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1. Introduction

In recent years, nonlinear partial differential equations (NPDEs) are widely used to describe
complex phenomena in various fields of sciences, such as fluid mechanics, plasma, chemical
reactions, optical fibers, solid state physics, relativity, ecology, gas dynamics physics and optical
fiber, [1–11]. Therefore, exploring exact solutions for NPDEs plays an important role in nonlinear
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science. These solutions might be essential and important for the exploring some physical
phenomena. Therefore investigating new technique to solve so many problems is so interesting topic.
Thus, many new methods have been introduced, such as the F-expansion method [12, 13], (G

′

G )−
expansion method [14, 15], tanh-sech method [16–18], exp-expansion method [19, 20], the
homogeneous balance method [21, 22], Jacobi elliptic function method [23, 24], sine-cosine
method [25–27], extended tanh-method [28, 29] and the Riccati-Bernoulli sub-ODE method [30–33]
proposed for solving more complicated problems. Indeed, there are recent development in analytical
methods for investigation solutions for NPDEs, see [34–40].

The nonlinear Schrödinger equations (NLSEs) are so important models in nonlinear evolution
equations, which come in many areas of applied sciences such as nonlinear optics, quantum
mechanics, fluid dynamics, molecular biology, elastic media, hydrodynamics, biology and plasma
physics.

This paper is concerned with the unstable nonlinear Schrödinger equation (UNS) [41, 42] given by

iqt + qxx + 2η | q |2 q − 2γq = 0, i =
√
−1 , (1.1)

where, η, γ is a free parameter and q = q(x, t) is a complex-valued function. Equation (1.1) is a
type of nonlinear Schrödinger equation with space and time exchanged. This equation prescribes
a time evolution of disturbances in unstable media. The behavior of type occurs for the two-layer
baroclinic instability and the lossless symmetric two-stream plasma instability [43]. To the best of
our knowledge, no previous research work has been done using the proposed methods for solving the
unstable nonlinear Schrödinger equation. Actually, many numerical and analytical methods have been
also implemented to get solutions for Eq (1.1) such as modified Kudraysov method, the sine-Gordon
expansion approach [41], expa method and hyperbolic function method [42], the new Jacobi elliptic
function rational expansion method and the exponential rational function method [44], the extended
simple equation method [45].

The main aim of this paper is to explore the UNS equation using exp(−ϕ(ξ))-expansion method,
sine-cosine method and Riccati-Bernoulli sub-ODE method. We also show that the Riccati-Bernoulli
sub-ODE technique gives infinite solutions. Actually, we introduce new types of exact analytical
solutions. Comparing our results with other results, one can see that our results are new and most
extensive. Indeed the new solutions presented in this article are so important in the theory of soliton.
Moreover these solutions turn out to be very useful for Physicists to explain many interesting physical
phenomena.

The rest of the paper is arranged as follows: In Section 2, the exp-function method, sine-cosine
method and Riccati-Bernoulli sub-ODE method are briefly reviewed. In Section 3, some new exact
solutions of the unstable Schrödinger equation are presented. Discussion of our results and comparing
with the results of other authors is in Section 4. Conclusion and future works will appear in Section 5.

2. Description of methodologies

We present a brief description about the exp(−ϕ(ξ))-expansion method, sine-cosine method and
Riccati-Bernoulli sub-ODE method to obtain new exact solutions for a given NPDE. For this goal,
consider a NPDE in two independent variables x and t as

G(ϑ, ϑt, ϑx, ϑtt, ϑxx, ....) = 0, (2.1)
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where G is a polynomial in ϑ(x, t) and its partial derivatives. The main steps are as follows [30]:

Step 1. Introducing the transformation

ϑ(x, t) = ϑ(ξ), ξ = k(x + ςt), (2.2)

varies Eq (2.1) to the following ordinary differential equation (ODE):

D(ϑ, ϑ′, ϑ′′, ϑ′′′, .....) = 0, (2.3)

where D is a polynomial in ϑ(ξ) and its derivatives such that the superscripts denote the ordinary
derivatives with respect to ξ.

2.1. The exp(−ϕ(ξ))-expansion method

According to the exp(−ϕ(ξ))-expansion technique [19, 20, 31], we assume that the solution of Eq
(2.3) can be written in a polynomial form of exp(−ϕ(ξ)) as follows

ϑ(ξ) = Am (exp(−ϕ(ξ)))m + ....., am , 0, (2.4)

where ϕ(ξ) obeys the following ODE

ϕ′(ξ) = exp(−ϕ(ξ)) + ν exp(ϕ(ξ)) + λ . (2.5)

Eq (2.5) has the following solutions:

1. At λ2 − 4ν > 0, ν , 0,

ϕ(ξ) = ln


−
√
λ2 − 4ν tanh

( √
λ2−4ν

2 (ξ + C)
)
− λ

2ν

 , (2.6)

2. At λ2 − 4ν < 0, ν , 0,

ϕ(ξ) = ln


√

4ν − λ2 tan
( √

4ν−λ2

2 (ξ + C)
)
− λ

2ν

 , (2.7)

3. At λ2 − 4ν > 0, ν = 0, λ , 0

ϕ(ξ) = −ln
(

λ

exp (λ (ξ + C)) − 1

)
, (2.8)

4. At λ2 − 4ν = 0, ν , 0, λ , 0,

ϕ(ξ) = ln
(
−

2 (λ (ξ + C) + 2)
λ2 (ξ + C)

)
, (2.9)

5. At λ2 − 4ν = 0, ν = 0, λ = 0,
ϕ(ξ) = ln (ξ + C) . (2.10)

Here C is an arbitrary constant.
Finally, superseding Eq (2.4) with Eq (2.5) into Eq (2.3) and aggregating all terms of the same

power exp (−mϕ(ξ)), m = 0, 1, 2, 3, .... After that equating them to zero, we get algebraic equations
solved by Mathematica or Maple to obtain the values of ai. Hence, we get the solutions (2.4), which
give the exact solutions of Eq (2.3).
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2.2. The sine-cosine technique

The solutions of Eq (2.3) can be expressed in the form [46, 47]

ϑ(x, t) =

α sinr(βξ), | ξ | ≤ π
β
,

0, otherwise,
, (2.11)

or in the form

ϑ(ξ)(x, t) =

α cosr(βξ), | ξ | ≤ π
2µ ,

0, otherwise,
, (2.12)

where α, β and r , 0, are parameters determined in sequel. From (2.11) we have

ϑ(ξ) = αsinr(βξ),
ϑn(ξ) = αnsinnr(βξ),
(ϑn)ξ = nβrαncos(βξ)sinnr−1(βξ),

(ϑn)ξξ = −n2β2rαnsinnr(βξ) + nβ2αnr(nr − 1)sinnr−2(βξ),
(2.13)

and from (2.12) we have

ϑ(ξ) = αcosr(βξ),
ϑn(ξ) = αncosnr(βξ),
(ϑn)ξ = −nβrαnsin(βξ)cosnr−1(βξ),

(ϑn)ξξ = −n2β2rαncosnr(βξ) + nβ2αnr(nr − 1)cosnr−2(βξ).
(2.14)

Finally, superseding Eq (2.13) or Eq (2.14) into Eq (2.3), then balance the terms of the cosine
functions (2.14) or the sine functions (2.13). Then, we sum all terms with the same power in cosr(βξ)
or sinr(βξ) and equating their coefficients to zero in order to obtain an algebraic equations in the
unknowns β, α and r. Solving this system yields these unknown constants.

2.3. Riccati-Bernoulli sub-ODE method

According to description of this method [30–33, 48, 49], we assume that Eq (2.3) has the following
solution:

ϑ′ = aϑ2−n + bϑ + cϑn, (2.15)

where a, b, c and n are constants calculated later. From Eq (2.15), we get

ϑ′′ = ab(3 − n)ϑ2−n + a2(2 − n)ϑ3−2n + nc2ϑ2n−1 + bc(n + 1)ϑn + (2ac + b2)ϑ, (2.16)

ϑ′′′ = (ab(3 − n)(2 − n)ϑ1−n + a2(2 − n)(3 − 2n)ϑ2−2n

+ n(2n − 1)c2ϑ2n−2 + bcn(n + 1)ϑn−1 + (2ac + b2))ϑ′ .
(2.17)

The exact solutions of Eq (2.15), for an arbitrary constant µ are given as follow:
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1. For n = 1, the solution is
ϑ(ξ) = µe(a+b+c)ξ . (2.18)

2. For n , 1, b = 0 and c = 0, the solution is

ϑ(ξ) = (a(n − 1)(ξ + µ))
1

n−1 . (2.19)

3. For n , 1, b , 0 and c = 0, the solution is

ϑ(ξ) =

(
−a
b

+ µeb(n−1)ξ
) 1

n−1
. (2.20)

4. For n , 1,a , 0 and b2 − 4ac < 0, the solution is

ϑ(ξ) =

−b
2a

+

√
4ac − b2

2a
tan

 (1 − n)
√

4ac − b2

2
(ξ + µ)

 1
1−n

(2.21)

and

ϑ(ξ) =

−b
2a
−

√
4ac − b2

2a
cot

 (1 − n)
√

4ac − b2

2
(ξ + µ)

 1
1−n

. (2.22)

5. For n , 1,a , 0 and b2 − 4ac > 0, the solution is

ϑ(ξ) =

−b
2a
−

√
b2 − 4ac

2a
coth

 (1 − n)
√

b2 − 4ac
2

(ξ + µ)
 1

1−n

(2.23)

and

ϑ(ξ) =

−b
2a
−

√
b2 − 4ac

2a
tanh

 (1 − n)
√

b2 − 4ac
2

(ξ + µ)
 1

1−n

. (2.24)

6. For n , 1, a , 0 and b2 − 4ac = 0, the solution is

ϑ(ξ) =

(
1

a(n − 1)(ξ + µ)
−

b
2a

) 1
1−n

. (2.25)

Bäcklund transformation

When ϑm−1(ξ) and ϑm(ξ)(ϑm(ξ) = ϑm(ϑm−1(ξ))) are the solutions of Eq (2.15), we obtain

dϑm(ξ)
dξ

=
dϑm(ξ)

dϑm−1(ξ)
dϑm−1(ξ)

dξ
=

dϑm(ξ)
dϑm−1(ξ)

(aϑ2−n
m−1 + bϑm−1 + cϑn

m−1),

namely
dϑm(ξ)

aϑ2−n
m + bϑm + cϑn

m
=

dϑm−1(ξ)
aϑ2−n

m−1 + bϑm−1 + cϑn
m−1

. (2.26)

Integrating Eq (2.26) once with respect to ξ, we obtain the following Bäcklund transformation of
Eq (2.15):

ϑm(ξ) =

(
−cK1 + aK2 (ϑm−1(ξ))1−n

bK1 + aK2 + aK1 (ϑm−1(ξ))1−n

) 1
1−n

, (2.27)

where K1 and K2 are arbitrary constants. If we get a solution for this equation, we use Eq (2.27) to
obtain infinite sequence of solutions of Eq (2.15), as well of Eq (2.1).
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3. Application

In order to solve the Eq (1.1), using exp(−ϕ(ξ))-expansion method and the Riccati-Bernoulli sub-
ODE method, the following solution structure is selected

q(x, t) = eiχ(x,t)u(ξ), χ(x, t) = px + νt, ξ = kx + ωt, (3.1)

where p, ν, k and ω are constants. Substituting (3.1) into (1.1), we have the ODE

k2u′′ − 2u3 −
(
p2 + ν + 2γ

)
u = 0, ω = −2pk, η = −1 . (3.2)

Now we apply exp(−ϕ(ξ))-expansion and the Riccati-Bernoulli sub-ODE methods for Eq (3.2).

3.1. Solving Eq (1.1) using the exp(−ϕ(ξ))-expansion method

According to the exp(−ϕ(ξ))-expansion technique, Eq (3.2) has the following solution

u = A0 + A1exp(−ϕ), (3.3)

where A0 and A1 are constants and A1 , 0 . It is easy to see that

u′′ = A1

(
2 exp(−3ϕ) + 3λ exp(−2ϕ) + (2µ + λ2) exp(−ϕ) + λµ

)
, (3.4)

u3 = A3
1 exp(−3ϕ) + 3A0A2

1 exp(−2ϕ) + 3A2
0A1 exp(−ϕ) + A3

0. (3.5)

Superseding u, u′′, u3 into Eq (3.2) and hence equating the coefficients of exp(−ϕ) to zero, we obtain

k2A1λµ − 2A3
0 −

(
p2 + ν + 2γ

)
A0 = 0 , (3.6)

k2A1(λ2 + 2µ) − 6A2
0A1 −

(
p2 + ν + 2γ

)
A1 = 0 , (3.7)

k2A1λ − 2A0A2
1 = 0 , (3.8)

k2A1 − A3
1 = 0 . (3.9)

Solving Eqs (3.6)–(3.9), we get

A0 = ±
kλ
2
, A1 = ±k, ν = −

1
2

(4γ + k2(λ2 − 4µ) + 2p2).

We consider only one case, whenever the other cases follow similarly. In this case, the solution of
Eq (3.3) reads as:

u(ξ) = ±
k
2

(λ + 2exp(−ϕ(ξ))) . (3.10)

Superseding Eqs (2.6)–(2.7) into Eq (3.10), we obtain:
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Case 1. At λ2 − 4µ > 0, µ , 0,

u1,2(x, t) = ±
k
2

λ −
4µ√

λ2 − 4µ tanh
( √

λ2−4µ
2 (ξ + C)

)
+ λ

 . (3.11)

Using Eqs (3.1) and (3.11) the solutions of equation (1.1) are

q1,2(x, t) = ±
k
2

eiχ

λ −
4µ√

λ2 − 4µ tanh
( √

λ2−4µ
2 (ξ + C)

)
+ λ

 . (3.12)

Case 2. At λ2 − 4µ < 0, µ , 0,

u3,4(x, t) = ±
k
2

λ +
4µ√

4µ − λ2 tan
( √

4µ−λ2

2 (ξ + C)
)
− λ

 . (3.13)

Using Eqs (3.1) and (3.13) the solutions of Eq (1.1) are

q3,4(x, t) = ±
k
2

eiχ

λ +
4µ√

4µ − λ2 tan
( √

4µ−λ2

2 (ξ + C)
)
− λ

 . (3.14)

Case 3. At λ2 − 4µ > 0, µ = 0, λ , 0

u5,6(x, t) = ±
k
2

(
λ +

2λ
exp (λ (ξ + C)) − 1

)
. (3.15)

Using Eqs (3.1) and (3.15) the solutions of Eq (1.1) are

q5,6(x, t) = ±
k
2

eiχ

(
λ +

2λ
exp (λ (ξ + C)) − 1

)
. (3.16)

Case 4. At λ2 − 4µ = 0, µ , 0, λ , 0,

u7,8(x, t) = ±
k
2

(
λ −

λ2 (ξ + C)
λ (ξ + C) + 2

)
. (3.17)

Using Eq (3.1) and (3.17) the solutions of Eq (1.1) are

q7,8(x, t) = ±
k
2

eiχ

(
λ −

λ2 (ξ + C)
λ (ξ + C) + 2

)
. (3.18)
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Case 5. At λ2 − 4µ = 0, µ = 0, λ = 0,

u9,10(x, t) = ±
k
2

(
1

ξ t + C

)
. (3.19)

Using Eqs (3.1) and (3.19) the solutions of Eq (1.1) are

q9,10(x, t) = ±
k
2

eiχ

(
1

ξ t + C

)
. (3.20)

Here k, λ, µ,C are constants, ξ = k(x − 2pt) and χ = px − 1
2 (4γ + k2(λ2 − 4µ) + 2p2) t.

We have plotted these solutions in Figures 1–5. Figure 1(a) shows the real part of q = q1(x, t) in
(3.12), while Figure 1(b) shows imaginary part of this solution for k = 1.5, p=1.5, γ = 1.3, λ = 2.3,
µ = 1, ω=-4.5, ν=-6.3012 and C=1.4.

Figure 2(a) shows the real part of q = q3(x, t) in (3.14), while Figure 2(b) shows imaginary part of
this solution for k = 1.2, p=1.2, γ = 1.8, λ = 1.2, µ = 2, ω=-2.88, ν=-0.3168 and C=0.4.

Figure 3(a) shows the real part of q = q5(x, t) in (3.16), while Figure 3(b) shows imaginary part of
this solution for k = 0.4, p=0.6, γ = 0.3, λ = 1.2, µ = 0, ω=-0.48, ν=-1.0752 and C=1.

Figure 4(a) shows the real part of q = q7(x, t) in (3.18), while Figure 4(b) shows imaginary part of
this solution for k = 0.5, p=0.5, γ = 2.3, λ = 2, µ = 1, ω=-0.5, ν=-4.85 and C=4.

Figure 5(a) shows the real part of q = q9(x, t) in (3.20), while Figure 5(b) shows imaginary part of
this solution k = -0.7, p=-0.5, γ = 0.8, λ = µ = 0, ω=-0.7, ν=-1.85 and C=4.

(a) (b)

Figure 1. Shape of q1 in (3.12), (a) real part and (b) imaginary part.
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(a) (b)
Figure 2. Shape of q3 in (3.14), (a) real part and (b) imaginary part.

(a) (b)
Figure 3. Shape of q5 in (3.16), (a) real part and (b) imaginary part.

(a) (b)
Figure 4. Shape of q5 in (3.16), (a) real part and (b) imaginary part.
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(a) (b)
Figure 5. Shape of q9 in (3.20), (a) real part and (b) imaginary part.

3.2. Solving Eq (1.1) using the sine-cosine method

According to sine-cosine technique, subtitling Eq (2.13) into Eq (3.2), gives

k2
(
−β2r2αsinr(βξ) + β2αr(r − 1)sinr−2(βξ)

)
− 2α3sin3r(βξ) −

(
p2 + ν + 2γ

)
λsinr(βξ) = 0 . (3.21)

Thus by comparing the coefficients of the sine functions, we get

r − 1 , 0, r − 2 = 3r ,

k2β2αr(r − 1) − 2α3 = 0 ,

−k2β2r2α −
(
p2 + ν + 2γ

)
α = 0 .

(3.22)

Solving this system gives

r = −1, α = ±
√
−p2 − ν − 2γ, β = ±

√
−(p2 + ν + 2γ)

k
, (3.23)

for p2 + ν + 2γ < 0 and k , 0. We get the same result if we also use the cosine method (2.14). Thus,
the periodic solutions are

ũ1,2(x, t) = ±
√
−p2 − ν − 2γ sec

 √
−(p2 + ν + 2γ)

k
(kx + ωt)

 , |

√
−(p2 + ν + 2γ)

k
(kx + ωt) |<

π

2
(3.24)

and

ũ3,4(x, t) = ±
√
−p2 − ν − 2γ csc

 √
−(p2 + ν + 2γ)

k
(kx + ωt)

 , 0 <

√
−(p2 + ν + 2γ)

k
(kx + ωt) < π.

(3.25)
Using Eqs (3.1) and (3.19) the solutions of Eq (1.1) are

q̃1,2(x, t)=±
√
−(p2+ν+2γ) ei(px+νt) sec

 √
−(p2+ν+2γ)

k
(kx+ωt)

 , | √
−(p2+ν+2γ)

k
(kx + ωt) |<

π

2
(3.26)
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and

q̃3,4(x, t)=±
√
−p2−ν−2γ ei(px+νt) csc

 √
−(p2+ν+2γ)

k
(kx + ωt)

 , 0 <

√
−(p2+ν+2γ)

k
(kx + ωt) < π.

(3.27)
However, for p2 + ν + 2γ > 0 and k , 0. we obtain the soliton and complex solutions

ũ5,6(x, t) = ±
√
−p2 − ν − 2γ sech

 √
(p2 + ν + 2γ)

k
(kx + ωt)

 (3.28)

and

ũ7,8(x, t) = ±
√

p2 + ν + 2γ csch

 √
(p2 + ν + 2γ)

k
(kx + ωt)

 . (3.29)

Using Eqs (3.1) and (3.19) the solutions of equation

q̃5,6(x, t)=±
√
−p2−ν−2γ ei(px+νt) sech

 √
(p2+ν+2γ)

k
(kx + ωt)

 (3.30)

and

q̃7,8(x, t)=±
√

p2+ν+2γ ei(px+νt) csch

 √
(p2+ν + 2γ)

k
(kx + ωt)

 . (3.31)

Figure 6(a) shows the real part of q = q̃1(x, t) in (3.26), while Figure 6(b) shows imaginary part of
this solution for p=2, ν=-2, γ = -3, k = 2 and ω=1.

Figure 7(a) shows the real part of q = q̃5(x, t) in (3.30), while Figure 7(b) shows imaginary part of
this solution for p=2.6, ν=2.1, γ = 3.1, k =1.2 and ω=2.

(a) (b)
Figure 6. Shape of q̃1 in (3.26), (a) real part and (b) imaginary part.
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(a) (b)
Figure 7. Shape of q̃5 in (3.27), (a) real part and (b) imaginary part.

3.3. Solving Eq (1.1) using the Riccati-Bernoulli Sub-ODE method

According to Riccati-Bernoulli Sub-ODE technique, substituting Eq (2.16) into Eq (3.2), we get

k2
(
ab(3−n)u2−n+a2(2−n)u3−2n+nc2u2n−1+bc(n+1)un+(2ac+b2)u

)
−2u3−

(
p2+ν+2γ

)
u = 0 . (3.32)

Putting n = 0, Eq (3.32) becomes

k2(3abu2 + 2a2u3 + bc + (2ac + b2)u) − 2u3 −
(
p2 + ν + 2γ

)
u = 0. (3.33)

Putting each coefficient of ui(i = 0, 1, 2, 3) to zero, we get

bc = 0, (3.34)

k2(2ac + b2) −
(
p2 + ν + 2γ

)
= 0, (3.35)

3ab = 0, (3.36)

k2a2 − 1 = 0. (3.37)

Solving Eqs (3.34)–(3.37), we have
b = 0 , (3.38)

ac =
p2 + ν + 2γ

2k2 , (3.39)

c = ±
p2 + ν + 2γ

2k
, (3.40)

a = ±
1
k
. (3.41)

Hence, we give the cases of solutions for Eq (3.2) as follows

Rational function solutions: (When b = 0 and c = 0, i.e., p2 + ν + 2γ = 0)
The solution of Eq (3.2) is

û1(x, t) = (−a (kx + ωt + µ))−1 . (3.42)
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Therefore, using Eqs (3.1) and (3.42), the following new explicit exact solution of the unstable
nonlinear Schrödinger equation can be acquired

q̂1(x, t) = ei(px+νt) (−a (kx + ωt + µ))−1 , (3.43)

where p, ν, γ, k, ω, µ are arbitrary constants.

Trigonometric function solution: (When p2 + ν + 2γ > 0)

Superseding Eq (3.1) and Eqs (3.38)–(3.41) into Eqs (2.21) and (2.22), then the exact solutions of
Eq (1.1) are

û2,3(x, t) = ±

√
p2 + ν + 2γ

2
tan

 √
p2 + ν + 2γ
√

2k
(kx + ωt + µ)

 (3.44)

and

û4,5(x, t) = ±

√
p2 + ν + 2γ

2
cot

 √
p2 + ν + 2γ
√

2k
(kx + ωt + µ)

 . (3.45)

Consequently, using Eqs (3.1) and (3.42), the following new explicit exact solution for the unstable
nonlinear Schrödinger equation can be obtained

q̂2,3(x, t) = ±ei(px+νt)

√
p2 + ν + 2γ

2
tan

 √
p2 + ν + 2γ
√

2k
(kx + ωt + µ)

 (3.46)

and

q̂4,5(x, t) = ±ei(px+νt)

√
p2 + ν + 2γ

2
cot

 √
p2 + ν + 2γ
√

2k
(kx + ωt + µ)

 , (3.47)

where p, ν, γ, k, ω, µ are arbitrary constants.

Hyperbolic function solution : (When p2 + ν + 2γ < 0)

Substituting Eq (3.1) and Eqs (3.38)–(3.41) into Eqs (2.23) and (2.24), then the exact solutions of
Eq (1.1) are

û6,7(x, t) = ±

√
−(p2 + ν + 2γ)

2
tanh

 √
−(p2 + ν + 2γ)
√

2k
(kx + ωt + µ)

 (3.48)

and

û8,9(x, t) = ±

√
−(p2 + ν + 2γ)

2
coth

 √
−(p2 + ν + 2γ)
√

2k
(kx + ωt + µ)

 . (3.49)

Subsequently, the following new explicit exact solution to the unstable nonlinear Schrödinger
equation can be gained

q̂6,7(x, t) = ±ei(px+νt)

√
−(p2 + ν + 2γ)

2
tanh

 √
−(p2 + ν + 2γ)
√

2k
(kx + ωt + µ)

 (3.50)
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and

q̂8,9(x, t) = ±ei(px+νt)

√
−(p2 + ν + 2γ)

2
coth

 √
−(p2 + ν + 2γ)
√

2k
(kx + ωt + µ)

 , (3.51)

where p, ν, γ, k, ω, µ are arbitrary constants.

We have plotted these solutions in Figures 8–10. Figure 8(a) shows the real part of q = q̂2(x, t) in
(3.46), while Figure 8(b) shows imaginary part of this solution for k = 0.5, p =-1.3, ω=1.3, ν=1.4,
γ=1.5 and µ=1.

Figure 9(a) shows the real part of q = q̂6(x, t) in (3.50), while Figure 9(b) shows imaginary part of
this solution for k = 1.5, p = 1.3, ω=-3.9, ν=-2.4, γ=-1.3 and µ=1.

Figure 10(a) shows the real part of q = q̂1(x, t) in (3.43), while Figure 10(b) shows imaginary part
of this solution for k = 0.2, a=5, p = 1.2, ω=-0.48, ν=1.4 and µ=1.

(a) (b)
Figure 8. Shape of q̂2 in (3.46), (a) real part and (b) imaginary part.

(a) (b)
Figure 9. Shape of q̂6 in (3.50), (a) real part and (b) imaginary part.
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(a) (b)
Figure 10. Shape of q̂1 in (3.43), (a) real part and (b) imaginary part.

Remark 1. Using Eq (2.27) for ui(x, y), i =1,...,9, once, then Eq (3.2) as well as for Eq (1.1) has an
infinite solutions. In sequence, by applying this process again, we get new families of solutions.

û?1 (x, t) =
B3

−aB3 (kx + ωt + µ) ± 1
, (3.52)

û?2,3(x, t) =

−
p2+ν+2γ

2 ± B3

√
p2+ν+2γ

2 tan
( √

p2+ν+2γ
√

2k
(kx + ωt + µ)

)
B3 ±

√
p2+ν+2γ

2 tan
( √

p2+ν+2γ
√

2k
(kx + ωt + µ)

) , (3.53)

û?4,5(x, t) =

−
p2+ν+2γ

2 ± B3

√
p2+ν+2γ

2 cot
( √

p2+ν+2γ
√

2k
(kx + ωt + µ)

)
B3 ±

√
p2+ν+2γ

2 cot
( √

p2+ν+2γ
√

2k
(kx + ωt + µ)

) , (3.54)

û?6,7(x, t) =

−
p2+ν+2γ

2 ± B3

√
−(p2+ν+2γ)

2 tanh
( √

−(p2+ν+2γ)
√

2k
(kx + ωt + µ)

)
B3 ±

√
−(p2+ν+2γ)

2 tanh
( √

−(p2+ν+2γ)
√

2k
(kx + ωt + µ)

) , (3.55)

û?8,9(x, t) =

−
p2+ν+2γ

2 ± B3

√
−(p2+ν+2γ)

2 coth
( √

−(p2+ν+2γ)
√

2k
(kx + ωt + µ)

)
B3 ±

√
−(p2+ν+2γ)

2 coth
( √

−(p2+ν+2γ)
√

2k
(kx + ωt + µ)

) , (3.56)

where B3, p, ν, γ, k, ω and µ are arbitrary constants.

4. Results and discussions

In this article, the exp(−ϕ(ξ))-expansion, the sine-cosine and Riccati-Bernoulli sub-ODE techniques
have been efficiently applied to construct many new solutions. As an outcome, a number of new exact

AIMS Mathematics Volume 5, Issue 3, 1893–1912.



1908

solutions for the UNS equation were formally derived. Namely, the exp(−ϕ(ξ))-expansion method
gives a first family of ten solutions. Whereas, sine-cosine method give another different second family
of eight solutions. Indeed, Riccati-Bernoulli sub-ODE method gives a wide range of new explicit exact
solutions including rational functions, trigonometric functions, hyperbolic functions and exponential
functions in a straightforward manner. The effectiveness and helpfulness of the exp(−ϕ(ξ))-expansion,
the sine-cosine and Riccati-Bernoulli sub-ODE methods to deal with UNS equation was proved. As a
success, a wide range of new explicit exact solutions were obtained in a straightforward manner. Our
study shows that the proposed three methods are reliable in handling NPDEs to establish a variety of
exact solutions. Finally, we have plotted some 3D graphs of these solutions and we have shown that
these graphs can be controlled by adjusting the parameters.

Remark 2.

1. Comparing our results concerning the UNS equation with the results in [41, 42, 44, 45], one
can see that our results are new and most extensive. Indeed, choosing suitable values for the
parameters similar solutions can be verified.

2. The Riccati-Bernoulli sub-ODE method has an interesting feature, that admits infinite solutions,
which has never given for any other method.

3. The three proposed methods in this article are efficient, powerful and adequate for solving other
types of NPDEs and can be easily extended to solve nonlinear fractional differential equations,
see [32, 33, 49–56].

5. Conclusions and future works

The exp(−ϕ(ξ))-expansion, sine-cosine and Riccati-Bernoulli sub-ODE techniques have
successfully been applied for the UNS equation. Many new exact solutions are obtained during the
analytical treatment. The availability of computer systems like Matlab or Mathematica facilitates
avoids us the tedious algebraic calculations. Indeed, the obtained solutions are of significant
importance in the studies of applied science as they help in explaining some interesting physical
mechanism for the complex phenomena. The 3D graphs of some exact solutions are plotted for
suitable parameters. Finally, the proposed methods can be applied for a wide range of nonlinear
partial differential equations arising in natural sciences. Currently, work is in progress on the
applications of the proposed methods in this paper in order to solve the other nonlinear partial
differential equations. Indeed these methods can be extended to solve fractional partial differential
equations.
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