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1. Introduction

Let A be the class of analytic functions in the open unit disc U = {z € C : |z| < 1} with the following
Taylor series representation

ER)=z+ ) A" (1.1)

n=2

Let S be the subclass of (A consisting of univalent functions in U. The Koebe function

1+z 2
S

1-z2

k(z)=z(1-2)7% = %

is one of the most important members of class S. The range of this function is the entire complex plane
except for a slit along the negative real axis fromw = —co to w = _i' Bieberbach [8] in 1916 proved
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that if £ € S, and is given by (1.1), then |a,| < 2, equality holds if and only if ¢ is the Koebe function
or one of its rotations. This theorem was the main basis for the famous Bieberbach’s conjecture below.

Conjecture 1. (Bieberbach’s conjecture [8]) If ¢ € S, and is given by (1.1), then |a,| < n for any
integer n > 2, equality holds if and only if € is the Koebe function or one of its rotations.

The Bieberbach conjecture was unproven until de Branges found a proof in 1984, the difficulty in
solving Bieberbach’s conjecture led many mathematicians to investigate subclasses of S, for example,
starlike, convex, and close-to-convex functions for which sharp coefficient bounds can be obtained.

A function ¢ € A is said to be strongly starlike of order v if it satisfies the following inequality

‘ (z§' (Z))
arg

£
We denote the class of all strongly starlike of order y by S (y). We note that S(1) = S* is the familiar

class of starlike functions. Also, a function £ € A is said to be strongly convex of order v if it satisfies
the following inequality

i
2

, O<y<1, zeU). (1.2)

<§, O<y<l, zel). (1.3)

% (Z))
£

We denote the class of all strongly convex of order y by K(y). We note that K(1) = C is the well-known
class of convex functions. In 1976, Miller [24] introduced the class S («, 8) of functions & € A of the

form o Y
R [(ZE(S)) (1 + Zg((;))) ] >0, (zeU), (1.4)

where a and S are fixed real numbers, and he proved that all functions in this class are univalent and
starlike. This class contains many subclasses of univalent functions.
In fact

arg(l +

(1) S1,0)=87 850,1)=C, S(%,O) =S(y)with0O <y <1;
(2) S(O, %) =K@y)with0 <y <1;
(3) S(1 —v,7) is the class of gamma-starlike functions introduced by Lewandowski et al. in [19];
(4) S(1, 1) is the subclass of starlike function of the form
%(z?(z) LT Q
£ €@

which was studied by Ramesha el al. in [33], Obraddovic and Joshi in [28] and Padmanabhan
in [32];

)>Q e, (15)

(5) S(-1,1) is the subclass of starlike function of the form

% (1 +2¢" (2)/€ (2)
% (2)/€@)

which was introduced by Nunokawa [26,27], Silverman [35] and Obradovic and Owa [29].

)>a e, (1.6)
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Let Q be the class of all analytic Schwarz functions w, normalized by w(0) = 0, and satisfying the
condition |w(z)| < 1 for all z € U, and let ¢ and ¢ be two analytic functions in U. Then we say that
the function ¢ is subordinate to ¢ (denoted by £(z) < ¢(z)) if there exists a function w € €, such that
&(z) = ¢(w(z)). The subordination is identical to £(0) = ¢(0) and £(U) C ¢(U) if the function ¢ is
univalent in U.

An application of the Bieberbach theorem is the Kobe one-quarter theorem [8] which states that any
univalent function & € S contains the disc U* = {w : [w| < i}. Therefore, each univalent function & € S
has an inverse function

&=G
given by
G¢@) =z, (zel),
and
EGw) =w, (w €U,
where the inverse function é~! = G has a series expansion of the form

Gw) = &1 (w) = w = Agw? + (245 — AW’ — (5A3 — 5A2A5 + Apw* + ...

The function ¢ € S is said to be in the class o of all bi-univalent functions in U if its inverse &
is also univalent in U. Lewin [18] is the first author to introduce analytic bi-univalent functions and
estimate the second coeflicient |A,|. The bounds for the first two coefficients |A,| and |A;| have been
estimated by many authors for analytic bi-univalent functions ( see for example [1,2,5,7,10, 12, 14—
16,20,21,23,31,34,37]).

Let # be the Caratheodory class analytic functions ¢ in U, defined by

$@) = 1+x12+ %07 + 232 + .., (1.7)
such that

R(P2) >0, (zeU).

In Definition 1 below, we define a new class of analytic and bi-univalent functions in U that
generalizes several subclasses of bi-univalent functions given by many authors.

Definition 1. Let the function ¢ € P of the form (1.7) such that $(U) is symmetric about the real axis.
A function & € o given by (1.1) is said to be in the class L.(a, 3, ¢) if the following subordinations hold

Zéj/ (Z) a Zgu (Z) B
1 , U),
(f(z)) ( + f’(z)) <¢2), (zel)

and

(wG/ (w))" ( - wG (w)
Gw) G (w)
where G(w) = & '(w) and a, 8 € R ( R is the set of real numbers).

B
) <¢(w), (wel),
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Remark 1. It is obvious that
(1) The class L,(—1,1,¢) = K,(¢) has been studied by Lashin in [15];
(2) The classes Lg(é,O 1zy — S’(a), (0 < a £ 1) and L(0, L Iry — C (@), (0 < @ < 1) were

’ 12 = @’ 1z =

introduced and studied by Brannan and Taha in [4] and Taha in [36];

(3) The class L,(1,1,¢) = ST,(1,¢) and L, (1 — a,a,¢) = L,(a,¢) were introduced and studied by
Ali et al. in [3], see also Peng and Han in [30] and Hamidi and Jahangiri in [11].

This paper presents estimates for the initial coefficients |A,| and |A;| of the Taylor-Maclaurin
series of functions in the class L,(a,, ¢). It also gives applications for the Legendre polynomials
to functions in the class L,(a,,¢). Many subclasses associated with the Legendre polynomials are
also discussed.

2. Main results

In this section, we give estimates for the initial coefficients |A,| and |As| of the Taylor-Maclaurin
series of functions in the class L,(a, S, ¢).

Theorem 1. If £ € L, (a,f, @), then

| VIl

|As| < - , 2.1)
VI8 + @) + 5012 — @ + 28 + (o + 287 x|
and
|1 (a+28)’
Tas3g” bl < Sevag
|A5] < [2l-+381pe1 |- (@+28) [ (2.2)
2|a+3,8|(‘[2ﬁ(,8+a)+ w]xf—uz(a+2ﬁ)2‘+(a+2ﬁ)2\x1 |)
|1 (a+28)*
+ r3m perl > 2|c:+3ﬁ|'
Proof. Let u,v € Q have the series expansion of the form
U@ = ) b2, v(@) = ) end', ze V), (2.3)
n=1 n=1
Then, it is well-known that
b1l < 1, |bo] < 1= byf*, leil < 1and eo] < 1=1eif, (2.4)
(see [25], Page 172). As a result of a simple calculation, we can conclude that
$(u(2) = 1+ 2111z + (erby + 24017 + ..., (z€ V), (2.5)
and
d(vW)) = 1+ 5,byw + (,by + bW + ..., (w e U). (2.6)
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Since ¢ € L, (@, , ¢), then Definition 1 gives

@\ [, £ @Y
1 = 2.7
( Q) ) ( + £0) ) ¢(u(z)), z€ U, (2.7)
and 5
wG W\ [, wG WY
( Gon) ) (1 + G ) = ¢p(v(w)), we U. (2.8)
Now,
/ @ " B
(Zf (z)) (1 N z§ (z))
£(2) &)
- (1 + @A,z + (ZaA3 + a(az_ 3)A§) 2+ )
x (1 +28A2z + (68A; + 28(8 — 3)A3)* + ...)
= l+mbiz+ (iby +02b7) 2 + .., (2.9)
and

(wG’(w))“ ( . wG (w) )ﬁ
G(w) G (w)

5
(1 — aAyw + (—2a/A3 + “(“; )Ag) w? + )

X(1 = 2BAyw + (—6BA; + 2B(B + 3)A3) w? + ..)

= L+xucow+ (103 + 220] ) WP + (2.10)

Equating the corresponding coefficients in (2.9) and (2.10) , we get

(@ +2B)A; = xby, 2.11)
2a + 3B)As + (2[3(@ +p-3)+ 2@ 2_ 3))A§ = 51by + 212, 2.12)
—(a+2ﬁ)A2 =XCy, (213)
( ala + 5)) 5 5
—2(a@+30)As + |28+ +3)+ > A5 =10y + 107 (2.14)
From (2.11) and (2.13), we get
bl = —Cy, (215)
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2Aa + 2B)
b+t ==

1
Using (2.12), (2.14) and (2.16), we have

|(4B(B + @) + ala + 1)} - 20(a + 28| A3 = 232 + c2).
By using (2.4) and (2.15), we get
[4B(B + @) + ala + D) %] — 2u2(er + 2B)| 1Al < 214 (1 = |4,

If we apply (2.11) again, we obtain

|

which is equivalent to

ala+1)
2

(2,8(,8 +a)+ )zf —%o(a + 2B)°

+(a+2B)° |x1|] AL < bl

1] \/W .
\/‘(2,8(,6’ Fa)+ )2 pat 23)2‘ + (@ + 282

To give an estimation to |A3|, subtracting (2.14) from (2.12), we get

|Az| <

b _
A= A2+ %1(by Cz)_
4la + 30
On using (2.4) and (2.11), we get
(@ +2B)* ) |1
Al < (1= —= 277 1424 20
sl < 0= s e P 2t 3
Case 1: If || < (ZT;fgl):l , then we have
|1
|Az] < ———.
2]a + 38|
Case 2: If |»,| > (ch’;ff;l , then
(21a + 3Bl 11| = (o + 28)°) b
|As] <
o+ 361|266+ @) + “5) 4} — ol + 267 + (a4 26 e
|1
2Da + 38

which completes the proof.

Remark 2. In Theorem I, if we put

AIMS Mathematics Volume 8, Issue 10
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(2.19)

(2.20)

2.21)

(2.22)

(2.23)

, 23534-23547.



23540

(1) @ = -1 and 8 = 1, we get the results obtained by Lashin in [15];

2) a = é and 8 = 0 (0 < @ < 1), we get the results obtained by Brannan and Taha in [4] and

Taha [36];

(3) @ =1and B = 1, we get the results obtained by Ali et al. in [3], Peng and Han in [30], and Hamidi

and Jahangiri in [11];

(4) a=1-aand B = @, Ali et al. in [3], Peng and Han in [30], and Hamidi and Jahangiri in [11].

We get the new class L, (a, 3,y) described by Definition 2 below if we insert

1+7

Y
¢(z)=(—) =1+42yz+2y’27 +.., O<y<1, zel),

1-z2

in Definition 1 of the bi-univalent function class L., (a, 3, ¢).

Definition 2. Let L,(a,B,y) be the class of bi-univalent function & € o such that:

and

where G(w) = & '(w) and a, 8 € R.

2 @)\
arg( Q) ) (1 ’

ar (WG’(W))Q (1 +
&G

€ @\| my

£0) ) < 5 O<y<l1, zel), (2.24)
WG”(W))/} < 0<y<l, wel) (2.25)
G (w) 2 y==5 . '

The following Corollary is produced using the parameter setting of Definition 2 in Theorem 1.

Corollary 1. Let a,f e Rand 0 <y < 1.If ¢ € L,(a,B,7), then

2y

|As| < , (2.26)
Vialy + (@ + 28)
and
y (a+2B)?

l+38]° = 4ja+3p|°

A3l <9 (4yl+3s-+282)y o o @s2pP
lar3p(aly+@+287)  Ta3p’ Y 7 dav3fl

If we set
1+(1-2
6(2) = (I—V)Z — 1421 =)z 42(1 =P +.., 0<v<1, zeU),

in Definition 1 of the bi-univalent function class L,(a, S, ¢), we obtain a new class L) (@, 5) given

by Definition 3 below.

Definition 3. Let LY (a, ) be the class of bi-univalent function ¢ € o such that:

€ @)\"
9%( Q) ) (1 ’

AIMS Mathematics

€' (2)

2.27
&) (227

B
) >vu, O<v<l, zel),
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and

G(w) G (w)
where G(w) = € '(w) and a, B € R.

/ @ ” B
%(WG (W)) (1 o (W)) su, O<v<l, wel), (2.28)

The following corollary is produced using the parameter setting of Definition 3 in the Theorem 1.
Corollary 2. Let o, € R, and 0 <v < 1. If £ € L(a,f), then
2(1 —v)

|A2| < ’
\/|(4,8(ﬁ +@) +ala+ 1) (1 —v) — (@ + 282 + (@ + 28)>

and ,
(1-v) (@+2B)
la+341° vz1- Ala+3p]°

|As] < (4la+3BI(1-v)~(a+28)*)(1-v)
la+381(|4B(B+a)+ala+ 1) (1-v)—(a+28)2|+(a+28)?)
(1-v) _ (a+2B)?
tlas38 v<l-g5

The following section introduces applications some of the Legendre polynomials to a certain
subclass of the bi-univalent class o. Many subclasses associated of o~ with the Legendre polynomials
are also discussed.

3. Applications of Legendre functions

Legendre polynomials have a wide range of applications, particularly in mathematics, physics, and
chemistry. Among the applications of Legendre polynomials are the determination of electron wave
functions in the orbits of atoms [22] and in the determination of potential functions in spherically
symmetric geometry [6]. Also, in developing the mathematical models for flow and heat analysis of
fluid [13]. The particular solutions to the Legendre differential equation

(1 —x2)y” —2xy +n(n+1)y=0,neZ,|x <1,

are the Legendre functions of the first kind P, (x), these functions are given by the following Rodrigues’
formula

P, (x) = ln. & (x2—1)”.

The functions P, are also defined as the coefficients in a formal expansion in powers of ¢ of the
generating function

1 [se]
e P,(x)1t", 3.1
V1 —2xt + ¢? ,ZZ:(;

which is convergent if |x| < 1 and |f| < 1. The first few Legendre polynomials are

Po(x)=1, Py (x)=x, Py(x) = (3x2 - 1), P5(x) = (sx3 - 3x).

| =
| =

AIMS Mathematics Volume 8, Issue 10, 23534-23547.
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The function
1-z

VI=2zcos6 + 22
is in the class P for every 6 € R (see [9, Page 102]). In [17], Lashin et al. proved that the function ¢
maps the unit disc U onto the right half plane R (w) > 0 except for the slit along the positive real axis

from — to oo, this means that ¢ is starlike with respect to 1. By using (3.1), it is easy to check that

|cos 3|

¢0(2) =

6(2) =1+ ) [P,(cosd) — Ppi (cosd)] 7,

n=1
=1+ Z B,7", zeU. (3.2)
n=1

We get the new class R, («, 3, 0) described by Definition 4 below if we set

1- 1
P(2) = < =1+ (cosd—1)z+=(cosd—1)(1+3cos0)z* + ..., (z€ U),
V1 —2zcos 6 + 22 2

in Definition 1 of the bi-univalent function class L, (a, 8, ¢).

Definition 4. Let R, (a, B, 0) be the class of bi-univalent function & € o such that:

, e Y.
(Zf (z)) (1 L% (Z)) - 1-z e (3.3)

&(2) £ V1 —2zcosé + 22
and 5
wG (w)\* wG” (w) 1—w
1 , U), 3.4
(G(w) ) ( * G’(w)) e VeV G

where G(w) = € '(w) and a, 8,6 € R.

In the limit case when 6 — =, the class R,(a,f,0) extends the classes given by Brannan and
Taha [4], Taha [36], Ali et al. [3], Peng and Han [30] and Hamidi and Jahangiri [11].
The following corollary is produced using the parameter setting of Definition 4 in Theorem 1.

Corollary 3. Let a,5,6 € R. If € € R («,f3,0), then

1 —coso
|Az| < ;
\/](23(5 + @) + %) (1 - cos §) + 2(1 + 3 cos 6)(a + 2B)?| + (a + 2B)2

and ,
1—cosd (a+2B)

Jla+38]° cosé > 1 - 520n,

|A5| < (2la+3pI(1-cos 6)—(a+28)* ) (1—cos 6)
2+ 361 ([2608+)+ 252 )1 ~cos 8+ 5 (143 cos )@+26)2|+(@+25)2)
1-cos § (a+2B)*

TR cosd < 1 -5 55

Putting @ = 1 and 8 = 1 in Corollary 3, we get the following corollary.

AIMS Mathematics Volume 8, Issue 10, 23534-23547.
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Corollary 4. If ¢ € o given by (1.1) satisfies the following conditions

7€ (2) zzf"(z)) 1-z
, U),
(f(z) Y0 ) Vimeere ¢V
and ) y
wG(w)+wG(w)< 1-w C weu,

G(w) G(w) V1 = 2wcos 6 + w2

where G(w) = & 1(w), then we have

Ay < 1—-cosé
2 =

\/|5(1 —cosd) + 5(1 + 3cos§)| + 9,

and

Lcosd, cos S > —,
|A3| < [8(1—cos 8)—9](1—cos ) + 1-cosd COS5 < _1
8(|5(1-cos 6)+3 (143 cos 6)|+9) 8 8

Putting @ = —1 and 8 = 1 in Corollary 3, we get the following corollary.

Corollary 5. If ¢ € o given by (1.1) satisfies the following conditions

1+ zf/”(z) 1
== -z
,f (2) < , (zel),
@ V1 —2zcos 6 + 22
£(2)
and Z
] 4+ 26 ) 1
7 - W
G , wel),
26 (0 V1 - 2wcos§ + w?
(w)

where G(w) = & 1(w) and 6 € R, then we have

Ay < \/E(l—cosé)
22 [+ 3coso)+2

and
L, coss > 2,

|As| <

(4(1=cos 6)—1)(1—cos 6) + 1-cosd

3
4(|3(1+3cos d)|+1) Zla+3p €08 0<%

Putting @« = 1 —y and 8 = vy in Corollary 3, we get the following corollary.

Corollary 6. If & € o given by (1.1) satisfies the following conditions

# (2) 1‘7( zg”(z))y -2
| , zeU),
(az)) Y0 ) Vicoeonsin U
and
wG (W) l_y( wG”(w))y 1-w
| , v,
(Gg(w)) YW ) Vicameare WY

AIMS Mathematics Volume 8, Issue 10, 23534-23547.
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where G(w) = ¢ '(w)and 0 <y < 1, then we have

1—-cosd
|As| < ,
2y + UVEI) (1 _co58) + 2(1 +3cosO)(1 +7)2| + (1 + )2
Y 2 3 Y Y
and ,
1—cos & (I+y)
2(1+2y)° cosé 21— 2(1+2y)°
|A5| < [2(1+2y)(1-cos 6)-(1+7)*](1-cos 6)
21 +2y)(‘(2y+ U= )1 —cos 6)+ 4 (1+3 cos 6)(a+2ﬁ)2‘+(1 +y)2)
1—cos ¢ _ (1+7)2
T 2e2y) cosd < 1 21+2y)°

Putting @ = % and 8 =0, (0 < < 1) in Corollary 3, we get the following corollary.
Corollary 7. If & € o given by (1.1) satisfies the following conditions

! _ Y
20 (1) ey

&(2) V1 = 2zc0s6 + 72
and ) »
G 1-
W(M<( W ),Mew
G(w) V1 = 2wcosé + w?

where G(w) = & '(w)and 0 < a < 1, then we have

¥y V2(1 = cos 6)

Az < ;
\/7(1 —c0s0) + 2(2 + cos o)
and ‘
w, cosd > 1 - %

|A3| <
y(2y(1—cos )—1)(1—cos §) + y(1—cos )
y(1-cos 6)+2(1+cos d)+1 2

1
, coso <1 5

Putting @« = 0 and 8 = %, (0 <y < 1) in Corollary 3, we get the following corollary.
Corollary 8. If & € o given by(1.1) satisfies the following conditions

1’ 1 _ ’}/
1+ 20 ( ¢ ),(zeUx
&) V1 = 2zco0s 6 + 72
and , »
G 1-
+me<( Y ),wew,
G'(w) V1 = 2wcos§ + w?
where G(w) = & '(w). Then we have
(1 —cosd)
4, < L —22
2V2 +cosé
and
—7(1_2056), cosd >1-— %,
|As] <
(3y(1-cos §)—2)(1—cos ) (1—cos d) 2
6(y|2(1y—cos5)+(1+3 cosoy T =, coso < 1- 3y

AIMS Mathematics Volume 8, Issue 10, 23534-23547.
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4. Conclusions

The bounds for the first two coefficients |A,| and |A;| have been estimated by many authors for
analytic bi-univalent functions class o. This paper defines a new subclass of o associated with the
Legendre polynomials. For this class, we find estimations for the two initial coefficients |A,| and |A;|.
Furthermore, it presents several subclasses of class o and generalizes many previous works of various
authors.
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