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1. Introduction

In the last few decades, there has been a lot of interest in the study of higher-order variational
problems on Riemannian manifolds. One of the most prominent second-order variational problems has
the Lagrangian function given by the squared norm of the covariant acceleration. Stationary curves for
this problem are the so-called Riemannian cubics or bi-harmonic curves [1,2]. These curves have played
an important role in the study of interpolation problems [3–6]. Approaches to this second order problem
are not restricted to its variational character, it has also been studied as an optimal control problem in
which the control system is an affine connection system [7–12]. From the point of view of applications,
this problem can be seen as an optimal navigation problem with regard to fuel consumption, and may
involve several agents, have obstacles to avoid or be conditioned by constraints [13–17].

The theory of Riemannian cubics can be interpreted as a higher-order extension of the theory of
geodesics. An extension of this theory to odd-degree Riemannian polynomials has been developed
in [18–20] (for a more general setting, see also [21] and references therein). Although the concept of
odd-degree Riemannian polynomials given in [18] can be seen as a higher-order generalization of the
concept of geodesics, it cannot be said to be a generalization of lower-degree polynomials, starting with
the cubic ones. Indeed, geodesics are particular cases of higher-degree Riemannian polynomials, but
Riemannian cubics cannot in general be seen as higher-degree Riemannian polynomials.

The notion of Riemannian polynomials given in [18] was motivated by the optimization properties
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of the Euclidean polynomials and, thus, can be seen as a generalization of polynomials from Euclidean
spaces to Riemannian manifolds. These polynomials play an important role in the study of interpolation
and data fitting problems in curved spaces. Applications range from the control theory of mechanical
systems to image processing or statistical analysis of shape data. The polynomials are used to construct
interpolation curves (Riemannian splines) that give trajectories of physical systems along some pre-
scribed positions [6, 20, 22], or they can be combined with least squares fitting to better represent image
(or shape) data [3, 23, 24]. The degree of the polynomials provides a certain smoothness of the splines
and accuracy of the represented data.

In this paper, we propose studying a variational problem of order 4 which gives rise to a definition
of higher-degree polynomials that is different from the one presented in [18]. The stationary curves of
the proposed problem can be interpreted as the best approximations of Riemannian cubics when their
existence is conditioned by boundary or interpolation conditions, and reduce naturally to Riemannian
cubics when such curves exist.

The study of this variational problem in the rotation group SO(3) was presented in [25]. In this
paper, we consider the problem in a general Riemannian manifold and derive the Euler-Lagrange
equation (Section 3). Then, in Section 4, we analyse what happens on Lie groups. Since the Lagrangian
function is invariant, we use the higher-order Euler-Poincaré reduction presented in [26] to obtain the
corresponding equation on the Lie algebra.

2. Riemannian geometry

In what follows (M, ⟨ . , . ⟩) is an n-dimensional Riemannian manifold. The Levi-Civita connection
is the mapping ∇, which assigns to each two smooth vector fields X and Y in M, a new vector field,
∇XY , satisfying the following properties:

(i) ∇ is IR-bilinear in X and Y ,
(ii) ∇ f XY = f∇XY ,

(iii) ∇X( f Y) = (X f )Y + f∇XY ,
(iv) ∇XY is smooth in M,
(v) ∇XY − ∇Y X = [X,Y] (Symmetry),

(vi) X⟨Y,Z⟩ = ⟨∇XY,Z⟩ + ⟨Y,∇XZ⟩ (Compatibility),

where X, Y and Z are smooth vector fields on M, f a smooth real valued function on M and [X,Y]
denotes the Lie bracket of the vector fields X and Y defined by

[X,Y] f = X(Y f ) − Y(X f ).

The covariant derivative of a vector field X along a curve x in M is given by (DX/dt)(t) =
∇(dx/dt)(t)X(t), where dx/dt is the velocity vector field along x. The jth-order covariant derivative
D jX/dt j is the covariant derivative of the vector field D j−1X/dt j−1, where j ≥ 1. The jth-order covariant
derivative D jx/dt j of a curve x is the ( j − 1)th-order covariant derivative of the velocity vector field
along x, for j ≥ 2.

For any vector field X along a 2-parameter curve x : (r, t)→ x(r, t), the covariant derivatives DX/∂r
and DX/∂t are vector fields along x defined as follows: We fix t (resp., r) and consider X restricted
to the curve xt : r 7→ x(r, t) (resp., xr : t 7→ x(r, t)), which leads to a vector field along xt (resp., xr).
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The covariant derivative of the vector field X along the curve xt (resp., xr) gives rises to the vector
field DX/∂r (resp., DX/∂t) along x. As examples, we can set X equal to ∂x/∂r or ∂x/∂t and obtain the
following higher-order covariant derivatives,

D
∂r
∂x
∂r
,

D
∂r
∂x
∂t
,

D
∂t
∂x
∂r
,

D
∂t
∂x
∂t
,

or even higher-order ones. Note that, from the symmetry of the Levi-Civita connection (condition (5)),
we get immediately that

D
∂r
∂x
∂t
=

D
∂t
∂x
∂r
. (2.1)

To deal with higher-order partial covariant derivatives, we shall need to define the curvature tensor.
The curvature tensor R is given by the identity

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z, (2.2)

where X, Y , Z are vector fields in M. Therefore, R measures how much covariant derivatives fail to
commute. For any vector field X along a 2-parameter curve x : (r, t)→ x(r, t), we have

D
∂r

D
∂t

X −
D
∂t

D
∂r

X = R(
∂x
∂r
,
∂x
∂t

)X. (2.3)

From Eq (2.3) we see that R is an essential tool to interchange the order of partial covariant derivatives.
For this reason, the following symmetries of R play such an important role in this paper.

For all vector fields X, Y , Z and W in M, the curvature tensor R satisfies the skew-symmetry identities

R(X,Y)Z + R(Y, X)Z = 0, (2.4)

and
⟨R(X,Y)Z,W⟩ + ⟨R(X,Y)W,Z⟩ = 0, (2.5)

and, as a consequence of (2.4) and (2.5), the symmetry by pairs identity

⟨R(X,Y)Z,W⟩ = ⟨R(W,Z)Y, X⟩. (2.6)

The cyclic permutation property

R(X,Y)Z + R(Y,Z)X + R(Z, X)Y = 0, (2.7)

is called the first Bianchi identity.
The covariant differential of the curvature tensor R is defined by

(∇XR)(Y,Z)W = ∇X(R(Y,Z)W) − R(∇XY,Z)W − R(Y,∇XZ)W − R(Y,Z)∇XW, (2.8)

and the symmetry properties of R lead to the following equalities.

(∇XR)(Y,Z)W + (∇XR)(Z,Y)W = 0, (2.9)

(∇XR)(Y,Z)W + (∇XR)(Z,W)Y + (∇XR)(W,Y)Z = 0, (2.10)
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⟨(∇XR)(Y,Z)W,V⟩ = ⟨(∇XR)(V,W)Z,Y⟩, (2.11)

⟨(∇XR)(Y,Z)W,V⟩ + ⟨(∇XR)(Y,Z)V,W⟩ = 0, (2.12)

and the second Bianchi identity

(∇XR)(Y,Z)W + (∇YR)(Z, X)W + (∇ZR)(X,Y)W = 0, (2.13)

for every vector field X, Y , Z, W and V on M.
More details about Riemannian geometry can be found in Milnor [27], Lee [28] and O’Neill [29].

3. Riemannian heptics

3.1. Riemannian cubic problem

Let x be a C3-piecewise smooth curve on M and Γ(x) the vector field along x defined by

Γ(x) =
D4x
dt4 + R(

D2x
dt2 ,

dx
dt

)
dx
dt
. (3.1)

It is well-known that the curves x satisfying

Γ(x) = 0, (3.2)

are the so-called Riemannian cubics. They arose as a natural generalization of geodesics. In fact, the
Riemannian cubics are the extremal curves of the bienergy functional

B(x) =
1
2

∫ T

0
∥

D2x
dt2 ∥

2 dt, (3.3)

and this functional is seen as a second order extension of the energy functional

E(x) =
1
2

∫ T

0
∥
dx
dt
∥2 dt. (3.4)

Geodesics are the curves x satisfying
D2x
dt2 = 0, (3.5)

and are critical points of the energy functional (3.3).
The variational problem that consists in finding the curves minimizing the bienergy functional (3.3)

is called the Riemannian cubic problem and appears as a natural extension of the geodesic problem. It
can be formulated as a optimal control problem in the following way.

min
U

∫ T

0

1
2
⟨U,U⟩ dt, (3.6)

subject to the control system
dx
dt
= V,

DV
dt
= U, (3.7)
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and the boundary conditions

x(0) = x0, x(T ) = x1, V(0) = v01, V(T ) = v11. (3.8)

Studying this problem from the point of view of Hamiltonian systems and optimal control proved to
be very interesting and led to fruitful research [7, 8, 10, 12].

Remark 1. Riemannian cubics and geodesics can also be seen as generalizations of Euclidean polyno-
mials (of degree 1 and 3, respectively). This simple interpretation is based on optimization properties of
these Euclidean curves. In fact, these properties are not restricted to polynomials of degree 1 and 3, but
are valid for arbitrary odd-degree Euclidean polynomials. It is well-know that Euclidean polynomials x
of degree 2m − 1 satisfy the inequality

1
2

∫ T

0
∥
dmx
dtm ∥

2 dt ≤
1
2

∫ T

0
∥
dmy
dtm ∥

2 dt, (3.9)

among all Cm functions y satisfying the boundary conditions

y(0) = x0, y(T ) = x1, (3.10)

and
d jy
dt j (0) = v0 j,

d jy
dt j (T ) = v1 j, 1 ≤ j ≤ m − 1; (3.11)

moreover, the equality occurs iff y coincides with x. The differential equation

d2mx
dt2m = 0, (3.12)

is the Euler-Lagrange equation of the m-energy functional

1
2

∫ T

0
∥
dmx
dtm ∥

2 dt.

Seen as a solution of Eq (3.12), each Euclidean polynomial is contained in the class of Euclidean
polynomial of higher-order (Property A).

Remark 2. In [18], the Euclidean variational problem of order m is extended to Riemannian manifolds
by considering the following generalization of the m-energy functional

1
2

∫ T

0
∥

Dmx
dtm ∥

2 dt.

This variational problem gives rise to a notion of odd-degree Riemannian polynomials, for which, in
general, property A fails, even when the curvature is constant.
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3.2. Riemannian heptic problem

To extend the Riemannian cubic problem we formulate the following fourth-order variational problem.
Consider the functional J defined by

J(x) =
1
2

∫ T

0
∥Γ(x)∥2 dt. (3.13)

The Riemannian heptic problem (P) consists in finding the curves minimizing the functional J
among the set Ω of all C3-piecewise smooth curves x satisfying the boundary conditions

x(0) = x0, x(T ) = x1, (3.14)

and
D jx
dt j (0) = v0 j,

D jx
dt j (T ) = v1 j, 1 ≤ j ≤ 3, (3.15)

where vi j ∈ Txi M, with i = 0, 1 and 1 ≤ j ≤ 3.
The variational problem (P) can be formulated as an optimal control problem as follows:

min
U

∫ T

0

1
2
⟨U,U⟩ dt, (3.16)

subject to the control system

dx
dt
= V,

DV
dt
= Z,

DZ
dt
= W,

DW
dt
+ R(Z,V)V = U, (3.17)

and the boundary conditions

x(0) = x0, x(T ) = x1, V(0) = v01, V(T ) = v11,

Z(0) = v02, Z(T ) = v12, W(0) = v03, W(T ) = v13.
(3.18)

When studying optimal control problems for these higher-order dynamic systems, we encounter even
higher-order bundles than in the Riemannian cubic problem.

3.3. The first variation formula

An admissible variation of the curve x ∈ Ω is a C3-piecewise smooth one-parameter variation

α : (−ϵ, ϵ) × [0,T ] → M
(r, t) 7→ α(r, t) = αr(t),

such that αr ∈ Ω, for all r ∈ (−ϵ, ϵ), ϵ > 0. The variational vector field X associated with an admissible
variation α of x is given by

X(t) =
∂α

∂r
(0, t), t ∈ [0,T ].

Admissible variations of x give rise to the real vector space TxΩ of all the C3 piecewise smooth vector
field X along x verifying the boundary conditions
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X(0) = 0, X(T ) = 0,
(3.19)

and
D jX
dt j (0) =

D jX
dt j (T ) = 0, 1 ≤ j ≤ 3. (3.20)

The first variation δJ(x) of J at the curve x is the linear form on TxΩ defined by

δJ(x)(X) =
d
dr

J(αr)|r=0,

where α is an admissible variation of x with associated variational vector field X.
Necessary conditions for x ∈ Ω to be a local minimizer of J follow from the Hamilton variational

principle through the first variation of J at x,

δJ(x)(X) = 0,∀X ∈ TxΩ, (3.21)

which gives rise to the Euler-Lagrange equations for the problem (P).
To obtain the first variation formula of J at x let us consider an admissible variation α of x ∈ Ω.
First of all, we have to compute (D/∂r)Γ(α). To begin, note that, although we know from (2.1) that

D
∂r
∂α

∂t
=

D
∂t
∂α

∂r
, (3.22)

we need to use the curvature tensor R to measure how much the second covariant derivative
(D/∂r)(D/∂t)Y is symmetric in r and t, for Y an arbitrary vector field along α. From (2.3), we
know that

D
∂r

D
∂t

Y −
D
∂t

D
∂r

Y = R(
∂α

∂r
,
∂α

∂t
)Y. (3.23)

Making use of these tools to interchange the order of partial covariant derivatives, we obtain

D
∂r

D2α

∂t2 =
D2

dt2

∂α

∂r
+ R(
∂α

∂r
,
∂α

∂t
)
∂α

∂t
,

D
∂r

D3α

∂t3 =
D3

∂t3

∂α

∂r
+

D
∂t

(
R(
∂α

∂r
,
∂α

∂t
)
∂α

∂t

)
+ R(
∂α

∂r
,
∂α

∂t
)
D2α

∂t2 ,

D
∂r

D4α

∂t4 =
D4

∂t4

∂α

∂r
+

D2

∂t2

(
R(
∂α

∂r
,
∂α

∂t
)
∂α

∂t

)
+

D
∂t

(
R(
∂α

∂r
,
∂α

∂t
)
D2α

∂t2

)
+ R(
∂α

∂r
,
∂α

∂t
)
D3α

∂t3 ,

D
∂r

(
R(

D2α

∂t2 ,
∂α

∂t
)
∂α

∂t

)
=(∇ ∂α

∂r
R)(

D2α

∂t2 ,
∂α

∂t
)
∂α

∂t
+ R(

D2

∂t2

∂α

∂r
,
∂α

∂t
)
∂α

∂t
+ R(R(

∂α

∂r
,
∂α

∂t
)
∂α

∂t
,
∂α

∂t
)
∂α

∂t

+ R(
D2α

∂t2 ,
D
∂t
∂α

∂r
)
∂α

∂t
+ R(

D2α

∂t2 ,
∂α

∂t
)
D
∂t
∂α

∂r
,
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and, consequently,

D
∂r
Γ(α) =

D4

∂t4

∂α

∂r
+

D2

∂t2

(
R(
∂α

∂r
,
∂α

∂t
)
∂α

∂t

)
+

D
∂t

(
R(
∂α

∂r
,
∂α

∂t
)
D2α

∂t2

)
+ R(
∂α

∂r
,
∂α

∂t
)
D3α

∂t3 ,

(∇ ∂α
∂r

R)(
D2α

∂t2 ,
∂α

∂t
)
∂α

∂t
+ R(

D2

∂t2

∂α

∂r
,
∂α

∂t
)
∂α

∂t
+ R(R(

∂α

∂r
,
∂α

∂t
)
∂α

∂t
,
∂α

∂t
)
∂α

∂t

+ R(
D2α

∂t2 ,
D
∂t
∂α

∂r
)
∂α

∂t
+ R(

D2α

∂t2 ,
∂α

∂t
)
D
∂t
∂α

∂r
.

The previous identity allows to write (d/dr)J(αr) as follows:

d
dr

J(αr) =
∫ T

0

(〈D4

∂t4

∂α

∂r
+

D2

∂t2

(
R(
∂α

∂r
,
∂α

∂t
)
∂α

∂t

)
+

D
∂t

(
R(
∂α

∂r
,
∂α

∂t
)
D2α

∂t2

)
+ R(
∂α

∂r
,
∂α

∂t
)
D3α

∂t3

+ (∇ ∂α
∂r

R)(
D2α

∂t2 ,
∂α

∂t
)
∂α

∂t
+ R(

D2

∂t2

∂α

∂r
,
∂α

∂t
)
∂α

∂t
+ R(R(

∂α

∂r
,
∂α

∂t
)
∂α

∂t
,
∂α

∂t
)
∂α

∂t

+R(
D2α

∂t2 ,
D
∂t
∂α

∂r
)
∂α

∂t
+ R(

D2α

∂t2 ,
∂α

∂t
)
D
∂t
∂α

∂r
,Γ(αr)

〉)
dt.

If we apply the properties of the curvature tensor, we see that

d
dr

J(αr) =
∫ T

0

(
⟨

D4

dt4

∂α

∂r
+

D2

∂t2

(
R(
∂α

∂r
,
∂α

∂t
)
∂α

∂t

)
+

D
∂t

(
R(
∂α

∂r
,
∂α

∂t
)
D2α

∂t2

)
,Γ(αr)⟩

+ ⟨
∂α

∂r
,R(Γ(αr),

D3α

∂t3 )
∂α

∂t
⟩ + ⟨(∇ ∂α

∂r
R)(

D2α

∂t2 ,
∂α

∂t
)
∂α

∂t
,Γ(αr)⟩

+ ⟨R(Γ(αr),
∂α

∂t
)
∂α

∂t
,

D2

∂t2

∂α

∂r
⟩ + ⟨R(Γ(αr),

∂α

∂t
)
∂α

∂t
,R(
∂α

∂r
,
∂α

∂t
)
∂α

∂t
⟩

−2⟨R(Γ(αr),
∂α

∂t
)
D2α

∂t2 ,
D
∂t
∂α

∂r
⟩ + ⟨R(Γ(αr),

D2α

∂t2 )
∂α

∂t
,

D
∂t
∂α

∂r
⟩

)
dt.

Now, integrating by parts, one has

d
dr

J(αr) =
l∑

i=1

(
⟨

D3

∂t3

∂α

∂r
,Γ(αr)⟩ − ⟨

D2

∂t2

∂α

∂r
,

D
∂t
Γ(αr)⟩ + ⟨

D
dt
∂α

∂r
,

D2

∂t2Γ(αr)⟩ − ⟨
∂α

∂r
,

D3

∂t3Γ(αr)⟩

+ ⟨
D
∂t

(
R(
∂α

∂r
,
∂α

∂t
)
∂α

∂t

)
,Γ(αr)⟩ − ⟨R(

∂α

∂r
,
∂α

∂t
)
∂α

∂t
,

D
∂t
Γ(αr)⟩ + ⟨R(

∂α

∂r
,
∂α

∂t
)
D2α

∂t2 ,Γ(αr)⟩
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+ ⟨R(Γ(αr),
∂α

∂t
)
∂α

∂t
,

D
∂t
∂α

∂r
⟩ − ⟨

D
∂t

(
R(Γ(αr),

∂α

∂t
)
∂α

∂t

)
,
∂α

∂r
⟩

−2⟨R(Γ(αr),
∂α

∂t
)
D2α

∂t2 ,
∂α

∂r
⟩ + ⟨R(Γ(αr),

D2α

∂t2 )
∂α

∂t
,
∂α

∂r
⟩

)t−i

t+i−1

+

∫ T

0

〈
∂α

∂r
,

D4

∂t4Γ(αr) + R(
D2

∂t2Γ(αr),
∂α

∂t
)
∂α

∂t
− R(

D
∂t
Γ(αr),

D2α

∂t2 )
∂α

∂t
+ R(Γ(αr),

D3α

∂t3 )
∂α

∂t

+ (∇Γ(αr)R)(
D2α

∂t2 ,
∂α

∂t
)
∂α

∂t
− (∇ ∂α

∂t
R)(Γ(αr),

∂α

∂t
)
D2α

∂t2 + (∇ ∂α
∂t

R)(Γ(αr),
D2α

∂t2 )
∂α

∂t

+
D2

∂t2

(
R(Γ(αr),

∂α

∂t
)
∂α

∂t

)
+ R(R(Γ(αr),

∂α

∂t
)
∂α

∂t
,
∂α

∂t
)
∂α

∂t
+ 2

D
∂t

(
R(Γ(αr),

∂α

∂t
)
D2α

∂t2

)

−
D
∂t

(
R(Γ(αr),

D2α

∂t2 )
∂α

∂t

)〉
dt.

When we take r = 0, most of the terms above vanish due to the conditions (2.1) and the fact that
both x and X are C3-piecewise smooth on [0,T ]. Hence, the expression of δJ(x)(X) can be simplified
as follows:

δJ(x)(X) =
l−1∑
i=1

(
−⟨

(D3X
dt3 +

D
dt

(
R(X,V)V

)
+ 2R(

DV
dt
,V)X

)
t=ti
,Γ(x(t+i )) − Γ(x(t−i ))⟩

+ ⟨
(D2X

dt2 + R(X,V)V
)

t=ti
,

DΓ
dt

(x(t+i ) −
DΓ
dt

(x(t−i )⟩

− ⟨
DX
dt

(ti),
(D2Γ(x)

dt2 + R(Γ(x),V)V
)

t+i
−

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t−i
⟩

+ ⟨X(ti),
D
dt

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t+i
−

D
dt

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t−i
⟩

+

∫ T

0

〈
X,

D2

dt2

(D2

∂t2Γ(x) + R(Γ(x),V)V
)
+ R(

D2

dt2Γ(x) + R(Γ(x),V)V,V)V

+
D
dt

(
R(Γ(x),V)

DV
dt

)
+ (∇Γ(x)R)(

DV
dt
,V)V

−R(
D
dt
Γ(x),

DV
dt

)V + R(Γ(x),V)
D2V
dt2 + R(

DV
dt
,V)

D
dt
Γ(x)

〉
dt.

Lemma 3. If α is an admissible variation of x ∈ Ω and X the variational vector field associated with
α, then
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δJ(x)(X) =
l−1∑
i=1

(
−⟨

(D3X
dt3 +

D
dt

(
R(X,V)V

)
+ 2R(

DV
dt
,V)X

)
t=ti
,Γ(x(t+i )) − Γ(x(t−i ))⟩

+ ⟨
(D2X

dt2 + R(X,V)V
)

t=ti
,

DΓ
dt

(x(t+i ) −
DΓ
dt

(x(t−i )⟩

− ⟨
DX
dt

(ti),
(D2Γ(x)

dt2 + R(Γ(x),V)V
)

t+i
−

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t−i
⟩ (3.24)

+ ⟨X(ti),
D
dt

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t+i
−

D
dt

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t−i
⟩

)
+

∫ T

0
⟨X(t),Π(x(t))⟩dt,

where

Π(x) =
D2

dt2

(D2

∂t2Γ(x) + R(Γ(x),V)V
)
+ R(

D2

dt2Γ(x) + R(Γ(x),V)V,V)V +
D
dt

(
R(Γ(x),V)

DV
dt

)
(3.25)

+(∇Γ(x)R)(
DV
dt
,V)V − R(

D
dt
Γ(x),

DV
dt

)V + R(Γ(x),V)
D2V
dt2 + R(

DV
dt
,V)

D
dt
Γ(x) .

Proposition 4. A necessary condition for the curve x ∈ Ω to be a local minimizer for the functional J
over Ω is that x is smooth and satisfies

Π(x) = 0, (3.26)

where Π(x) is given by (3.25).

Proof. Suppose that x is a local minimizer of J over Ω. Then, by applying the Hamilton variational
principle to J at x, we have δJ(x)(X) = 0, ∀X ∈ TxΩ (see (3.21)), and then the right-hand side of (3.24)
is zero, for arbitrary X ∈ TxΩ.

Let us first consider X ∈ TxΩ defined by

X(t) = f (t) Π(x(t)), t ∈ [0,T ],

where Π(x) is the vector field along x given by (3.25) and f is a smooth real-valued function on [0,T ]
verifying f (k)(ti) = 0, k = 0, 1, 2, 3, and f (t) > 0, for t ∈ (ti−1, ti), i = 1, . . . , l − 1. It follows from (3.24)
and (3.21) that Π(x(t)) = 0 for t ∈ [0,T ].

To show that x is smooth, let us take the vector field X ∈ TxΩ so that

X(ti) =
D
dt

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t+i
−

D
dt

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t−i
,

DX
dt

(ti) =
(D2Γ(x)

dt2 + R(Γ(x),V)V
)

t=t−i
−

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t+i
,

(D2X
dt2 + R(X,V)V

)
t=ti
=

DΓ
dt

(x(t+i )) −
DΓ
dt

(x(t−i )),
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(D3X
dt3 +

D
dt

(
R(X,V)V

)
+ 2R(

DV
dt
,V)X

)
t=ti
= Γ(x(t−i )) − Γ(x(t+i )),

for i = 1, . . . , l − 1. Thus, since x satisfies the Eq (3.26), it follows from (3.24) and (3.21) that

0 = δJ(x)(X) =
l−1∑
i=1

(
∥Γ(x(t+i )) − Γ(x(t−i ))∥2 + ∥

DΓ
dt

(x(t+i ) −
DΓ
dt

(x(t−i )∥2

+ ∥
(D2Γ(x)

dt2 + R(Γ(x),V)V
)

t+i
−

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t−i
∥2

+ ∥
D
dt

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t+i
−

D
dt

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t−i
∥2

)
,

which implies that

Γ(x(t−i )) = Γ(x(t+i )),

DΓ
dt

(x(t+i )) =
DΓ
dt

(x(t−i )),

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t−i
=

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t+i
,

D
dt

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t+i
=

D
dt

(D2Γ(x)
dt2 + R(Γ(x),V)V

)
t=t−i
,

for i = 1, . . . , l − 1. Hence, Γ(x) is C3 on [0,T ] and, consequently x is C7. Since x is a solution of the
differential equation of eighth-order (3.26), it follows that the eighth-order covariant derivative of x can
be written in terms of the covariant derivatives of order less than 8, so, in turn, the same argument can
be used for covariant derivatives of any order. This leads us to conclude that x is smooth on [0,T ].

Definition 5. A curve x in M is said to be a Riemannian heptic if x is a smooth solution of the
differential Eq (3.26).

4. Riemannian heptics on connected and compact Lie groups

4.1. Bi-invariant metrics on connected and compact Lie groups

Let G be a connected and compact Lie group endowed with a bi-invariant Riemannian metric ⟨·, ·⟩
and let g be its Lie algebra. We denote by Lx : G → G the left-translation map by an element x of
G. The left-invariant vector field associated with an element u of g is uL : x 7→ TeLxu, where TeLx

is the differential of Lx at e and e the identity of G. The Levi-Civita connection ∇ induced by ⟨·, ·⟩ is

Electronic Research Archive Volume 32, Issue 5, 3396–3412.



3407

completely determined by its restriction
g

∇ to g via left-translations. The bilinear map
g

∇: g2 → g is
given by

g

∇u z =
1
2

[u, z], (4.1)

for each u and z ∈ g, and we have
∇uLzL = (

g

∇u z)L. (4.2)

When we restrict the curvature tensor R of G to the Lie algebra g of G, we obtain the map R : g2 → g
defined by

R(u, z)w = −
1
4

[[u, z],w]. (4.3)

The differential of the curvature tensor ∇R is constant and equal to zero.
In addition, the inner product on g corresponding to the Riemannian metric verifies

⟨[u, z],w⟩ = ⟨u, [z,w]⟩. (4.4)

The property (4.4) can be described by means of the adjoint representation ad of g, that is, by saying
that the map adz is skew-adjoint, for z ∈ g.

We denote by ♭ and ♯ the musical isomorphisms between g and its dual g∗ defined by the inner product
on g. Thus, we know that

(ad∗uz♭)♯ = −aduz, u, z ∈ g.

More details about bi-invariant metrics on Lie groups can be found in Milnor [27] and Kobayashi
and Nomizu [30].

4.2. Lie hexics

Let x be a curve in G and V the velocity vector field of x. The lift x1 of the curve x to TG can be
reduced to the Lie algebra g by considering the curve v given by V = TeLxv. The reduced curve v is
described, with respect to a given basis B = {e1, . . . , en} of g, by v =

∑n
i=1 viei, where v1, . . . , vn can be

seen as pseudo-velocities of x with respect to the basis B. The j-order derivative of the curve v is given
by v( j) =

∑n
i=1 v( j)

i ei, j ≥ 1 (and is independent of the chosen basis).
If x is a Riemannian heptic on G then we call Lie hexic to the corresponding reduced curve v in g. To

give a characterization of Lie hexics on a Lie algebra we need to compute the expression of TxLx−1Π(x).
Higher-order covariant derivatives of the curve x can be written in terms of the curve v and its

derivatives, as we can see for the first two covariant derivatives of the velocity vector field V below.

DV
dt
= TeLxv′,

D2V
dt2 = TeLx

(
v(2) +

1
2

[v, v′]
)
.

Similar formulas can be obtained for the higher-order covariant derivatives of a vector field Y along
x. When we consider the reduced curve y of Y in g, it follows that

D2Y
dt2 + R (Y,V) V = TeLx

(
y(2) +

1
2

[v′, y] + [v, y′]
)
.
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By taking Y = (D/dt)V , we obtain an expression for Γ(x),

Γ(x) = TeLx

(
v(3) + [v, v(2)]

)
.

This gives rise to the reduced equation of Riemannian cubics,

v(3) = [v(2), v], (4.5)

and leads to the definition of Lie quadratics proposed by Noakes in [31].
We can also derive

Σ(x) =
D2

dt2Γ(x) + R (Γ(x),V) V and ∆(x) =
D2

dt2Σ(x) + R (Σ(x),V) V,

in terms of the curve v and its derivatives and, after many technical entedious computations, it is possible
to obtain the reduction of the Eq (3.26) to the Lie algebra g.

Since the Lagrangian function L of the variational problem (P) is left-invariant, this reduction gives
rise to the Euler-Poincaré equation for the reduced Lagrangian function l. Therefore, we chose to obtain
the reduced equations by applying a variational principle to the Lagrangian function l as we are showing
in the next subsection.

4.3. Euler-Poincaré reduction for the Riemannian heptic problem

The Lagrangian function L associated with the Riemannian heptic problem (P) on the Lie group G is
invariant with respect to the lift of the left translation. Under these conditions, we can define the reduced
Lagrangian l : g4 → IR given by the restriction of L to the Lie algebra g4. If we apply a variational
principle to the Lagrangian function l we obtain the Euler-Poincaré equations for the problem (P).

Let x be a curve in G. The corresponding reduced curve v in the Lie algebra g can be lifted to g4 by
considering

(
v; v(1); v(2); v(3)

)
. If we denote the partial functional derivative of l with respect to z ∈ g by

(δl)/(δz), then we have that the curve x in G is a solution of the Euler-Lagrange equations (3.26) iff the
reduced curve v in g is a solution of the Euler-Poincaré equations

(
∂

∂t
− ad∗v)(

δl
δv
−
∂

∂t
δl
δv̇
+
∂2

∂t2

δl
δv(2) −

∂3

∂t3

δl
δv(3) ) = 0.

The restriction of L to g4 is defined as follows:

l : g4 → IR; (v, v̇, v(2), v(3)) 7→ 1
2∥v

(3) + [v, v(2)]∥2.

To obtain the Euler-Poincaré equations, we begin by deriving the partial functional derivatives

δl
δv
= [v(2), v(3)]♭ − ad∗v(2)[v, v(2)]♭,

δl
δv̇
= 0,

δl
δv(2) = [v(3), v]♭ − ad∗v[v, v(2)]♭,

δl
δv(3) = v(3)♭ + [v, v(2)]♭.
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Then, it follows that

δl
δv
−
∂

∂t
δl
δv̇
+
∂2

∂t2

δl
δv(2) −

∂3

∂t3

δl
δv(3)

= −ad∗v(2)[v, v(2)]♭ + 2[v(5), v]♭ + 5[v(4), v̇]♭ + 2[v(3), v(2)]♭

− ad∗v(2)[v, v(2)]♭ − 2ad∗v̇[v̇, v(2)]♭ − 2ad∗v̇[v, v(3)]♭

− 2ad∗v[v̇, v(3)]♭ − ad∗v[v, v(4)]♭ − v(6)♭. (4.6)

If we apply the dual of the adjoint representation at v to the expression given in (4.6), we conclude that

ad∗v
( δl
δv
−
∂

∂t
δl
δv̇
+
∂2

∂t2

δl
δv(2) −

∂3

∂t3

δl
δv(3)

)
= 2ad∗v[v(5), v]♭ + 5ad∗v[v(4), v̇]♭ + 2ad∗v[v(3), v(2)]♭ − ad∗vv(6)♭

− ad∗vad∗v(2)[v, v(2)]♭ − ad∗vad∗v(2)[v, v(2)]♭ − 2ad∗vad∗v̇[v̇, v(2)]♭

− 2ad∗vad∗v̇[v, v(3)]♭ − 2ad∗vad∗v[v̇, v(3)]♭ − ad∗vad∗v[v, v(4)]♭. (4.7)

On the other hand, deriving (4.6) with respect to time, we obtain

∂

∂t
( δl
δv
−
∂

∂t
δl
δv̇
+
∂2

∂t2

δl
δv(2) −

∂3

∂t3

δl
δv(3) )

= −2ad∗v(3)[v, v(2)]♭ − 4ad∗v(2)[v̇, v(2)]♭ − 4ad∗v(2)[v, v(3)]♭

+ 2[v(6), v]♭ + 7[v(5), v̇]♭ + 7[v(4), v(2)]♭ − 6ad∗v̇[v̇, v(3)]♭

− 3ad∗v̇[v, v(4)]♭ − 2ad∗v[v(2), v(3)]♭ − 3ad∗v[v̇, v(4)]♭

− ad∗v[v, v(5)]♭ − v(7)♭. (4.8)

Finally, combining Eqs (4.7) and (4.8) and applying the isomorphism ♯, we get the Euler-Poincaré
equation for l as follows:

v(7) = 3[v(6), v] + 7[v(5), v̇] + 7[v(4), v(2)] + 4[v(3), [v, v(2)]]
+ 4[v(2), [v̇, v(2)]] + 2[v(2), [v, v(3)]] + 6[v̇, [v̇, v(3)]] + 3[v̇, [v, v(4)]]
+ [v, [v(5), v]] + 5[v, [v(4), v̇]] + 2[[[v, v(2)], v(2)], v] + 2[[[v̇, v(2)], v̇], v]
+ 2[[[v, v(3)], v̇], v] + 2[[[v̇, v(3)], v], v] + [[[v, v(4)], v], v]. (4.9)

Therefore, Lie hexics are the smooth curves on the Lie algebra g that are solutions of the Euler-
Poincaré equation (4.9). Consequently, solving Eq (4.9) together with equation dx/dt = TeLxv leads to
Riemannian heptics on G.

5. Final remarks

In this paper, we study a fourth-order extension of the geodesic problem that appears as the most
natural extension of the Riemannian cubic problem. We derive the Euler-Lagrange equation for this
variational problem and obtain the concept of Riemannin heptics as a seventh-degree generalization
of Riemannian cubics. These curves may, in fact, be seen as the best approximations to Riemannian
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cubics when the existence of cubics is conditioned by boundary or interpolation conditions, and reduce
naturally to Riemannian cubics when such curves exist. From this point of view, Riemannian heptics
are a more conceptual generalization of Euclidean heptic polynomials to Riemannian manifolds than
the geometrical polynomials defined in [18–20].

When we specialized the problem to Lie groups, we obtained an invariant variational problem, which
allowed us to derive the corresponding Euler-Poincaré equation (4.9). Hence, this equation characterizes
the Lie hexics and, consequently, the Riemannian heptics on Lie groups.

Furthermore, this study shows the advantages of the Euler-Poincaré reduction. This method allows
us to significantly simplify the calculations that we would have to do to reduce the Euler-Lagrange
equation to the Lie algebra. In fact, it was possible to avoid deriving all the terms with four Lie brackets
that would appear if we applied the reduction directly to the Euler-Lagrange equation (3.26) (see
Subsection 4.2).
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