To start, we provided the deformations of certain specific modular equations derived from Ramanujan's notebook, Part Ⅲ, by using the complete square formula. Subsequently, we established fifteen identities for partitions with distinct colors that arose from these deformed modular equations in the theory of modular equations. Throughout our investigation, we found that the fifteen identities have parts that were in multiples of $ 4 $.
Citation: Roberta R. Zhou, Fuquan Ren. Some new identities for colored partitions with parts in multiples of $ 4 $[J]. AIMS Mathematics, 2024, 9(10): 26721-26740. doi: 10.3934/math.20241300
To start, we provided the deformations of certain specific modular equations derived from Ramanujan's notebook, Part Ⅲ, by using the complete square formula. Subsequently, we established fifteen identities for partitions with distinct colors that arose from these deformed modular equations in the theory of modular equations. Throughout our investigation, we found that the fifteen identities have parts that were in multiples of $ 4 $.
[1] | G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1998. |
[2] | G. E. Andrews, B. C. Berndt, Ramanujan's lost notebook, Part Ⅰ, New York: Springer, 2005. https://doi.org/10.1007/0-387-28124-X |
[3] | G. E. Andrews, K. Eriksson, Integer partitions, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9781139167239 |
[4] | N. D. Baruah, B. C. Berndt, Partition identities and Ramanujan's modular equations, J. Combin. Theory Ser. A, 114 (2007), 1024–1045. https://doi.org/10.1016/j.jcta.2006.11.002 doi: 10.1016/j.jcta.2006.11.002 |
[5] | N. D. Baruah, B. C. Berndt, Partition identities arising from theta function identities, Acta Math. Sin., 24 (2008), 955–970. https://doi.org/10.1007/s10114-007-0960-6 doi: 10.1007/s10114-007-0960-6 |
[6] | N. D. Baruah, B. Boruah, Colored partition identities conjectured by Sandon and Zanello, Ramanujan J., 37 (2015), 479–533. https://doi.org/10.1007/s11139-014-9567-6 doi: 10.1007/s11139-014-9567-6 |
[7] | B. C. Berndt, Ramanujan's notebooks, Part Ⅲ, New York: Springer, 1991. https://doi.org/10.1007/978-1-4612-0965-2 |
[8] | B. C. Berndt, Number theory in the spirit of Ramanujan, American Mathematical Society, Vol. 34, 2004. https://doi.org/10.1090/stml/034/01 |
[9] | B. C. Berndt, Partition-theoretic interpretations of certain modular equations of Schröter, Russell, and Ramanujan, Ann. Comb., 11 (2007), 115–125. https://doi.org/10.1007/s00026-007-0309-y doi: 10.1007/s00026-007-0309-y |
[10] | B. C. Berndt, R. R. Zhou, Identities for partitions with distinct colors, Ann. Comb., 19 (2015), 397–420. https://doi.org/10.1007/s00026-015-0273-x doi: 10.1007/s00026-015-0273-x |
[11] | B. C. Berndt, R. R. Zhou, Proofs of Conjectures of Sandon and Zanello on colored partition identities, J. Korean Math. Soc., 51 (2014), 98–1028. https://doi.org/10.4134/JKMS.2014.51.5.987 doi: 10.4134/JKMS.2014.51.5.987 |
[12] | W. Chu, L. Di Claudio, Classical partition identities and basic hypergeometric series, Edizioni del Grifo, 2004. |
[13] | H. M. Farkas, I. Kra, Partitions and theta constant identities, Contemp. Math., 251 (2000), 197–203. https://doi.org/10.1090/conm/251/03870 doi: 10.1090/conm/251/03870 |
[14] | C. Guetzlaff, Aequatio modularis pro transformatione functionum ellipticarum septimi ordinis, J. Reine Angew. Math., 12 (1834), 173–177. https://doi.org/10.1515/crll.1834.12.173 doi: 10.1515/crll.1834.12.173 |
[15] | M. D. Hirschhorn, The case of the mysterious sevens, Int. J. Number Theory, 2 (2006), 213–216. https://doi.org/10.1142/S1793042106000486 doi: 10.1142/S1793042106000486 |
[16] | S. Kim, Bijective proofs of partition identities arising from modular equations, J. Comb. Theory Ser. A, 116 (2009), 699–712. https://doi.org/10.1016/j.jcta.2008.11.002 doi: 10.1016/j.jcta.2008.11.002 |
[17] | S. Kim, A generalization of the modular equations of higher degrees, J. Comb. Theory Ser. A, 180 (2021), 105420. https://doi.org/10.1016/j.jcta.2021.105420 doi: 10.1016/j.jcta.2021.105420 |
[18] | S. Ramanujan, Notebooks, Vol. 2, Bombay: Tata Institute of Fundamental Research, 1957. |
[19] | R. Russell, On $\kappa\lambda-\kappa^{\prime}\lambda^{\prime}$ modular equations, Proc. London Math. Soc., 19 (1887), 90–111. |
[20] | R. Russell, On modular equations, Proc. London Math. Soc., 21 (1890), 351–395. |
[21] | C. Sandon, F. Zanello, Warnaar's bijection and colored partition identities, Ⅰ, J. Comb. Theory Ser. A, 120 (2013), 28–38. https://doi.org/10.1016/j.jcta.2012.06.008 doi: 10.1016/j.jcta.2012.06.008 |
[22] | C. Sandon, F. Zanello, Warnaar's bijection and colored partition identities, Ⅱ, Ramanujan J., 33 (2014), 83–120. https://doi.org/10.1007/s11139-013-9465-3 doi: 10.1007/s11139-013-9465-3 |
[23] | H. E. Schröter, De aequationibus modularibus, Petsch(Regiomonti), 1854. |
[24] | S. O. Warnaar, A generalization of the Farkas and Kra partition theorem for modulus $7$, J. Comb. Theory Ser. A, 110 (2005), 43–52. https://doi.org/10.1016/j.jcta.2004.08.008 doi: 10.1016/j.jcta.2004.08.008 |
[25] | R. R. Zhou, Some new identities for colored partition, Ramanujan J., 40 (2016), 473–490. https://doi.org/10.1007/s11139-015-9699-3 doi: 10.1007/s11139-015-9699-3 |
[26] | R. R. Zhou, New modular equations of composite degrees and Partition Identities, Bull. Malays. Math. Sci. Soc., 47 (2024), 160. https://doi.org/10.1007/s40840-024-01742-z doi: 10.1007/s40840-024-01742-z |