Citation: S. Owyed, M. A. Abdou, A. Abdel-Aty, H. Dutta. Optical solitons solutions for perturbed time fractional nonlinear Schrodinger equation via two strategic algorithms[J]. AIMS Mathematics, 2020, 5(3): 2057-2070. doi: 10.3934/math.2020136
[1] | G. A. Zakeri, E. Yomba, Exact solutions of a generalized autonomous Duffing-type equation Appl. Math. Model., 39 (2015), 4607-4616. |
[2] | A. Biswas, D. Milovic, Bright and dark solitons of the generalized nonlinear Schrödinger's equation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1473-1484. doi: 10.1016/j.cnsns.2009.06.017 |
[3] | A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 3-24. doi: 10.1051/mmnp/2018010 |
[4] | M. S. Abdalla, S. S. Hassan, M. Abdel-Aty, Entropic uncertainty in the Jaynes Cummings model in presence of a second harmonic generation, Optics Commun., 244 (2005), 431-443. doi: 10.1016/j.optcom.2004.09.051 |
[5] | A. M. Wazwaz, Multiple complex soliton solutions for the integrable Sinh-Gordon and the modified KdV-Sinh-Gordon equation, Appl. Math. Inf. Sci., 12 (2018), 899-905. doi: 10.18576/amis/120501 |
[6] | A. Atangana, A. Secer, The time-fractional coupled-Korteweg-de-Vries equations, Abstr. Appl. Anal., (2013), Article ID 947986, 8 pages. |
[7] | O. Ozturk, R. Yilmazer, On applications of the fractional calculus for some singular differential equations, Prog. Frac. Diff. Appl., 4 (2018), 27-33. doi: 10.18576/pfda/040104 |
[8] | D. Kumar, J. Singh, A. Prakash, et al., Numerical simulation for system of time-fractional linear and nonlinear differential equations, Progr. Fract. Differ. Appl., 5 (2019), 65-77. doi: 10.18576/pfda/050107 |
[9] | A. H. M. Ahmed, L. Y. Cheong, N Zakaria, et al., Statistical properties of a Raman three-level atom interacting with a cavity field, AIP Conf. Proc., 1482 (2012), 373-375. |
[10] | A. H. M. Ahmed, L. Y. Cheong, N. Zakaria, et al., Dynamics of information coded in a single cooper pair box, Int. J. Theor. Phys., 52 (2012), 1979-1988. |
[11] | E. Yaşar, Y. Yıldırım, E. Yaşar, New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method, Results Phys., 9 (2018), 1666-1672. doi: 10.1016/j.rinp.2018.04.058 |
[12] | A. Cernea, Continuous family of solutions for fractional integro-differential inclusions of Caputo-Katugampola type, Prog. Frac. Diff. Appl., 5 (2019), 37-42. doi: 10.18576/pfda/050104 |
[13] | A. Sardar, S. M. Husnain, S. Rizvi, et al., Multiple travelling wave solutions for electrical transmission line model, Nonlinear Dyn., 82 (2015), 1317-1324. doi: 10.1007/s11071-015-2240-9 |
[14] | Y. Liu, Existence of solutions of multi-point boundary value problems for fractional differential systems with impulse effects, Prog. Frac. Diff. Appl., 3 (2017), 111-140. doi: 10.18576/pfda/030204 |
[15] | M. Younis, S. Ali, S. A. Mahmood, Solitons for compound KdV-Burgers equation with variable coefficients and power law nonlinearity, Nonlinear Dyn., 81 (2015), 1191-1196. doi: 10.1007/s11071-015-2060-y |
[16] | M. Younis, S. T. R. Rizvi, Optical solitons for ultrashort pulses in nano fibers, J. Nanoelectron. Optoelectron., 10 (2015) 179-182. |
[17] | Q. Zhou, D. Yao, F. Chen, et al., Optical solitons in gas-filled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening, J. Mod. Opt., 60 (2013), 854-859. doi: 10.1080/09500340.2013.816384 |
[18] | A. Biswas, 1-soliton solution of ()-dimensional nonlinear Schrödinger's equation in dual-power law media, Phys. Lett. A., 372 (2008), 5941-5943. doi: 10.1016/j.physleta.2008.07.052 |
[19] | A. Biswas, Y. Yildirm, E. Yasar, et al., Optical soliton solutions to Fokas-lenells equation using some different methods, Optik, 173 (2018), 21-31. doi: 10.1016/j.ijleo.2018.07.098 |
[20] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A |
[21] | A. Biswas, M. Mirzazadeh, M. Eslami, Dispersive dark optical soliton with Schödinger-Hirota equation by G'/G-expansion approach in power law medium, Optik, 125 (2014), 4215-4218. doi: 10.1016/j.ijleo.2014.03.039 |
[22] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898. |
[23] | N. Boumaza, T. Benouaz, A. Chikhaoui, et al., Numerical simulation of nonlinear pulses propagation in a nonlinear optical directional coupler, Int. J. Phys. Sci., 4 (2009), 505-513. |
[24] | M. G. Hafez, M. A. Akbar, New exact traveling wave solutions to the (1+1)-dimensional Klein-Gordon-Zakharov equation for wave propagation in plasma using the exp(-Φ(ξ))-expansion method, Propul. Power Res., 4 (2015), 31-39. doi: 10.1016/j.jppr.2015.02.002 |
[25] | M. A. Abdou, S. Owyed, A. Abdel-Aty, et al., Optical soliton solutions for a space-time fractional perturbed nonlinear Schrödinger equation arising in quantum physics, Results Phys., 16 (2020), 102895. |
[26] | M. A. Abdou, An analytical method for space-time fractional nonlinear differential equations arising in plasma physics, J. Ocean Eng. Sci., 2 (2017), 288-292. doi: 10.1016/j.joes.2017.09.002 |
[27] | A. Elhanbaly, M. A. Abdou, On the solution of fractional space-time nonlinear differential equations, Int. J. Appl. Math. Comput., 5 (2013), 47-58. |
[28] | Z. Hammouch, M. Toufik, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, J. MESA., 4 (2014), 489-498. |
[29] | A. R. Hadhoud, Quintic non-polynomial spline method for solving the time fractional biharmonic equation, Appl. Math. Inf. Sci., 13 (2019), 507-513. doi: 10.18576/amis/130323 |
[30] | L. Qian, R. A. M. Attia, Y. Qiu, et al., On Breather and Cuspon waves solutions for the generalized higher-order nonlinear Schrodinger equation with light-wave promulgation in an optical fiber, Num. Comp. Meth. Sci. Eng., 1 (2019), 101-110. |
[31] | A. M. Wazwaz, Study on a new (3+1)-dimensional extensions of the Konopelchenko-Dubrovsky equation, Appl. Math. Inf. Sci., 12 (2018), 1067-1071. doi: 10.18576/amis/120601 |
[32] | M. A. Abdou, A. A. Soliman, New exact travelling wave solutions for space-time fractional nonlinear equations describing nonlinear transmission lines, Results Phys., 9 (2018), 1497-1501. doi: 10.1016/j.rinp.2018.04.031 |
[33] | G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51 (2006), 1367-1376. |
[34] | Kh. A. Gepreel, T. A. Nofal, N. S. Al-Sayali, Optical soliton solutions for nonlinear evolution equations in mathematical physics by using the extended (G'/G) expansion function method, J. Compt. Theor. Nanosci., 14 (2017), 979-990. doi: 10.1166/jctn.2017.6391 |
[35] | N. Alam, F. B. M. Belgacem, Microtubules nonlinear models dynamics investigations through the exp(-Φ(ξ))-expansion method implementation, Mathematics, 4 (2016), 1-13. |
[36] | A. S. J. Al-Saif, M. S. Abdul-Wahab, Application of new simulation scheme for the nonlinear biological population model, Num. Comp. Meth. Sci. Eng., 1 (2019), 89-101. |
[37] | H. O. Roshid, Md. A. Rahman, The exp(-Φ(η))-expansion method with application in the (1+1)-dimensional classical Boussinesq equations, Results Phys., 4 (2014), 150-155. doi: 10.1016/j.rinp.2014.07.006 |
[38] | E. M. Zayed, A. G. Al Nowehy, Exact solutions of the Biswas-Milovic equation, the ZK(m,n,k) equation and the K(m,n) equation using the generalized Kudryashov method, Open Phys., 14 (2016), 129-139. |
[39] | S. Bibi, S. T. Mohyud-Din, R. Ullah, et al., Exact solutions for STO and (3+1)-dimensional KdV-ZK equations using-expansion method, Results Phys., 7 (2017), 4434-4439. doi: 10.1016/j.rinp.2017.11.009 |
[40] | M. A. Abdelkawy, I. G. Ameen, A spectral collocation method for coupled system of two dimensional Abel integral equations of the eecond kind, Inf. Sci. Lett., 8 (2019), 89-93. |
[41] | Kh. A. Gepreel, Exact solutions for nonlinear integral member of Kadomtsev-Petviashvili hierarchy differential equations using the modified (w/g)- expansion method, Comput. Math. Appl., 72 (2016), 2072-2083. doi: 10.1016/j.camwa.2016.08.005 |
[42] | H. M. Baskonus, Complex soliton solutions to the Gilson-Pickering model, Axioms, 8 (2019), 18. |
[43] | G. Yel, H. M. Baskonus, H. Bulut, Regarding some novel exponential travelling wave solutions to the Wu-Zhang system arising in nonlinear water wave model, Indian J. Phys., 93 (2019), 1031-1039. doi: 10.1007/s12648-018-1347-5 |
[44] | T. Salahuddin, M. Y. Malik, A. Hussain, et al., Combined effects of variable thermal conductivity and MHD flow on pseudoplastic fluid over a stretching cylinder by using Keller box method, Inf. Sci. Lett., 5 (2016), 11-19. doi: 10.18576/isl/050102 |
[45] | W. Gao, H. F. Ismael, S. A. Mohammed, et al., Complex and real optical soliton properties of the paraxial non-linear Schrödinger equation in Kerr media with M-Fractional, Front. Phys., 7 (2019), 197. Doi: 10.3389/fphy.2019.00197. |
[46] | A. Abdel-Aty, N. Zakaria, L. Y. Cheong, et al., Effect of the Spin-Orbit interaction on partial entangled quantum network, Lect. Notes Elect. Eng., 285 (2014), 529-237. doi: 10.1007/978-981-4585-18-7_59 |
[47] | M. Zidan, A. Abdel-Aty, A. Younes, et al., A novel algorithm based on entanglement measurement for improving speed of quantum algorithms, Appl. Math. Inf. Sci., 12 (2018), 265-269. doi: 10.18576/amis/120127 |
[48] | S. Owyed, M. A. Abdou, A. Abdel-Aty, et al., New optical soliton solutions of nonlinear evolution equation describing nonlinear dispersion, Commun. Theor. Phys., 71 (2019), 1063-1068. doi: 10.1088/0253-6102/71/9/1063 |
[49] | A. Abdel-Aty, N. Zakaria, L. Y. Cheong, et al., Entanglement and teleportation via partial entangled-state quantum network, J. Comput. Theor. Nanosci., 12 (2015), 2213-2220. doi: 10.1166/jctn.2015.4010 |
[50] | M. Abdel-Aty, General formalism of interaction of a two-level atom with cavity field in arbitrary forms of nonlinearities, Physica A., 313 (2002), 471-487. doi: 10.1016/S0378-4371(02)00999-8 |
[51] | A. Abdel-Aty, N. Zakaria, L. Y. Cheong, et al., Quantum network via partial entangled state, J. Commun., 9 (2014), 379-384. |