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Abstract: The acquisition time of magnetic resonance imaging (MRI) is relatively long. To achieve
high-quality and fast reconstruction of magnetic resonance (MR) images, we proposed a non-convex
regularization model for MR image reconstruction with the modified transformed l1 total variation
(MTL1TV) regularization term. We addressed this new model using the alternating direction method of
multipliers (ADMM). To evaluate the proposed MTL1TV model, we performed numerical experiments
on several MR images. The numerical results showed that the proposed model gives reconstructed
images of improved quality compared with those obtained from state of the art models. The results
indicated that the proposed model can effectively reconstruct MR images.

Keywords: MR Image reconstruction; transformed l1 penalty; non-convex regularization; total
variation; ADMM

1. Introduction

Magnetic resonance imaging (MRI) is an approach broadly used for clinical diagnosis because of
its ability to effectively reflect changes in human organs [1–3]. However, a long-standing challenge is
that the acquisition time of MRI is relatively long. To address this problem, researchers have proposed
numerous techniques, such as sparse sampling [4, 5] and parallel imaging [6, 7]. After the theory of
compressed sensing (CS) [8] was proposed, many scholars applied it to recover magnetic resonance
(MR) images from highly undersampled measurements [9, 10]. Research on MR image compression
sensing has thus become increasingly important.
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In the MRI domain, the data acquisition of MRI can be modeled as follows:

y = Ax + ε (1.1)

where x ∈ Rn denotes the desired MRI data, y ∈ Rm is the observed undersampled k-space MRI data,
and the matrix A = RF ∈ Rm×n(m < n). R represents the undersampling operator, such as the radial
sampling operator and Cartesian sampling operator. F is the discrete Fourier transform (DFT) operator,
and ε ∈ Rm is the additive Gaussian noise. The objective of MR image reconstruction is to recover x
from y. Consequently, the reconstruction problem of (1) can be formulated as

min
x
λφ(x) +

1
2

∥∥∥y − Ax
∥∥∥2

2
(1.2)

in which
∥∥∥y − Ax

∥∥∥2

2
is the data fidelity term, λ > 0 is the regularization parameter, and φ(x) is some

regularizing functional exploiting image prior knowledge. In CS-MRI, φ(x) is the standard total vari-
ation (TV) norm (or l1-based regularization) [11], and the corresponding reconstruction model can be
expressed as

min
x
λ∥x∥TV +

1
2

∥∥∥y − Ax
∥∥∥2

2
(1.3)

where ∥x∥TV = ∥Dx∥1 (D is the gradient operator). Although standard TV regularization is convex and
widely used, the l1-norm regularized model induces bias for large coefficients [12] and, hence, lacks the
oracle property. To overcome the shortcomings of l1-norm regularization, researchers have proposed
some non-convex regularization methods based on the capped-L1 (CaP) [13], smoothly clipped abso-
lute deviation (SCAD) [14], minimax concave (MC) penalty [15–18], arctangent penalty (ATAN) [19],
logarithm function (Log) [20], transformed l1 (TL1) [21, 22], fraction function penalty [23], and non-
convex graph total variation (GTV) regularization [23]. For instance, Liu et al. [24] introduced the
minimax concave total variation (MCTV) penalty as a regularization term for MR brain image recon-
struction. Further, Luo et al. [25] used the arctangent function as the non-convex TV regularize term
(AtanTV) for MR image reconstruction. The same team [26] introduced the non-convex MR image
reconstruction model via the SCAD penalty function. Lu et al. [27] also used the non-convex Cauchy
total variation (CauchyTV) as the regularization term for MR image reconstruction. These studies have
shown that non-convex penalties in image restoration usually have better performance than the l1-norm
(or standard TV).

The contributions of this study are as follows. First, we slightly modify the transformed l1 (TL1)
function and propose a modified TL1 penalty function (MTL1). Second, inspired by the previous
work, we use the MTL1 as the regularization term (MTL1TV) to construct a non-convex regularization
model for MR image reconstruction. Third, the proposed model can be solved by the alternating
direction method of multipliers (ADMM) [28–30]. Finally, numerical experiments on several MR
images showed that compared with the traditional TV and state of the art models, the performance
of the MTL1TV model was significantly improved. These results confirm the effectiveness of the
proposed model.

The remainder of this paper is organized as follows. In Section 2, we formally introduce the MTL1
function and present a non-convex MTL1TV model, which is based on the MTL1 function. In Section
3, we utilize the ADMM algorithm to address the proposed non-convex model. The convergence result
is provided in Section 4. The experimental results are then presented in Section 5. Finally, we conclude
the paper in Section 6.
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2. Preliminaries and MTL1TV MRI model

In this section, we provide the definition of the the modified TL1 penalty function (MTL1) and give
an explicit expression of the proximity operator of MTL1. Then, we use MTL1 to define MTL1TV
regularization and structure a non-convex MTL1TV model for MR image reconstruction.

2.1. Preliminaries

Definition 1. The modified transformed l1 function (MTL1) is defined as

ϕa(x) =
a |x|

a + |x|
, (2.1)

where parameter a > 0. It is obtained by slightly modifying the following TL1 penalty function [20]:

pa(x) =
(a + 1) |x|

a + |x|
. (2.2)

Figure 1 shows that the MTL1 is a good alternative to the l1 norm. The larger the value of parameter
a is, the closer the behavior of MTL1 is to the l1 norm.

Figure 1. |x| and MTL1 function plots with a = {0.2, 0.5, 1, 5, 10}.

The proximal operator of ϕa(x) at t ∈ R is defined as

proxϕλ(t) = arg min
x∈R

{
θλ,t(x) := λϕa(x) +

1
2

(x − t)2
}
. (2.3)

Similar to Theorem III.1 of [20], we can derive that for the MTL1 function, there exists a closed-formed
representation of the optimal solution to (2.3).

Theorem 1. The optimal solution x∗ = arg min θλ,t(x) is a threshold function defined as

x∗ =
{

0, |t| ≤ δλ;
gλ(t), |t| > δλ.

(2.4)

where

gλ(t) = sgn(t)
(
2
3

(a + |t|) cos
(
φ(t)

3

)
−

2a
3
+
|t|
3

)
, (2.5)
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with φ(t) = arccos(1 − 27λa2

2(a+|t|)3 ), and the threshold value δλ satisfies

δλ =

{
λ λ ≤ a

2 ;
√

2λa − a
2 λ > a

2 .

To prove Theorem 1, we first give the following lemmas.

Lemma 1. Define three parameters

t∗1 =
3

√
27λa2

4
− a, t∗2 = λ, t

∗
3 =
√

2λa −
a
2

for any parameters λ > 0 and a > 0, then the inequalities t∗1 ≤ t∗3 ≤ t∗2 hold. Furthermore, they are
equal to a

2 when λ = a
2 .

Lemma 2. For any given t, the roots of the following two cubic polynomials of x satisfy the following
properties:

1) If t > t∗1, then the cubic polynomial

x(a + x)2 − t(a + x)2 + λa2 (2.6)

has three distinct real roots, and the largest root x0 is given by x0 = gλ(t), |gλ(t)| ≤ |t|.
2) If t < −t∗1, then the cubic polynomial

x(a − x)2 − t(a − x)2 − λa2 (2.7)

has also three distinct real roots, and the smallest root x0 is given by x0 = gλ(t).

The proof of Lemma 2 is essentially the same as Lemma III.1 in [20] and Lemma 8 in [22], with
only minor changes required due to the different values of t∗1, t∗2, and t∗3 and different cubic polynomials.
The proof of Theorem 1 is similar to Theorem III.1 in [20] and Lemma 9 in [22]. The detailed proofs of
Lemma 2 and Theorem 1 can be found in Appendixes A and B, respectively. Based on the Theorem 1,
the following corollary holds.

Corollary 1. For any a ≥ 2λ, the function θλ,t(x) defined in (2.6) is strictly convex.

The proof of Corollary 1 can be found in Appendix C.
The graph presented in Figure 2(a) shows the plots of the function θλ,t(x) = λϕa(x) + 1

2 (x − t)2 with
t = 0, λ = 5, and a = 15, 50. It can be seen in Figure 2(a) that the function θλ,t(x) is strictly convex
for a ≥ 2λ. However, when λ = 5, and a = 0.5, 1, the graph presented in Figure 2(b) shows that the
function θλ,t(x) is non-convex.

=5

a=15
a=50

(a)

=5

a=0.5
a=1

(b)

Figure 2. The behavior of the function θλ,t(x) with a, λ = 5, and t = 0.
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From Theorem 1, the convexity of the function θλ,t(x) can be ensured by constraining the parameter
a as a ≥ 2λ, which means that there exists the unique global minimizer to θλ,t(x) when a ≥ 2λ. The
unique global minimizer to θλ,t(x) can be expressed in the following theorem.

According to (2.1), we consider another function ψa(x), which is induced by ϕa(x):

ψa(x) := |x| − ϕa(x). (2.8)

Figure 3 shows the curves of the functions |x|, ϕa(x), ψa(x) and x2

a (a = 10). Clearly, the function
ψa(x) is a convex, continuously differentiable function that satisfies 0 ≤ ψa(x) ≤ |x| and ψa(x) ≤ x2

a for
all x ∈ R.

Figure 3. Plots of the |x|, ϕa(x), ψa(x), and x2

a (a = 10) functions.

Then, the MTL1 function can be written as

ϕa(x) = |x| − ψa(x). (2.9)

To establish our MTL1TV MRI model, we define a multivariate penalty Φa : Rn → R based
on the above penalty ϕa. For this purpose, we first define a multivariate generalization form of the
corresponding function ψa in (2.8).

Definition 2. Let ψa be correspondingly defined in (2.8); then Ψa : Rn → R is defined as

Ψa(v) =
n∑

i=1

ψa(vi), v ∈ Rn. (2.10)

Remark 1. The function Ψa satisfies 0 ≤ Ψa(v) ≤ ∥v∥1 and Ψa(v) ≤ 1
a ∥v∥

2
2 for all v ∈ Rn.

Then, the multivariate penalty of ϕa is given by

Φa(v) =
n∑

i=1

(|vi| − ψa(vi)) = ∥v∥1 − Ψa(v), v ∈ Rn (2.11)

Finally, by replacing v with gradient Dx in (2.11) (D is the first-order difference operator/matrix), we
obtain the definition of MTL1TV below.
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Definition 3 (MTL1TV). The MTL1TV regularizer: ∥x∥MT L1TV : Rn → R,

∥x∥MT L1TV := Φa(Dx) = ∥Dx∥1 − Ψa(Dx). (2.12)

Now, the MR image reconstruction model can be formulated as

min
x
λ∥x∥MT L1TV +

1
2

∥∥∥y − Ax
∥∥∥2

2
, (2.13)

where λ > 0 is called the regularization parameter. Because the MTL1 penalty function is non-convex,
the model in (2.13) is non-convex. However, the global convexity of the objective function can be
controlled by adjusting parameter a, as shown in Theorem 2 below.

Theorem 2. Let λ > 0, a > 0. Define F : Rn → R as

Fa(x) =
1
2

∥∥∥y − Ax
∥∥∥2

2
+ λ∥x∥MT L1TV , (2.14)

If a ≥ 2λ and DTD ⪯ ATA, then Fa(x) is a convex function.

Proof. Substituting (2.12) into (2.14), we have

Fa(x) =
1
2

∥∥∥y − Ax
∥∥∥2

2
+ λ∥x∥MT L1TV

=
1
2

∥∥∥y − Ax
∥∥∥2

2
+ λ (∥Dx∥1 − Ψa(Dx))

=
1
2

[∥∥∥y
∥∥∥2

2
− 2yTAx + ∥Ax∥22

]
+ λ∥Dx∥1 − λΨa(Dx)

=

[
1
2

∥∥∥y
∥∥∥2

2
− yTAx + λ∥Dx∥1

]
+

[
1
2
∥Ax∥22 − λΨa(Dx)

]
.

Note that 1
2

∥∥∥y
∥∥∥2

2
does not depend on x and that yTAx is linear in x. Hence, the function Fa(x) is convex

if F2(x) is convex, where F2(x) is defined as

F2(x) =
1
2
∥Ax∥22 − λΨa(Dx)

=
1
2

(
∥Ax∥22 −

2λ
a
∥Dx∥22

)
+ λ

(
1
a
∥Dx∥22 − Ψa(Dx)

)
=

1
2

xT
(
ATA −

2λ
a

DTD
)

x + λ
(
1
a
∥Dx∥22 − Ψa(Dx)

)
.

The first term is convex if ATA ⪰ 2λ
a DTD. Since a ≥ 2λ and are DTD ⪯ ATA given, it follows that the

first term is convex. From Remark 1, the last term is convex. Hence, F2(x) is convex. Therefore, Fa(x)
is convex.

3. ADMM for MTL1TV model

In this section, the optimization algorithm is presented in detail. From Theorem 2, (2.13) is a con-
vex optimization problem under certain conditions, which can be solved via the convex optimization
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algorithms. Hence, the ADMM is used to effectively solve the model in (2.13). First, according to the
definition of ∥x∥MT L1TV , we rewrite (2.13) as follows:

min
x
λΦa(Dx) +

1
2

∥∥∥y − Ax
∥∥∥2

2
. (3.1)

Next, we introduce the auxiliary variable z with the constraint z = Dx. Then, the optimization problem
(3.1) is rewritten as

min
x
λΦa(z) +

1
2
∥y − Ax∥22 , s.t. z = Dx. (3.2)

Under the ADMM framework, the augmented Lagrangian function of (3.2) is

L(x, z,w, β) = λΦa(z) +
1
2

∥∥∥y − Ax
∥∥∥2

2
− ⟨w, z − Dx⟩ +

β

2
∥z − Dx∥22 (3.3)

= λΦa(z) +
1
2

∥∥∥y − Ax
∥∥∥2

2
+
β

2

∥∥∥∥∥z − Dx −
w
β

∥∥∥∥∥2

2
−
∥w∥22
2β

, (3.4)

where w ∈ Rn is the Lagrange multiplier, and β > 0 is a penalty parameter. Then, we invoke the
ADMM by iterating the variable updates in (3.5) to (3.7):

xk+1 = arg min
x

L(x, zk,wk, βk) = arg min
x

{
1
2

∥∥∥y − Ax
∥∥∥2

2
+

〈
wk,Dx

〉
+
βk

2

∥∥∥zk − Dx
∥∥∥2

2

}
, (3.5)

zk+1 = arg min
z

L(xk+1, z,wk, βk) = arg min
z

{
λΦa(z) −

〈
wk, z

〉
+
βk

2

∥∥∥z − Dxk+1
∥∥∥2

2

}
, (3.6)

wk+1 = wk + βk(Dxk+1 − zk+1), βk+1 = θβk. (3.7)

Now, we give the detailed steps for solving the subproblems in (3.5) and (3.6) alternatively.
Step 1. Update xk+1 with zk, and keep wk fixed. Let the gradient of this objective function be zero,

and obtain the following equation:

(βDTD+ATA)xk+1 = βDTzk+ATy − DTwk. (3.8)

The matrix A = RF, where F is the Fourier operator with the property FT = F−1. Since DTD is a cyclic
matrix, it can be diagonalized by Fourier transform. Therefore, xk+1 can be solved by using two Fourier
transforms:

xk+1 = (βDTD+ATA)−1(βDTzk+ATy − DTwk). (3.9)

Step 2. Update zk+1 with xk+1, and keep wk fixed. From (3.6), we have

zk+1 = arg min
z

λΦa(z) +
β

2

∥∥∥∥∥∥z −
(
Dxk+1 +

wk

β

)∥∥∥∥∥∥2

2

 .
According to Theorem 1, zk+1 is given by the following expression:

zk+1 = proxΦa
λ/β

(Dxk+1 +
wk

β
). (3.10)

Based on the above analysis, the specific algorithm for solving (3.1) can be summarized as Algo-
rithm 1.

Electronic Research Archive Volume 32, Issue 5, 3433–3456.
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Algorithm 1 ADMM for solving the MTL1TV model

1: Input: a > 0, β > 0, λ > 0, θ > 1, k = 0, u0 = (x0, z0,w0), maxiter
2: while not converged, do
3: Update xk+1 via (3.9).
4: Update zk+1 via (3.10).
5: Update wk+1 via (3.7).
6: Set uk+1 = (xk+1, zk+1,wk+1).
7: k = k + 1.
8: end while

4. Convergence analysis

In this section, we discuss the convergence of the proposed alternating minimization algorithm.
Through this paper, we assume that ker(A) ∩ ker(D) = 0. The assumption is very reasonable for the
imaging problem [31, 32]. In Algorithm 1, the dominant computation is the steps to solve the two
minimization subproblems (3.5) and (3.6). Inspired by [31, 32], we have the following convergence
result for Algorithm 1.

Assume that (x∗, z∗, λ∗) is a stationary point that satisfies the first order optimality conditions of
(3.6):

0 = AT(Ax∗ − y) + DTw∗,
0 ∈ ∂λΦa(z∗) − w∗,
0 = Du∗ − z∗. (4.1)

Obviously, one can easily find that x∗ satisfies

0 ∈ ∂λΦa(z∗) + AT(Ax∗ − y), (4.2)

which is the first order necessary condition of (2.13) about stationary point. Otherwise, by Algorithm
1, each iteration step about the subproblems (3.5)–(3.7) follows:

0 = AT(Axk+1 − y) + DTwk
+ βkDT(Dxk+1 − zk), (4.3)

0 ∈ ∂λΦa(zk+1) − wk − βk(Dxk+1 − zk+1), (4.4)
wk+1 = wk + βk(Dxk+1 − zk+1). (4.5)

In the following, we will prove the sequence {xk, zk, λk} generated by the Algorithm 1 has a limit point
(x∗, z∗, λ∗) that satisfies (4.1). The following two lemmas state that the metric L(xk, zk,wk, βk) and the
sequences xk and {zk} are bounded.

Lemma 3. Let L(xk, zk,wk, βk) be the sequence generated by Algorithm 1, then {wk} and
{L(xk, zk,wk, βk)} are bounded.

Proof. First, we prove the Lagrange multiplier wk ∈ Rn is bounded and ∥wk∥ ≤
√

nλ. Let d ∈ ∂λϕa(x),
then, if x > 0, d = λa2

(a+x)2 ∈ (0, λ). If x < 0, d = −λa2

(a−x)2 ∈ (−λ, 0). If x = 0, d ∈ [λ, λ]. Therefore, |d| ≤ λ.

Electronic Research Archive Volume 32, Issue 5, 3433–3456.
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On the other hand, combine (4.4) and (4.5), and we have wk+1 ∈ ∂λΦa(zk+1). Thus, by |d| ≤ λ, we have
∥wk+1∥∞ ≤ λ. Because wk+1 is finite dimensional, it implies that {wk} is bounded and ∥wk∥ ≤

√
nλ < ∞.

Then, we prove {L(xk, zk,wk, βk)} is bounded. By (4.5), we notice that

Dxk+1 − zk+1 =
wk+1 − wk

βk . (4.6)

From the above formula and (3.7), we have

L(xk+1, zk+1,wk+1, βk+1) − L(xk+1, zk+1,wk+1, βk) =
βk+1

2
∥zk+1 − Dxk+1∥22 −

βk

2
∥zk+1 − Dxk+1∥22

=
βk+1 − βk

2(βk)2 ∥w
k+1 − wk∥22, (4.7)

L(xk+1, zk+1,wk+1, βk) − L(xk+1, zk+1,wk, βk) = ⟨wk − wk+1, zk+1 − Dxk+1⟩

=
1
βk ∥w

k+1 − wk∥22. (4.8)

By the definitions of zk+1 and xk+1, we know that

L(xk+1, zk+1,wk, βk) − L(xk+1, zk,wk, βk) ≤ 0, (4.9)
L(xk+1, zk,wk, βk) − L(xk, zk,wk, βk) ≤ 0. (4.10)

Summing (4.7)–(4.10), we have

L(xk+1, zk+1,wk+1, βk+1) − L(xk, zk,wk, βk) ≤
βk+1 + βk

(2βk)2 ∥w
k+1 − wk∥22

≤
2(θ + 1)nλ2

β0θk , (4.11)

Summing up the above inequality from k = 0, we obtain

L(xk+1, zk+1,wk+1, βk+1) − L(x0, z0,w0, β0) ≤
2n(θ + 1)λ2(1 − 1

θk+1 )

β0(1 − 1
θ
)

, (4.12)

Because θ > 1, let k → ∞, and we have

lim
k→∞

L(xk+1, zk+1,wk+1, βk+1) < L(x0, z0,w0, β0) +
2nθ(θ + 1)λ2

β0(θ − 1)
< ∞, (4.13)

On the other hand, from lim
k→∞

βk = ∞, and the fact that {wk+1} is bounded, we know

lim
k→∞
∥Dxk+1 − zk+1∥22 = lim

k→∞

∥∥∥∥∥∥wk+1 − wk

βk

∥∥∥∥∥∥2

2

= 0, (4.14)

and then
lim
k→∞

L(xk+1, zk+1,wk+1, βk+1) ≥ lim
k→∞
⟨wk+1,Dxk+1 − zk+1⟩ = 0. (4.15)

By (4.13) and (4.15), we know

0 ≤ lim
k→∞

L(xk+1, zk+1,wk+1, βk+1) < ∞. (4.16)

So, {L(xk+1, zk+1,wk+1, βk+1)} is bounded.
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Lemma 4. Let {(xk, zk)} be the sequence generated by Algorithm 1, then the sequences {xk} and {zk}

are bounded.

Proof. From (4.9) and (4.10), we obtain that L(xk+1, zk+1,wk, βk) is upper bounded. Next, we know that
L(xk, zk,wk, βk) is strongly convex about the variable x, and the following inequality holds:

L(xk+1, zk,wk, βk) − L(xk, zk,wk, βk) ≤ −
ck

2
∥xk+1 − xk∥22. (4.17)

Summing (4.7)–(4.9) and (4.17), we have

L(xk+1, zk+1,wk+1, βk+1) − L(xk, zk,wk, βk) ≤ −
ck

2
∥xk+1 − xk∥22 +

2(θ + 1)nλ2

β0θk . (4.18)

Summing the above inequality from k = 0, we have

L(xk+1, zk+1,wk+1, βk+1) − L(x0, z0,w0, β0) ≤
2(θ + 1)nλ2

β0(θ − 1)
−

∑
0≤i≤k

ci

2
∥xi+1 − xi∥22, (4.19)

which together with (4.16) yields
lim
k→∞
∥xk+1 − xk∥22 = 0. (4.20)

Otherwise, if lim
k→∞
∥xk+1 − xk∥22 , 0, then

∑
0≤i≤k

ci

2 ∥x
i+1 − xi∥22 = +∞; thus,

lim
k→∞

L(xk+1, zk+1,wk+1, βk+1) = −∞,

and (4.16), a contradiction. By (4.20), we know that {xk} is a Cauchy sequence and, thus, is convergent
and bounded.

Furthermore, we show that {zk} is bounded. By (3.4) and (4.12), we have

λΦa(zk) +
1
2

∥∥∥y − Axk
∥∥∥2

2
= L(zk, xk,wk−1, βk−1) +

∥wk−1∥22

2βk−1 −
βk−1

2

∥∥∥∥∥∥zk − Dxk −
wk−1

βk−1

∥∥∥∥∥∥2

2

= L(zk, xk,wk−1, βk−1) +
1

2βk−1 (∥wk−1∥22 − ∥w
k∥22).

Because lim
k→∞

βk = ∞ and {wk} are bounded, we also know that {zk} and {Axk} are bounded.

Now, we are ready for proving the following convergence result.

Theorem 3. Let {xk, zk,wk} be the sequence generated by Algorithm 1, then, there exists a subsequence
{xk j , zk j ,wk j}, which converges to a stationary point (x∗, z∗,w∗) and satisfies (4.1).

Proof. By Lemmas 3 and 4, the sequence {xk, zk,wk} is bounded, so there exists a subsequence
{xk j , zk j ,wk j} that converges to a cluster point (x∗, z∗,w∗). From the lower semi-continuity of
L(x, z,w, β),

lim inf
j→∞

L(xk j+1, zk j+1,wk j , βk j) ≥ L(x∗, z∗,w∗, β∞)
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and as zk j+1 is a minimizer of function L(xk j+1, zk j+1,wk j , βk j) with respect to z,

lim sup
j→∞

L(xk j+1, zk j+1,wk j , βk j) ≤ L(x∗, z∗,w∗, β∞).

By the above two inequalities, we get

lim
j→∞

λΦa(zk j) = λΦa(z∗).

One can immediately verify that

0 = AT(Ax∗ − y) + DTw∗,
0 ∈ ∂λΦa(z∗) − w∗,
0 = Du∗ − z∗.

Therefore, (x∗, z∗,w∗) is a Karush-Kuhn-Tucker point of the problem (3.2).

Remark 2. From Corollary 1, if a ≥ 2λ, the two subproblems (3.5) and (3.6) are continuous, coer-
cive, and strictly convex. Consequently, every subproblem has a global solution. Additionally, from
Theorem 2, we know that the objective function is a convex function, which implies the stationary point
is the global minimum point.

5. Experiments

In this section, we present experiments conducted to verify the performance of the MTL1TV method
in MATLAB 2019a on a laptop with 32 GB RAM and an Intel Core i7-12700H CPU at 2.70 GHz. We
compared our proposed method with the standard TV [11], MCTV [24], and transformed total variation
(TTV) [33] methods. For fair performance comparison, the parameters used in comparing algorithms
have been appropriately tuned to yield a better reconstruction effect. We used three metrics to assess
the quality and accuracy of image reconstruction: the relative error (RE), peak signal-to-noise ratio
(PSNR), and structural similarity index (SSIM). These metrics are defined as follows:

PSNR = 10 lg
2552

∥xk − x∥2
, RE =

∥xk − x∥2
∥x∥2

.

where x, xk are the original image and reconstructed image, respectively, and

SSIM =
(2µxµxk + C1)(2σxxk + C2)

(µ2
x + µ

2
xk + C1)(σ2

x + σ
2
xk + C2)

,

where µx and µxk are the mean of x and xk, k is the number of iterations in the algorithm, σ2 and σ2
xk

denote the variance of x and xk, and σxxk denotes the covariance of x and xk. The positive constants C1

and C2 are stabilization constants. Generally, the MR image reconstruction is better if it has a lower
RE and a higher PSNR and SSIM.
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The sampling templates and the experimental data are shown in Figure 4. The test data (a)–(c) was
three typical MR images: Shepp-Logan, Brain, and Brain 2; (c) and (d) are two different brain MR
images. The sampling templates (d)–(f) were radial, random, and Cartesian sampling, respectively.
The size of sampling masks and MRI data was 256 × 256. In the experiments, the stopping criterion
was usually as follows:

∥xk+1 − xk∥2

∥xk+1∥2
≤ 10−4,

or the maximum number of iteration 200.

Figure 4. Experimental data and sampling patterns. (a) Shepp-Logan Phantom; (b) Brain;
(c) Brain 2; (d) Radial sampling; (e) Random sampling; (f) Cartesian sampling.

5.1. Experiments on noiseless data

The sampling masks and MR data shown in Figure 4 are used to evaluate our proposed MTL1TV
method. Table 1 displays the PSNR, SSIM, RE, and CPU time required to reconstruct various MR
images using different methods with varying sampling templates. As observed in Table 1, the time
required to reconstruct an MR image using TV is shorter than other methods, but its performance is
inferior. Furthermore, when compared with TV, MCTV, and TTV, it is evident that MTL1TV exhibits
higher PSNR and SSIM values with lower RE. This suggests that MTL1TV offers improved MR image
reconstruction quality, simultaneously maintaining a reasonable runtime as shown in Table 1.

The visual comparison of reconstruction results and the error images are shown in Figures 5−7. In
Figure 5, the Shepp-Logan phantom is used to demonstrate the performance of the proposed method.
A Cartesian sampling at a sampling rate of 34% is employed to compare with the four reconstruction
models proposed above. The regularization parameters λ for TV, MCTV, TTV, and MTL1TV are set to
0.0001, 0.005, 0.001, and 0.005, respectively. For TTV and MTL1TV, the parameter a is set to 1 and
0.05, respectively. From the Figure 5, it is observed that compared with other methods, MTL1TV has
the best reconstruction capability, and the reconstructed image is most similar to the original image in
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the visual effects, which is reflected by the comparison of the difference images.

Figure 5. Results of Shepp-Logan reconstruction using a Cartesian mask with a sampling
rate of 34%. (a) Original image; (f) Cartesian sampling; (b)–(e) reconstructed images using
TV, MCTV, TTV, and MTL1TV, respectively; (g)–(i) difference images between (a) and (b)–
(e).

Figure 6 displays the reconstruction results of brain data under radial sampling with 10 trajec-
tory lines and a 3% sampling ratio. We set the regularization parameters λ of TV, MCTV, TTV, and
MTL1TV to 0.000001, 0.000005, 0.001, and 0.001, respectively. The value of parameter a is set as 0.5
for TTV, while it is set as 0.1 for MTL1TV. Visually, there is no significant difference. The residual
images illustrate that the proposed method can visually gain better reconstructions.

For the Brain 2 image, random sampling with a 30% sampling rate and a 0.1 sampling radius was
employed to test the image. The regularization parameters λ were 0.00001, 0.00001, 0.0001, and
0.0005. The value of a in TTV was a = 0.5, while in MTL1TV, a = 0.1. The reconstructed images and
errors are shown in Figure 7. It shows that the reconstruction results of the four methods are similar,
and MTL1TV is slightly better than the other three methods.

Additionally, the convergence of the proposed method is empirically tested. In Figure 8, we illus-
trate the behavior of the proposed MTL1TV model in the iteration process. It respectively shows the
curves of the RE, PSNR, and SSIM values on Shepp-Logan phantom data under a radial mask with a
3% sampling ratio versus iteration numbers. It is shown that as the number of iterations increased, the
RE value generated by MTL1TV gradually decreased, while the PSNR and SSIM values increased,
which exhibits the stable convergence trend in the subsequent iterations.
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Figure 6. Results of brain reconstruction using a radial mask with a sampling rate of 3%. (a)
Original image; (f) Radial sampling; (b)–(e) reconstructed images using TV, MCTV, TTV,
and MTL1TV, respectively; (g)–(i) difference images between (a) and (b)–(e).

Figure 7. Results of Brain 2 reconstruction using a random mask with a sampling rate of
30%. (a) Original image; (f) Random sampling; (b)–(e) reconstructed images using TV,
MCTV, TTV, and MTL1TV, respectively; (g)–(i) difference images between (a) and (b)–(e).

Figure 8. Metric curves versus iteration number.
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Table 1. Numerical results of the four algorithms.

Test image Template Method RE (%) PSNR (dB) SSIM CPU time (s)

Shepp-Logan

Radial sampling 3%
TV 15.71 28.2474 0.6794 1.649427
MCTV 5.44 37.4617 0.7120 9.922404
TTV 4.36 39.3778 0.7731 2.089988
MTL1TV 2.74 43.4180 0.8824 2.081267

Random sampling 30%
TV 0.76 54.5952 0.9805 1.644969
MCTV 0.59 56.7759 0.9858 9.789923
TTV 0.09 72.6855 0.9996 2.157613
MTL1TV 0.05 78.7386 0.9999 2.144944

Cartesian sampling 34%
TV 0.70 55.2138 0.9849 1.711586
MCTV 0.53 57.6397 0.9904 9.709789
TTV 0.12 70.5970 0.9999 2.839062
MTL1TV 0.04 79.7220 0.9999 2.107535

Brain

Radial sampling 3%
TV 22.28 23.4557 0.4981 1.648866
MCTV 21.36 23.8205 0.6275 9.888602
TTV 20.88 24.0185 0.7004 2.198074
MTL1TV 19.78 24.4883 0.7877 2.186878

Random sampling 30%

TV 3.69 38.5007 0.8673 1.645874
MCTV 2.84 41.3783 0.9171 10.657604
TTV 1.23 48.6261 0.9924 3.549396
MTL1TV 1.08 49.8008 0.9956 2.450209

Cartesian sampling 34%

TV 6.98 33.5339 0.8921 1.655883
MCTV 5.64 35.3929 0.9243 9.734209
TTV 5.64 35.3861 0.9374 2.348402
MTL1TV 5.40 35.7689 0.9478 2.347148

Brain2

Radial sampling 3%

TV 18.88 22.7062 0.5848 1.651263
MCTV 17.91 23.1698 0.6415 9.983066
TTV 16.36 23.9466 0.7137 2.173014
MTL1TV 16.28 23.9891 0.7244 2.149936

Random sampling 30%

TV 3.61 37.0681 0.9468 1.682748
MCTV 2.99 38.7059 0.9646 9.940363
TTV 2.58 39.9759 0.9723 2.426169
MTL1TV 2.37 40.7350 0.9771 2.414485

Cartesian sampling 34%

TV 6.74 31.6495 0.9096 1.643168
MCTV 6.17 32.4159 0.9240 9.893311
TTV 6.29 32.2556 0.9208 2.343147
MTL1TV 6.10 32.5116 0.9241 2.389379

5.2. The Parameters selection

In the proposed model, there are two important parameters: λ and a. The λ is the regularization
parameter, which trades the sparsity and data consistency. The parameter a has an important impact on
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the properties of regularization term and it also affects the quality of reconstructed images. Therefore, it
is crucial to choose appropriate values of a and λ, which can help us obtain better reconstruction results.
The authors in [22] claimed that a = 1 is the best among the tests on signals, and the author in [33]
empirically selects a = 5, which achieves better results in image reconstruction tasks. To demonstrate
how to select parameters a and λ, we present the reconstruction results of the Shepp-Logan phantom
(256 × 256) data using a Cartesian mask with a sampling rate of 34% as an example.

To begin, we conduct the experiments with the fixed parameter a = 1 and a = 5,while allowing λ
to vary. Subsequently, the parameter λ in TV, MCTV, and TTV can also be selected accordingly. The
quantitative comparison results are listed in Table 2. From Table 2, we can see that when λ = 0.005, the
performance of the proposed model is the ”best”. Not only that, when λ = 0.0001 in TV, λ = 0.005 in
MCTV, λ1 = 0.001 in TTV (when a = 1), and λ2 = 0.0005 in TTV (when a = 5), and the reconstructed
metric PSNR achieves the highest value. Therefore, we set the parameter λ = 0.0001 in TV, and
λ = 0.005 in MCTV.

Next, we conduct the experiment with the fixed parameter λ1 and λ2, respectively, to asses the
impact of different values of parameter a on reconstruction performance. From Table 3, it can be
clearly seen that when the a = 1, TTV exhibits excellent performance. Similarly, when a = 0.05,
MTL1TV achieves the best results. Furthermore, according to Table 3, it can be observed that when
a = 0.05 > 2λ2 = 0.01, the convexity of the MTL1TV model is clearly indicated. In Figure 9, it can
be seen that as the parameter a assumes different values, the differences between the reconstructed MR
image and the original image also vary. Notably,when a = 0.05, the error images are the smallest.

Table 2. Reconstruction results of four models under different λ.

λ 0.00005 0.0001 0.0005 0.001 0.005 0.01
TV 55.1473 55.2138 54.9330 54.3397 47.3366 39.9643
MCTV 56.6046 56.6744 57.0797 57.1284 57.6397 44.8390
TTV(a = 1) 28.6023 29.6150 43.5340 70.5970 55.9932 49.4821
MTL1TV(a = 1) 28.1268 28.6025 33.3470 43.5340 61.9251 55.9932
TTV(a = 5) 28.2477 28.8494 35.0278 47.6527 55.8338 49.9436
MTL1TV(a = 5) 28.1495 28.6462 33.4636 43.1281 57.4406 51.5726

Table 3. Reconstruction results of models TTV and MTL1TV under different a.

Method(λ) a = 0.005 a = 0.01 a = 0.05 a = 0.1 a = 0.5 a = 1 a = 5
TTV(λ1) 50.5093 53.2998 68.8556 67.2232 69.3398 70.5970 47.6527
TTV(λ2) 42.9035 42.9824 47.4019 47.6102 54.6126 55.9932 55.8338
MTL1TV(λ2) 28.3835 29.8307 79.7220 74.5064 64.5339 61.9251 57.4406
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Figure 9. Results of Shepp-Logan reconstruction using a Cartesian mask with a sampling
rate of 34%. (a) Original image; (f) Cartesian sampling; (b)–(e) reconstructed images using
a = 0.005, a = 0.01, a = 0.05, and a = 0.1, respectively; (g)–(i) difference images between
(a) and (b)–(e).

5.3. Experiments on noisy data

To demonstrate the performance of the proposed model in noisy condition, we conduct experiments
on sampled data contaminated with additive Gaussian noise. In these experiments, Gaussian noise
with standard deviation (σ = 0.02) was added to the real and imaginary parts of sampled data, re-
spectively. Figure 10 presents that the reconstructed results, along with the corresponding errors, for
Shepp-Logan data under radial sampling (10 trajectory lines and a 3% sampling ratio). When com-
pared to the reconstruction errors, it is evident that our proposed method effectively suppresses noise
and artifacts. Table 4 presents the quantitative results of the three images (in Figure 4) with additive
noise under radial sampling (10 trajectory lines and a 3% sampling ratio). Even though all models
were given identical parameter settings in both noisy and noise-free environments, it was observed that
the values of PSNR, SSIM, and RE for three images decreased under noisy conditions, as shown in
Table 4. Nevertheless, they still produced results that were comparable to their noise-free counterparts.
When compared to other methods, our method consistently delivered superior results, highlighting its
robustness.

6. Conclusions

In this paper, we introduced a non-convex TV regularization model for undersampled MRI recon-
struction. In the new model, based on the MTL1 function, the traditional TV is replaced with the
MTL1TV norm, thus improving the fitting performance of the model. We used the ADMM algorithm
to compute the minimization problem. The experimental results demonstrated the effectiveness and
efficiency of the MTL1TV method. In our future research, we seek to delve into the utilization of the
proposed methodology in dynamic MRI, tomographic imaging, and electrical impedance tomography,
by amalgamating deep learning frameworks with variational models.
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Figure 10. Reconstruction of Shepp-Logan with additive noise (σ = 0.02) using a radial
mask with a sampling rate of 3%. (a) Original image; (f) radial sampling; (b)–(e) recon-
structed images using TV, MCTV, TTV, and MTL1TV, respectively; (g)–(i) difference im-
ages between (a) and (b)–(e).

Table 4. Numerical results for MR image reconstruction with additive noise from Radial
mask.

Test image Method RE (%) PSNR(dB) SSIM

Shepp-Logan

TV 21.48 25.5308 0.6446
MCTV 17.00 27.5653 0.8167
TTV 4.74 38.6586 0.7574
MTL1TV 3.11 42.8507 0.8710

Brain

TV 22.31 23.4433 0.4966
MCTV 21.46 23.7823 0.6257
TTV 20.91 24.0075 0.6948
MTL1TV 19.89 24.4386 0.7808

Brain2

TV 6.80 31.5799 0.9069
MCTV 6.27 32.2734 0.9214
TTV 6.41 32.0904 0.9171
MTL1TV 6.25 32.3101 0.9209
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Appendix A. Proof of Lemma 2

Proof. 1) Define the new variable η = a + x and substitute it into polynomial (2.6), then it becomes

η3 − (a + t)η2 + λa2 = 0, (A.1)

whose discriminant is:
∆ = λa2[4(a + t)3 − 27λa2].

Due to t > t∗1 and ∆ > 0, the cubic equation has three distinct real roots. We change variables as
η = y + a

3 +
t
3 = x + a. The relation between x and y is: x = y − 2a

3 +
t
3 . In terms of t, the cubic

polynomial is turned into a depressed cubic as:

y3 −
(a + t)2

3
y + λa2 −

2(a + t)3

27
= 0.

The three roots in trigonometric form are:

y0 =
a+t
3 cos

(
φ

3

)
y1 =

2(a+t)
3 cos

(
φ

3 +
π
3

)
y2 = −

2(a+t)
3 cos

(
π
3 −

φ

3

) (A.2)

where φ = arccos
(
1 − 27λa2

2(a+t)3

)
. It is obvious that y0 > y1 > y2 and y2 < 0. By the relation x = y− 2a

3 +
t
3 ,

the three roots in variable x are xi = yi −
2a
3 +

t
3 . From these formulas, we can prove x0 > x1 > x2 and

x0 ≤ t. Then, the largest root is x0, i.e., x0 = y0 −
2a
3 +

t
3 = gλ(t).

2) We set: η = a − x and y = η − a
3 +

t
3 . So, x = −y + 2a

3 +
t
3 . By a similar analysis as in part (1),

there are three distinct roots for the polynomial equation: x0 < x1 < x2 with the smallest solution

x0 = −
2(a − t)

3
cos

(
φ

3

)
+

x
3
+

2a
3
,

where φ = arccos
(
1 − 27λa2

2(a−t)3

)
. Therefore, x0 = gλ(t), when t < −t∗1.
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Appendix B. Proof of Theorom 1

Proof. We discuss t = 0, t > 0, and t < 0 in the following:

1) t = 0: In this case, optimization objective function is θλ,t(x) = λϕa(x) + 1
2 x2. It is true that λϕa(x)

and 1
2 x2 are both increasing for x > 0, and decreasing with x < 0. Thus, θ(0) is the unique

minimizer for function θλ,t(x). So x∗ = 0, when t = 0.
2) t > 0: Since 1

2 (x − t)2 and λϕa(x) are both decreasing with x < 0, our optimal solution will only
be obtained at nonnegative values. Thus, we just need to consider x ≥ 0. When x ≥ 0, we obtain

θ
′

λ,t(x) =
λa2

(a + x)2 + x − t,

and

θ
′′

λ,t(x) = 1 −
2λa2

(a + x)3 .

It is clear that θ
′′

λ,t(x) is increasing, and θ
′′

λ,t(0) = 1 − 2λ
a determines the convexity for the function

θλ,t(x). In the following proof, we further discuss the value of x∗ by two conditions: λ < a
2 and

λ > a
2 .

a) λ < a
2 : So, we have inf

x>0
θ
′′

λ,t(x) = θ
′′

λ,t(0+) = 1 − 2λ
a ≥ 0, which means function θ′λ,t(x) is

increasing for x ≥ 0, with minimum value θ′λ,t(0) = λ − t = t∗2 − t.
i) When 0 ≤ x ≤ t∗2, θ′λ,t(x) is always positive, thus the optimal value x∗ = 0.

ii) When x > t∗2, θ′λ,t(x) is first negative, then positive, and x > t∗2 > t∗1. The unique positive
stationary point x∗ of θ′λ,t(x) satisfies equation: θ′λ,t(x∗) = 0, which implies

x(a + x)2 − t(a + x)2 + λa2 = 0. (B.1)

According to Lemma 2, the optimal value is x∗ = x0 = gλ(t).
Above all, the value of x∗ is

x∗ =

0, 0 ≤ t ≤ t∗2;
gλ(t), x > t∗2

under the condition λ ≤ a
2 .

b) λ > a
2 : In this case, due to the sign of θ

′′

λ,t(x), we know that function θ
′

λ,t(x) is decreasing at
first then switches to be increasing. Its minimum point is x =

3√
2λa2 − a and the least value

θ
′

λ,t(x) =
λa2

(a + x)2 + x − t = t∗1 − t.

Then, θ
′

λ,t(x) ≥ t∗1 − t with x ≥ 0.
i) When 0 ≤ t ≤ t∗1, function θλ,t(x) is always increasing. Thus, optimal value is x∗ = 0.

ii) When t ≥ t∗2, θλ,t(0+) ≤ 0. Thus, the function θλ,t(x) is first decreasing and then in-
creasing. There is only one positive optimal stationary point, which is also the optimal
solution. Using the Lemma 2, we know that x∗ = θλ,t(x).
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iii) When t∗2 < t < t∗1, θλ,t(0+) > 0. Thus, the function θλ,t(x) is first increasing, then decreas-
ing and finally increasing, which implies that there are two positive stationary points
and the larger one is a local minima. Using Lemma 2, the local minimized point will
be x0 = θλ,t(x), the largest root of (1.1). Since x0 − t + λa2

(a+x0)2 = 0, which implies
λa

a+x0
=

(t−x0)(a+x0)
a , we have

θλ,t(x0) − θλ,t(0) =
1
2

x2
0 − x0t +

λax0

a + x0

= x0(
1
2

x0 − t+)
λa

a + x0

= x0(
1
2

x0 − t +
(t − x0)(a + x0)

a
)

= x2
0(

t − x0

a
−

1
2

).

Define a function h(t) = t − gλ(t) − a
2 .

First, we prove that t = t∗3 is a solution to h(t) = 0. Since λ > a
2 , t∗3 =

√
2λa− a

2 > 0. Thus:

cos(φ(t∗3)) = 1 −
27λa2

2(a + t∗3)3 = 1 −
27λa2

2(a
2 +
√

2λa)3
.

Further, by using the relation cos(φ) = 4 cos3(φ3 ) − 3 cos(φ3 ) and 0 ≤ φ

3 ≤
π
3 , we have

cos(
φ(t∗3)

3
) =

√
2λa − a

4
a
2 +
√

2λa
.

Plugging this formula into gλ(t∗3) shows that gλ(t∗3) =
√

2λa − a = t∗3 −
a
2 . Therefore, t∗3 is

the root for h(t) and t∗3 ∈ (t∗1, t
∗
2).

Second, we prove that the function h(t) changes sign at point t = t∗3. We prefer to discuss
it in two cases.
Case 1: x ∈ (t∗3, t

∗
2). According to Lemma 2, we know that gλ(t) is the largest root of the

cubic polynomial H(y) = y(a + y)2 − t(a + y)2 + λa2 under the condition of t > t∗1.
For function H(y), we have H(t) = λa2 and

H(t −
a
2

) = λa2 −
a
2

(
a
2
+ t)2.

Due to t > t∗3 =
√

2λa − a
2 and H(t − a

2 ) < 0, there is a root y = gλ(t), such that
y = gλ(t) ∈ (t − a

2 , t) for the equation H(y) = 0. That is, t − gλ(t) < a
2 , and, thus, h(t) < 0.

Case 2: x ∈ (t∗1, t
∗
3). We have H(t − a

2 ) > 0 and H(t) > 0. Due to the proof in Lemma
2, one possible situation is that there are two roots x0 and x1 within interval (t − a

2 , t).
However, we can exclude this case. This is because

x0 − x1 =
2(a + t)

3
{cos(

φ

3
) − cos(

φ

3
+
π

3
)}

=
2(a + t)

3
{2 sin(

φ

3
) +

π

6
) sin(

π

6
)}
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=
2(a + t)

3
sin(

φ

3
+
π

6
).

Furthermore, x0 − x1 > a
2 holds for t > t∗1 > a

2 and λ > a
2 . This is a contradiction of

the assumption that x0 and x1 are in (t − a
2 , t). Thus, H(y) = 0 has no root in (t − a

2 , t).
Therefore, x0 = gλ(t) < t − a

2 . That is to say, h(t) > 0.
From the discussion earlier, it is true that the optimal solution x∗ = 0, if 0 < t ≤ t∗3, and
x∗ = x0 = gλ(t), if t > t∗3.
To sum up, we know that under the condition λ > a

2 ,

x∗ =

0, 0 ≤ t ≤ t∗3;
gλ(t), x > t∗3

3) t < 0 : Because

inf
x
θλ,t(x) = inf

x
θλ,t(−x) = inf

x

1
2

(x − |t|)2 + ϕa(t),

x∗(t) = −x∗(−t), which implies that the formula obtained when t > 0 above can extend to the
case: t < 0 by odd symmetry.
Summarizing results from all cases, the proof is completed.

Appendix C. Proof of Corollary 1

Proof. It is clear to see that the function

θλ,t(x) = λϕa(x) +
1
2

(x − t)2

is differentiable on R\{0}. For x , 0, the derivative of θλ,t(x) is given by

θ′λ,t(x) =
λa2

(a + |x|)2 sgn(x) + (x − t), x , 0.

Let us find the range of a for which θλ,t(x) is convex. Notice that

ϕa(0+) = 1 > −1 = ϕa(0−)

and

θ′′λ,t(x) = 1 −
2λa2

(a + x)3 ,∀x > 0.

When we set a ≥ 2λ, the function θ′λ,t is increasing, then the function θλ,t(x) is strictly convex.
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