, Anal. Math. Phys., 9 (2019), 119-130. doi: 10.1007/s13324-017-0185-5 |
[18] | C. Cattani, On the existence of wavelet symmetries in archaea DNA, Comput. Math. Method M., 2012 (2012), 1-21. |
[19] | M. Guedda, Z. Hammouch, Similarity flow solutions of a non-newtonian power-law fluid, Int. J. Nonlinear Sci., 6 (2008), 255-264. |
[20] | A. Prakash, M. Kumar, K. K. Sharma, Numerical method for solving coupled Burgers equation, Appl. Math. Comput., 260 (2015), 314-320. |
[21] | M. Guedda, Z. Hammouch, On similarity and pseudo-similarity solutions of Falkner-Skan boundary layers, Fluid Dyn. Res., 38 (2006), 211-223. doi: 10.1016/j.fluiddyn.2005.11.001 |
[22] | H. Rezazadeh, New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Optik, 167 (2018), 218-227. doi: 10.1016/j.ijleo.2018.04.026 |
[23] | C. Cattani, Haar wavelet-based technique for sharp jumps classification, Math. Comput. Model., 39 (2004), 255-278. doi: 10.1016/S0895-7177(04)90010-6 |
[24] | G. Yel, H. M. Baskonus, H. Bulut, Novel archetypes of new coupled Konno-Oono equation by using sine-Gordon expansion method, Opt. Quant. Electron., 49 (2017), 1-10. doi: 10.1007/s11082-016-0848-8 |
[25] | O. A. Ilhan, A. Esen, H. Bulut, et al., Singular solitons in the Pseudo-parabolic model arising in nonlinear surface waves, Results Phys., 12 (2019), 1712-1715. doi: 10.1016/j.rinp.2019.01.059 |
[26] | L. D. Moleleki, T. Motsepa, C. M. Khalique, Solutions and conservation laws of a generalized second extended (3+1)-dimensional Jimbo-Miwa equation, Applied Math. Nonlinear Sci., 3 (2018), 459-474. doi: 10.2478/AMNS.2018.2.00036 |
[27] | H. M. Baskonus, New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dyn., 86 (2016), 177-183. doi: 10.1007/s11071-016-2880-4 |
[28] | C. M. Khalique, I. E. Mhlanga, Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation, Applied Math. Nonlinear Sci., 3 (2018), 241-254. doi: 10.21042/AMNS.2018.1.00018 |
[29] | H. Bulut, T. A. Sulaiman, H. M. Baskonus, New solitary and optical wave structures to the Korteweg-de Vries equation with dual-power law nonlinearity, Opt. Quant. Electron., 48 (2016), 1-14. doi: 10.1007/s11082-015-0274-3 |
[30] | H. Bulut, T. A. Sulaiman, H. M. Baskonus, et al., New solitary and optical wave structures to the (1+1)-Dimensional combined KdV-mKdV equation, Optik, 135 (2017), 327-336. doi: 10.1016/j.ijleo.2017.01.071 |
[31] | C. Yan, A Simple Transformation for nonlinear waves, Phys. Lett. A, 22 (1996), 77-84. |
[32] | E. W. Weisstein, Concise encyclopedia of mathematics, Secnd Eds., New York, CRC Press, 2002. |
[33] | W. Gao, H. F. Ismael, A. M. Husien, et al., Optical soliton solutions of the nonlinear Schrodinger and resonant nonlinear Schrodinger equation with parabolic Law, Applied Sci., 10 (2020), 1-20. |
[34] | J. L. G. Guirao, H. M. Baskonus, A. Kumar, et al., Complex soliton solutions to the (3+1)- dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation, Symmetry, 12 (2020), 1-17. |
[35] | W. Gao, G. Yel, H. M. Baskonus, et al., Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation, Aims Math., 5 (2020), 507-521. doi: 10.3934/math.2020034 |