Research article Special Issues

A pressure-robust stabilizer-free WG finite element method for the Stokes equations on simplicial grids

  • Received: 13 April 2024 Revised: 10 May 2024 Accepted: 21 May 2024 Published: 27 May 2024
  • A pressure-robust stabilizer-free weak Galerkin (WG) finite element method has been defined for the Stokes equations on triangular and tetrahedral meshes. We have obtained pressure-independent error estimates for the velocity without any velocity reconstruction. The optimal-order convergence for the velocity of the WG approximation has been proved for the $ L^2 $ norm and the $ H^1 $ norm. The optimal-order error convergence has been proved for the pressure in the $ L^2 $ norm. The theory has been validated by performing some numerical tests on triangular and tetrahedral meshes.

    Citation: Yan Yang, Xiu Ye, Shangyou Zhang. A pressure-robust stabilizer-free WG finite element method for the Stokes equations on simplicial grids[J]. Electronic Research Archive, 2024, 32(5): 3413-3432. doi: 10.3934/era.2024158

    Related Papers:

  • A pressure-robust stabilizer-free weak Galerkin (WG) finite element method has been defined for the Stokes equations on triangular and tetrahedral meshes. We have obtained pressure-independent error estimates for the velocity without any velocity reconstruction. The optimal-order convergence for the velocity of the WG approximation has been proved for the $ L^2 $ norm and the $ H^1 $ norm. The optimal-order error convergence has been proved for the pressure in the $ L^2 $ norm. The theory has been validated by performing some numerical tests on triangular and tetrahedral meshes.



    加载中


    [1] A. Al-Twaeel, S. Hussian, X. Wang, A stabilizer free weak Galerkin finite element method for parabolic equation, J. Comput. Appl. Math., 392 (2021), 113373. https://doi.org/10.1016/j.cam.2020.113373 doi: 10.1016/j.cam.2020.113373
    [2] H. Zhang, Y. Zou, S. Chai, H. Yue, Weak Galerkin method with $(r, r-1, r-1)$-order finite elements for second order parabolic equations, Appl. Math. Comput., 275 (2016), 24–40. https://doi.org/10.1016/j.amc.2015.11.046 doi: 10.1016/j.amc.2015.11.046
    [3] S. Zhou, F. Gao, B. Li, Z. Sun, Weak galerkin finite element method with second-order accuracy in time for parabolic problems, Appl. Math. Lett., 90 (2019), 118–123. https://doi.org/10.1016/j.aml.2018.10.023 doi: 10.1016/j.aml.2018.10.023
    [4] A. AL-Taweel, X. Wang, X. Ye, S. Zhang, A stabilizer free weak Galerkin method with supercloseness of order two, Numer. Methods Partial Differ. Equations, 37 (2021), 1012–1029. https://doi.org/10.1002/num.22564 doi: 10.1002/num.22564
    [5] G. Chen, M. Feng, X. Xie, A robust WG finite element method for convection-diffusion-reaction equations, J. Comput. Appl. Math., 315 (2017), 107–125. https://doi.org/10.1016/j.cam.2016.10.029 doi: 10.1016/j.cam.2016.10.029
    [6] R. Lin, X. Ye, S. Zhang, P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal., 56 (2018), 1482–1497. https://doi.org/10.1137/17M1152528 doi: 10.1137/17M1152528
    [7] J. Burkardt, M. Gunzburger, W. Zhao, High-precision computation of the weak Galerkin methods for the fourth-order problem, Numer. Algorithms, 84 (2020), 181–205. https://doi.org/10.1007/s11075-019-00751-5 doi: 10.1007/s11075-019-00751-5
    [8] M. Cui, S. Zhang, On the uniform convergence of the weak Galerkin finite element method for a singularly-perturbed biharmonic equation, J. Sci. Comput., 82 (2020), 5–15.
    [9] Y. Feng, Y. Liu, R. Wang, S. Zhang, A conforming discontinuous Galerkin finite element method on rectangular partitions, Electron. Res. Arch., 29 (2021), 2375–2389. https://doi.org/10.3934/era.2020120 doi: 10.3934/era.2020120
    [10] X. Ye, S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J. Numer. Anal. Model., 17 (2020), 110–117.
    [11] X. Ye, S. Zhang, A conforming discontinuous Galerkin finite element method: part Ⅱ, Int. J Numer. Anal. Model., 17 (2020), 281–296.
    [12] W. Zhao, Higher order weak Galerkin methods for the Navier-Stokes equations with large Reynolds number, Numer. Methods Partial Differ. Equations, 38 (2022), 1967–1992. https://doi.org/10.1002/num.22852 doi: 10.1002/num.22852
    [13] X. Hu, L. Mu, X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations on polytopal meshes, J. Comput. Appl. Math., 362 (2019), 614–625. https://doi.org/10.1016/j.cam.2018.08.022 doi: 10.1016/j.cam.2018.08.022
    [14] J. Zhang, K. Zhang, J. Li, X. Wang, A weak Galerkin finite element method for the Navier-Stokes equations, Commun. Comput. Phys., 23 (2018), 706–746. https://doi.org/10.4208/cicp.OA-2016-0267 doi: 10.4208/cicp.OA-2016-0267
    [15] W. Huang, Y. Wang, Discrete maximum principle for the weak Galerkin method for anisotropic diffusion problems, Commun. Comput. Phys., 18 (2015), 65–90. https://doi.org/10.4208/cicp.180914.121214a doi: 10.4208/cicp.180914.121214a
    [16] G. Li, Y. Chen, Y. huang, A new weak Galerkin finite element scheme for general second-order elliptic problems, J. Comput. Appl. Math., 344 (2018), 701–715. https://doi.org/10.1016/j.cam.2018.05.021 doi: 10.1016/j.cam.2018.05.021
    [17] J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103–115. https://doi.org/10.1016/j.cam.2012.10.003 doi: 10.1016/j.cam.2012.10.003
    [18] H. Li, L. Mu, X. Ye, Interior energy estimates for the weak Galerkin finite element method, Numer. Math., 139 (2018), 447–478. https://doi.org/10.1007/s00211-017-0940-4 doi: 10.1007/s00211-017-0940-4
    [19] J. Liu, S. Tavener, Z. Wang, Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes, SIAM J. Sci. Comput., 40 (2018), 1229–1252. https://doi.org/10.1137/17M1145677 doi: 10.1137/17M1145677
    [20] J. Liu, S. Tavener, Z. Wang, The lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes, J. Comput. Phys., 359 (2018), 312–330. https://doi.org/10.1016/j.jcp.2018.01.001 doi: 10.1016/j.jcp.2018.01.001
    [21] X. Liu, J. Li, Z. Chen, A weak Galerkin finite element method for the Oseen equations, Adv. Comput. Math., 42 (2016), 1473–1490. https://doi.org/10.1007/s10444-016-9471-2 doi: 10.1007/s10444-016-9471-2
    [22] L. Mu, X. Ye, S. Zhang, A stabilizer free, pressure robust and superconvergence weak Galerkin finite element method for the Stokes Equations on polytopal mesh, SIAM J. Sci. Comput., 43 (2021), A2614–A2637. https://doi.org/10.1137/20M1380405 doi: 10.1137/20M1380405
    [23] L. Mu, X. Ye, S. Zhang, Development of pressure-robust discontinuous Galerkin finite element methods for the Stokes problem, J. Sci. Comput., 89 (2021), 26. https://doi.org/10.1007/s10915-021-01634-5 doi: 10.1007/s10915-021-01634-5
    [24] X. Ye, S. Zhang, A stabilizer-free pressure-robust finite element method for the Stokes equations, Adv. Comput. Math., 47 (2021), 28. https://doi.org/10.1007/s10444-021-09856-9 doi: 10.1007/s10444-021-09856-9
    [25] S. Shields, J. Li, E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106–2124. https://doi.org/10.1016/j.camwa.2017.07.047 doi: 10.1016/j.camwa.2017.07.047
    [26] J. Wang, Q. Zhai, R. Zhang, S. Zhang, A weak Galerkin finite element scheme for the Cahn-Hilliard equation, Math. Comput., 88 (2019), 211–235. https://doi.org/10.1090/mcom/3369 doi: 10.1090/mcom/3369
    [27] C. Wang, J. Wang, Discretization of div-curl systems by weak Galerkin finite element methods on polyhedral partitions, J. Sci. Comput., 68 (2016), 1144–1171. https://doi.org/10.1007/s10915-016-0176-y doi: 10.1007/s10915-016-0176-y
    [28] Y. Xie, L. Zhong, Convergence of adaptive weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 86 (2021), 17. https://doi.org/10.1007/s10915-020-01387-7 doi: 10.1007/s10915-020-01387-7
    [29] T. Zhang, T. Lin, A posteriori error estimate for a modified weak Galerkin method solving elliptic problems, Numer. Methods Partial Differ. Equations, 33 (2017), 381–398. https://doi.org/10.1002/num.22114 doi: 10.1002/num.22114
    [30] X. Ye, S. Zhang, A stabilizer free weak Galerkin method for the biharmonic equation on polytopal meshes, SIAM J. Numer. Anal., 58 (2020), 2572–2588. https://doi.org/10.1137/19M1276601 doi: 10.1137/19M1276601
    [31] X. Ye, S. Zhang, A conforming DG method for the biharmonic equation on polytopal meshes, Int. J. Numer. Anal. Model., 20 (2023), 855–869. https://doi.org/10.4208/ijnam2023-1037 doi: 10.4208/ijnam2023-1037
    [32] X. Ye, S. Zhang, A weak divergence CDG method for the biharmonic equation on triangular and tetrahedral meshes, Appl. Numer. Math., 178 (2022), 155–165. https://doi.org/10.1016/j.apnum.2022.03.017 doi: 10.1016/j.apnum.2022.03.017
    [33] X. Ye, S. Zhang, A $C^0$-conforming DG finite element method for biharmonic equations on triangle/tetrahedron, J. Numer. Math., 30 (2022), 163–172. https://doi.org/10.1515/jnma-2021-0012 doi: 10.1515/jnma-2021-0012
    [34] X. Ye, S. Zhang, A numerical scheme with divergence free H-div triangular finite element for the Stokes equations, Appl. Numer. Math., 167 (2021), 211–217. https://doi.org/10.1016/j.apnum.2021.05.005 doi: 10.1016/j.apnum.2021.05.005
    [35] S. Zhang, P. Zhu, BDM H(div) weak Galerkin finite element methods for Stokes equations, Appl. Numer. Math., 197 (2024), 307–321. https://doi.org/10.1016/j.apnum.2023.11.021 doi: 10.1016/j.apnum.2023.11.021
    [36] X. Ye, S. Zhang, Achieving superconvergence by one-dimensional discontinuous finite elements: the CDG method, East Asian J. Appl. Math., 12 (2022), 781–790. https://doi.org/10.4208/eajam.121021.200122 doi: 10.4208/eajam.121021.200122
    [37] X. Ye, S. Zhang, Order two superconvergence of the CDG finite elements on triangular and tetrahedral meshes, CSIAM Trans. Appl. Math., 4 (2023), 256–274. https://doi.org/10.4208/csiam-am.SO-2021-0051 doi: 10.4208/csiam-am.SO-2021-0051
    [38] X. Ye, S. Zhang, Order two superconvergence of the CDG method for the Stokes equations on triangle/tetrahedron, J. Appl. Anal. Comput., 12 (2022), 2578–2592. https://doi.org/10.11948/20220112 doi: 10.11948/20220112
    [39] K. L. A. Kirk, S. Rhebergen, Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations, J. Sci. Comput., 81 (2019), 881–897. https://doi.org/10.1007/s10915-019-01040-y doi: 10.1007/s10915-019-01040-y
    [40] J. Wang, X. Wang, X. Ye, Finite element methods for the Navier-Stokes equations by H(div) elements, J. Comput. Math., 26 (2008), 410–436.
    [41] X. Ye, S. Zhang, A stabilizer free weak Galerkin finite element method on polytopal mesh: part Ⅲ, J. Comput. Appl. Math., 394 (2021), 113538. https://doi.org/10.1016/j.cam.2021.113538 doi: 10.1016/j.cam.2021.113538
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(463) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog