Research article

Self-adaptive algorithms for the split problem of the quasi-pseudocontractive operators in Hilbert spaces

  • Received: 27 September 2021 Revised: 20 December 2021 Accepted: 04 January 2022 Published: 03 March 2022
  • MSC : 47H06, 47H09, 47J25, 49J05

  • Self-adaptive algorithms are presented for solving the split common fixed point problem of quasi-pseudocontractive operators in Hilbert spaces. Weak and strong convergence theorems are given under some mild assumptions.

    Citation: Wenlong Sun, Gang Lu, Yuanfeng Jin, Choonkil Park. Self-adaptive algorithms for the split problem of the quasi-pseudocontractive operators in Hilbert spaces[J]. AIMS Mathematics, 2022, 7(5): 8715-8732. doi: 10.3934/math.2022487

    Related Papers:

  • Self-adaptive algorithms are presented for solving the split common fixed point problem of quasi-pseudocontractive operators in Hilbert spaces. Weak and strong convergence theorems are given under some mild assumptions.



    加载中


    [1] M. Raeisi, G. Z. Eskandani, M. Eslamian, A general algorithm for multiple-sets split feasibility problem involving resolvents and Bregman mappings, Optimization, 67 (2018), 309–327. https://doi.org/10.1080/02331934.2017.1396603 doi: 10.1080/02331934.2017.1396603
    [2] Y. Shehu, Strong convergence theorem for multiple sets split feasibility problems in Banach spaces, Numer. Func. Anal. Opt., 37 (2016), 1021–1036. https://doi.org/10.1080/01630563.2016.1185614 doi: 10.1080/01630563.2016.1185614
    [3] Q. Dong, S. He, Y. Zhao, On global convergence rate of two acceleration projection algorithms for solving the multiple-sets split feasibility problem, Filomat, 30 (2016), 3243–3252.
    [4] Y. Dang, Z. Xue, Iterative process for solving a multiple-set split feasibility problem, J. Inequal. Appl., 2015 (2015), 47. https://doi.org/10.1186/s13660-015-0576-9 doi: 10.1186/s13660-015-0576-9
    [5] N. Buong, Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces, Numer. Algor., 76 (2017), 783–798. https://doi.org/10.1007/s11075-017-0282-4 doi: 10.1007/s11075-017-0282-4
    [6] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problem, Inverse Probl., 21 (2005), 2071–2084. https://doi.org/10.1088/0266-5611/21/6/017 doi: 10.1088/0266-5611/21/6/017
    [7] A. Bejenaru, M. Postolache, Partially projective algorithm for the split feasibility problem with visualization of the solution set, Symmetry, 12 (2020), 608. https://doi.org/10.3390/sym12040608 doi: 10.3390/sym12040608
    [8] Y. Yao, M. Postolache, X. Qin, J. Yao, Iterative algorithms for the proximal split feasibility problem, U. P. B. Sci. Bull. A, 80 (2018), 37–44.
    [9] Q. L. Dong, Y. C. Tang, Y. J. Cho, Optimal choice of the step length of the projection and contraction methods for solving the split feasibility problem, J. Glob. Optim., 71 (2018), 341–360. https://doi.org/10.1007/s10898-018-0628-z doi: 10.1007/s10898-018-0628-z
    [10] A. E. Al-Mazrooei, A. Latif, X. Qin, J. C. Yao, Fixed point algorithms for split feasibility problems, Fixed Point Theor., 20 (2019), 245–254.
    [11] D. Hou, J. Zhao, X. Wang, Weak convergence of a primal-dual algorithm for split common fixed-point problems in Hilbert spaces, J. Appl. Numer. Optim., 2 (2020), 187–197.
    [12] A. U. Bello, M. T. Omojola, M. O. Nnakwe, Two methods for solving split common fixed point problems of strict pseudo-contractve mappings in Hilbert spaces with applications, Appl. Set-Valued Anal. Optim., 3 (2021), 75–93. https://doi.org/10.23952/asvao.3.2021.1.07 doi: 10.23952/asvao.3.2021.1.07
    [13] Y. Yao, L. Leng, M. Postolache, X. Zheng, Mann-type iteration method for solving the split common fixed point problem, J. Nonlinear Convex Anal., 18 (2017), 875–882.
    [14] Y. Yao, R. P. Agarwal, M. Postolache, Y. Liou, Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem, Fixed Point Theory Appl., 2014 (2014), 183. https://doi.org/10.1186/1687-1812-2014-183 doi: 10.1186/1687-1812-2014-183
    [15] Y. Yao, Y. C. Liou, J. C. Yao, Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction, Fixed Point Theory Appl., 2015 (2015), 127. https://doi.org/10.1186/s13663-015-0376-4 doi: 10.1186/s13663-015-0376-4
    [16] A. Cegielski, General method for solving the split common fixed point problem, J. Optim. Theory Appl., 165 (2015), 385–404. https://doi.org/10.1007/s10957-014-0662-z doi: 10.1007/s10957-014-0662-z
    [17] F. Wang, A new iterative method for the split common fixed point problem in Hilbert spaces, Optimization, 66 (2017), 407–415. https://doi.org/10.1080/02331934.2016.1274991 doi: 10.1080/02331934.2016.1274991
    [18] W. Takahashi, C. F. Wen, J. C. Yao, An implicit algorithm for the split common fixed point problem in Hilbert spaces and applications, Appl. Anal. Optim., 1 (2017), 423–439.
    [19] A. Wang, J. Zhao, Self-adaptive iterative algorithms for the split common fixed point problem with demicontractive operators, J. Nonlinear Var. Anal., 5 (2021), 573–587.
    [20] J. Zhao, Y. Li, A new inertial self-adaptive algorithm for split common fixed-point problems, J. Nonlinear Var. Anal., 5 (2021), 43–57.
    [21] Y. Yao, Y. C. Liou, M. Postolache, Self-adaptive algorithms for the split problem of the demicontractive operators, Optimization, 67 (2018), 1309–1319. https://doi.org/10.1080/02331934.2017.1390747 doi: 10.1080/02331934.2017.1390747
    [22] S. He, Z. Zhao, B. Luo, A relaxed self-adaptive CQ algorithm for the multiple-sets split feasibility problem, Optimization, 64 (2015), 1907–1918. https://doi.org/10.1080/02331934.2014.895898 doi: 10.1080/02331934.2014.895898
    [23] Y. Yao, M. Postolache, Y. C. Liou, Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory Appl., 2013 (2013), 201. https://doi.org/10.1186/1687-1812-2013-201 doi: 10.1186/1687-1812-2013-201
    [24] Y. Yao, M. Postolache, Z. Zhu, Gradient methods with selection technique for the multiplesets split feasibility problem, Optimization, 69 (2020), 269–281. https://doi.org/10.1080/02331934.2019.1602772 doi: 10.1080/02331934.2019.1602772
    [25] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692
    [26] Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), 587–600.
    [27] A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Probl., 26 (2010), 055007. https://doi.org/10.1088/0266-5611/26/5/055007 doi: 10.1088/0266-5611/26/5/055007
    [28] P. Kraikaew, S. Saejung, On split common fixed point problems, J. Math. Anal. Appl., 415 (2014), 513–524. https://doi.org/10.1016/j.jmaa.2014.01.068 doi: 10.1016/j.jmaa.2014.01.068
    [29] O. A. Boikanyo, A strongly convergent algorithm for the split common fixed point problem, Appl. Math. Comput., 265 (2015), 844–853. https://doi.org/10.1016/j.amc.2015.05.130 doi: 10.1016/j.amc.2015.05.130
    [30] Q. H. Ansari, A. Rehan, C. F. Wen, Implicit and explicit algorithms for split common fixed point problems, J. Nonlinear Convex A., 17 (2016), 1381–1397.
    [31] W. Takahashi, The split common fixed point problem and strong convegence theorems by hybrid methods in two Banach spaces, J Nonlinear Convex A., 17 (2016), 1051–1067.
    [32] F. Wang, A new method for split common fixed-point problem without priori knowledge of operator norms, J. Fixed Point Theory Appl., 19 (2017), 2427–2436. http://dx.doi.org/10.1007/s11784-017-0434-0. doi: 10.1007/s11784-017-0434-0
    [33] H. H. Bauschke, P. L. Combettes, A weak-to-strong convergence principle for Fej$\acute{ e} $r-monotone methods in Hilbert spaces, Math. Oper. Res., 26 (2001), 248–264. https://doi.org/10.1287/moor.26.2.248.10558 doi: 10.1287/moor.26.2.248.10558
    [34] Y. Yao, Y. C. Liou, J. C. Yao, Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction, Fixed Point Theory Appl., 2015 (2015), 127. https://doi.org/10.1186/s13663-015-0376-4 doi: 10.1186/s13663-015-0376-4
    [35] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1618) PDF downloads(78) Cited by(7)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog