The acquisition time of magnetic resonance imaging (MRI) is relatively long. To achieve high-quality and fast reconstruction of magnetic resonance (MR) images, we proposed a non-convex regularization model for MR image reconstruction with the modified transformed $ {l_1} $ total variation (MTL1TV) regularization term. We addressed this new model using the alternating direction method of multipliers (ADMM). To evaluate the proposed MTL1TV model, we performed numerical experiments on several MR images. The numerical results showed that the proposed model gives reconstructed images of improved quality compared with those obtained from state of the art models. The results indicated that the proposed model can effectively reconstruct MR images.
Citation: Xuexiao You, Ning Cao, Wei Wang. An MTL1TV non-convex regularization model for MR Image reconstruction using the alternating direction method of multipliers[J]. Electronic Research Archive, 2024, 32(5): 3433-3456. doi: 10.3934/era.2024159
The acquisition time of magnetic resonance imaging (MRI) is relatively long. To achieve high-quality and fast reconstruction of magnetic resonance (MR) images, we proposed a non-convex regularization model for MR image reconstruction with the modified transformed $ {l_1} $ total variation (MTL1TV) regularization term. We addressed this new model using the alternating direction method of multipliers (ADMM). To evaluate the proposed MTL1TV model, we performed numerical experiments on several MR images. The numerical results showed that the proposed model gives reconstructed images of improved quality compared with those obtained from state of the art models. The results indicated that the proposed model can effectively reconstruct MR images.
[1] | I. Pykett, J. Newhouse, F. Buonanno, T. Brady, M. Goldman, J. Kistler, et al., Principles of nuclear magnetic resonance imaging, Radiology, 143 (1982), 157–168. https://doi.org/10.1148/radiology.143.1.7038763 doi: 10.1148/radiology.143.1.7038763 |
[2] | X. Gu, W. Xue, Y. Sun, X. Qi, X. Luo, Y. He, Magnetic resonance image restoration via least absolute deviations measure with isotropic total variation constraint, Math. Biosci. Eng., 20 (2023), 10590–10609. https://doi.org/10.3934/mbe.2023468 doi: 10.3934/mbe.2023468 |
[3] | Y. Beauferris, J. Teuwen, D. Karkalousos, N. Moriakov, M. Caan, G. Yiasemis, et al., Multi-coil MRI reconstruction challenge assessing brain MRI reconstruction models and their generalizability to varying coil configurations, Front. Neurosci., 16 (2022), 1–16. https://doi.org/10.3389/fnins.2022.919186 doi: 10.3389/fnins.2022.919186 |
[4] | M. Lustig, D. Donoho, J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Reson. Med., 58 (2007), 1182–1195. https://doi.org/10.1002/mrm.21391 doi: 10.1002/mrm.21391 |
[5] | J. He, Q. Liu, A. Christodoulou, C. Ma, F. Lam, Z. Liang, Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors, IEEE Trans. Med. Imaging, 35 (2016), 2119–2129. https://doi.org/10.1109/TMI.2016.2550204 doi: 10.1109/TMI.2016.2550204 |
[6] | A. Tran, T. Nguyen, P. Doan, D. Tran, D. Tran, Parallel magnetic resonance imaging acceleration with a hybrid sensing approach, Math. Biosci. Eng., 18 (2021), 2288–2302. https://doi.org/10.3934/mbe.2021116 doi: 10.3934/mbe.2021116 |
[7] | F. Knoll, K. Hammernik, C. Zhang, S. Moeller, T. Sodickson, D. Sodickson, et al., Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues, IEEE Signal Process. Mag., 37 (2020), 128–140. https://doi.org/10.1109/MSP.2019.2950640 doi: 10.1109/MSP.2019.2950640 |
[8] | D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, 52 (2006), 1289–1306. https://doi.org/10.1109/TIT.2006.871582 doi: 10.1109/TIT.2006.871582 |
[9] | J. Ye, Compressed sensing MRI: a review from signal processing perspective, BMC Biomed. Eng., 1 (2019), 1–17. https://doi.org/10.1186/s42490-019-0006-z doi: 10.1186/s42490-019-0006-z |
[10] | X. Li, R. Feng, F. Xiao, Y. Yin, D. Cao, X. Wu, et al., Sparse reconstruction of magnetic resonance image combined with two-step iteration and adaptive shrinkage factor, Math. Biosci. Eng., 19 (2022), 13214–13226. https://doi.org/10.3934/mbe.2022618 doi: 10.3934/mbe.2022618 |
[11] | L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F doi: 10.1016/0167-2789(92)90242-F |
[12] | I. Selesnick, Sparse regularization via convex analysis, IEEE Trans. Signal Process., 65 (2017), 4481–4494. https://doi.org/10.1109/TSP.2017.2711501 doi: 10.1109/TSP.2017.2711501 |
[13] | D. Peleg, R. Meir, A bilinear formulation for vector sparsity optimization, Signal Process., 88 (2008), 375–389. https://doi.org/10.1016/j.sigpro.2007.08.015 doi: 10.1016/j.sigpro.2007.08.015 |
[14] | J. Fan, R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Stat. Assoc., 96 (2001), 1348–1360. https://doi.org/10.1198/016214501753382273 doi: 10.1198/016214501753382273 |
[15] | C. Zhang, Nearly unbiased variable selection under minimax concave penalty, Ann. Stat., 38 (2010), 894–942. https://doi.org/10.1214/09-AOS729 doi: 10.1214/09-AOS729 |
[16] | F. Zhang, H. Wang, W. Qin, X. Zhao, J. Wang, Generalized nonconvex regularization for tensor RPCA and its applications in visual inpainting, Appl. Intell., 53 (2023), 23124–23146. https://doi.org/10.1007/s10489-023-04744-9 doi: 10.1007/s10489-023-04744-9 |
[17] | J. Zou, M. Shen, Y. Zhang, H. Li, G. Liu, S. Ding, Total variation denoising with non-convex regularizers, IEEE Access, 7 (2018), 4422–4431. https://doi.org/10.1109/ACCESS.2018.2888944 doi: 10.1109/ACCESS.2018.2888944 |
[18] | M. Shen, J. Li, T. Zhang, J. Zou, Magnetic resonance imaging reconstruction via non-convex total variation regularization, Int. J. Imaging Syst. Technol., 31 (2021), 412–424. https://doi.org/10.1002/ima.22463 doi: 10.1002/ima.22463 |
[19] | I. Selesnick, I. Bayram, Sparse signal estimation by maximally sparse convex optimization, IEEE Trans. Signal Process., 62 (2014), 1078–1092. https://doi.org/10.1109/TSP.2014.2298839 doi: 10.1109/TSP.2014.2298839 |
[20] | S. Zhang, J. Xin, Minimization of transformed $L_1$ penalty: Closed form representation and iterative thresholding algorithms, Commun. Math. Sci., 15 (2017), 511–537. https://doi.org/10.4310/CMS.2017.v15.n2.a9 doi: 10.4310/CMS.2017.v15.n2.a9 |
[21] | S. Zhang, J. Xin, Minimization of transformed $L_1$ penalty: theory, difference of convex function algorithm, and robust application in compressed sensing, Math. Program., 169 (2018), 307–336. https://doi.org/10.1007/s10107-018-1236-x doi: 10.1007/s10107-018-1236-x |
[22] | H. Li, Q. Zhang, A. Cui, J. Peng, Minimization of fraction function penalty in compressed sensing, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 1626–1637. https://doi.org/10.1109/TNNLS.2019.2921404 doi: 10.1109/TNNLS.2019.2921404 |
[23] | J. Li, Z. Xie, G. Liu, L. Yang, J. Zou, Diffusion optical tomography reconstruction based on convex-nonconvex graph total variation regularization, Math. Meth. Appl. Sci., 23 (2023), 4534–4545. https://orcid.org/0000-0001-7897-7151 |
[24] | Y. Liu, H. Du, Z. Wang, W. Mei, Convex MR brain image reconstruction via no-convex total variation minimization, Int. J. Imaging Syst. Technol., 28 (2018), 246–253. https://doi.org/10.1002/ima.22275 doi: 10.1002/ima.22275 |
[25] | Z. Luo, Z. Zhu, B. Zhang, An AtanTV nonconvex regularization model for MRI reconstruction, J. Sens., 2022 (2022), 1–15. https://doi.org/10.1155/2022/1758996 doi: 10.1155/2022/1758996 |
[26] | Z. Luo, Z. Zhu, B. Zhang, An SCADTV nonconvex regularization approach for magnetic resonance imaging, IAENG Int. J. Comput. Sci., 48 (2021), 1005–1012. https://api.semanticscholar.org/CorpusID: 248818745 |
[27] | Y. Lu, B. Zhang, Z. Zhu, Y. Liu, A CauchyTV non-convex regularization model for MRI reconstruction, Signal, Image Video Process., 17 (2023), 3275–3282. https://doi.org/10.1007/s11760-023-02542-x doi: 10.1007/s11760-023-02542-x |
[28] | S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), 1–122. https://doi.org/10.1561/2200000016 doi: 10.1561/2200000016 |
[29] | D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, 3$^{nd}$ edition, Springer, USA, 2008. https://doi.org/10.1007/978-3-319-18842-3 |
[30] | J. Yang, Y. Zhang, W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data, IEEE J. Sel. Top. Signal Process., 4 (2010), 288–297. https://doi.org/10.1109/JSTSP.2010.2042333 doi: 10.1109/JSTSP.2010.2042333 |
[31] | B. Zhang, G. Zhu, Z. Zhu, S. Kwong, Alternating direction method of multipliers for nonconvex log total variation image restoration, Appl. Math. Modell., 114 (2023), 338–359. https://doi.org/10.1016/j.apm.2022.09.018 doi: 10.1016/j.apm.2022.09.018 |
[32] | J. You, Y. Jiao, X. Lu, T. Zeng, A nonconvex model with minimax concave penalty for image restoration, J. Sci. Comput., 78 (2019), 1063–1086. https://doi.org/10.1007/s10915-018-0801-z doi: 10.1007/s10915-018-0801-z |
[33] | L. Huo, W. Chen, H. Ge, M. K. Ng, Stable image reconstruction using transformed total variation minimization, SIAM J. Imaging Sci., 15 (2022), 1104–1139. https://doi.org/10.1137/21M1438566 doi: 10.1137/21M1438566 |