In this paper, we study geodesics of left-invariant sub-Riemannian metrics on the Cartesian square of a connected two-dimensional non-commutative Lie group, where the metric is determined by the inner product on a two-dimensional generating subspace of the corresponding Lie algebra. It is proven that the system of equations for geodesics of such a sub-Riemannian metric is not completely integrable in the class of meromorphic functions. Important qualitative characteristics of the corresponding geodesics are found, thus proving the complexity of their behavior in general.
Citation: Yuriĭ G. Nikonorov, Irina A. Zubareva. On the behavior of geodesics of left-invariant sub-Riemannian metrics on the group $ \operatorname{Aff}_{0}(\mathbb{R}) \times \operatorname{Aff}_{0}(\mathbb{R}) $[J]. Electronic Research Archive, 2025, 33(1): 181-209. doi: 10.3934/era.2025010
In this paper, we study geodesics of left-invariant sub-Riemannian metrics on the Cartesian square of a connected two-dimensional non-commutative Lie group, where the metric is determined by the inner product on a two-dimensional generating subspace of the corresponding Lie algebra. It is proven that the system of equations for geodesics of such a sub-Riemannian metric is not completely integrable in the class of meromorphic functions. Important qualitative characteristics of the corresponding geodesics are found, thus proving the complexity of their behavior in general.
[1] | Y. L. Sachkov, Left-invariant optimal control problems on Lie groups: Classification and problems integrable by elementary functions, Russ. Math. Surv., 77 (2022), 99–163. https://doi.org/10.1070/RM10019 doi: 10.1070/RM10019 |
[2] | Y. L. Sachkov, Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions, Russ. Math. Surv., 78 (2023), 65–163. https://doi.org/10.4213/rm10063 doi: 10.4213/rm10063 |
[3] | L. V. Lokutsievskiy, Y. L. Sachkov, Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater, Sb. Math., 209 (2018), 672–713. https://doi.org/10.4213/sm8886 doi: 10.4213/sm8886 |
[4] | R. Biggs, C. C. Remsing, On the classification of real four-dimensional Lie groups, J. Lie Theory, 26 (2016), 1001–1035. |
[5] | N. V. Berestovskii, I. A. Zubareva, (Ab)normal extremals of left-invariant sub-Finsler quasimetrics on the Lie group $G_{2, 1}\times G_{2, 1}$, Herald Omsk Univ., 28 (2023), 26–38. https://doi.org/10.24147/1812-3996.2023.5.26-38 doi: 10.24147/1812-3996.2023.5.26-38 |
[6] | V. N. Berestovskii, Homogeneous manifolds with an intrinsic metric. I, Sib. Math. J., 29 (1988), 887–897. https://doi.org/10.1007/BF00972413 doi: 10.1007/BF00972413 |
[7] | L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, New York, John Wiley & Sons, 1962. |
[8] | V. N. Berestovskii, Homogeneous spaces with an intrinsic metric, Dokl. Akad. Nauk SSSR, 301 (1988), 268–271. |
[9] | R. S. Strichartz, Sub-Riemannian geometry, J. Differ. Geom., 24 (1986), 221–263. https://doi.org/10.4310/jdg/1214440436 doi: 10.4310/jdg/1214440436 |
[10] | Y. Sachkov, Introduction to Geometrical Control, Springer, Cham, 2022. https://doi.org/10.1007/978-3-031-02070-4 |
[11] | A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge University Press, Cambridge, 2019. https://doi.org/10.1017/9781108677325 |
[12] | W. Liu, H. J. Sussmann, Shortest Paths for Sub-Riemannian Metrics on Rank-Two Distributions, American Mathematical Society, Rhode Island, 1995 |
[13] | V. N. Berestovskii, I. A. Zubareva, Abnormal extremals of left-invariant sub-Finsler quasimetrics on four–dimensional Lie groups, Sib. Math. J., 62 (2021), 383–399. https://doi.org/10.1134/S0037446621030010 doi: 10.1134/S0037446621030010 |
[14] | V. N. Berestovskii, I. A. Zubareva, PMP, (co)adjoint representation, and normal geodesics, of left-invariant (sub-)Finsler metric on Lie groups, Chebyshevskii Sbornik, 21 (2020), 43–64. https://doi.org/10.22405/2226-8383-2020-21-2-43-64 doi: 10.22405/2226-8383-2020-21-2-43-64 |
[15] | S. Lie, Klassification und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten. Ⅲ, Arch. Math. Naturvid., (1883), 371–458. |
[16] | R. Liouville, Sur less invariants de certaines equations differentielles et sur leurs applications, J. Ec. Polytech., 59 (1889), 7–76. |
[17] | S. Lie, Theorie der Transformationsgruppen Ⅲ, Teubner, Leipzig, 1893. |
[18] | A. Tresse, Sur les invariants differenties des groupes continus de transformations, Acta Math., 18 (1894), 1–88. https://doi.org/10.1007/BF02418270 doi: 10.1007/BF02418270 |
[19] | A. Tresse, Détermination des Invariants Ponctuels de l'Equation Differentielle Ordinaire du Second Ordre $y'' = w(x, y, y')$, S. Hirzel, Leipzig, 1896. |
[20] | E. Cartan, Sur les variétés à connexion projective, Bull. Math. Soc. France, 52 (1924), 205–241. https://doi.org/10.24033/BSMF.1053 doi: 10.24033/BSMF.1053 |
[21] | V. V. Dmitrieva, R. A. Shapirov, On the point transformations for the second order differential equations. I, preprint, arXiv: solv-int/9703003. |
[22] | C. Muriel, J. L. Romero, Second-order ordinary differential equations and first integrals of the form $A(t, x)\dot{x}+B(t, x)$, J. Nonlinear Math. Phys., 16 (2009), 209–222. https://doi.org/10.1142/S1402925109000418 doi: 10.1142/S1402925109000418 |
[23] | B. S. Kruglikov, F. Vollmer, G. Lukes-Gerakopoulos, On integrability of certain rank 2 sub-Riemannian structures, Regul. Chaot. Dyn., 22 (2017), 502–519. https://doi.org/10.1134/S1560354717050033 doi: 10.1134/S1560354717050033 |
[24] | A. P. Yushkevich, The Correspondence of S. V. Kovalevskaya and G. Mittag-Leffler, Nauka, Moscow, 1984. |
[25] | A. M. Lyapunov, On A Certain Property of the Differential Equations in A Problem on the Motion of A Heavy Rigid Body Having A Fixed Point, Publishing House of the USSR Academy of Sciences, Moscow, 1954. |
[26] | V. V. Kozlov, Tensor invariants of quasihomogeneous systems of differential equations, and the Kovalevskaya-Lyapunov asymptotic method, Math. Notes, 51 (1992), 138–142. https://doi.org/10.1007/BF02102118 doi: 10.1007/BF02102118 |
[27] | H. Yoshida, Necessary condition for the existence of algebraic first integrals-Ⅰ: Kowalevski's exponents, Celestial Mech., 31 (1983), 363–379. https://doi.org/10.1007/BF01230292 doi: 10.1007/BF01230292 |
[28] | H. Yoshida, Necessary condition for the existence of algebraic first integrals-Ⅱ: Condition for algebraic integrability, Celestial Mech., 31 (1983), 381–399. http://doi.org/10.1007/BF01230293 doi: 10.1007/BF01230293 |
[29] | A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific Publishing, Singapore, 2001. https://doi.org/10.1142/3846 |
[30] | F. Gonzalez-Gascon, A word of caution concerning the Yoshida criterion on algebraic integrability and Kowalevski exponents, Celestial Mech., 44 (1988), 309–311. https://doi.org/10.1007/BF01234269 doi: 10.1007/BF01234269 |
[31] | V. V. Kozlov, S. D. Furta, Asymptotic Solutions of Strongly Nonlinear Systems of Differential Equations, Springer, Berlin, 2013. http://doi.org/10.1007/978-3-642-33817-5 |
[32] | S. Shi, On the nonexistence of rational first integrals for nonlinear systems and semiquasihomogeneous systems, J. Math. Anal. Appl., 335 (2007), 125–134. https://doi.org/10.1016/j.jmaa.2007.01.060 doi: 10.1016/j.jmaa.2007.01.060 |
[33] | Z. Xu, W. Li, S. Shi, Higher order criterion for the nonexistence of formal first integrals for nonlinear systems, Electron. J. Differ. Equations, 2017 (2017), 1–11, |
[34] | K. Huang, S. Shi, W. Li, Kovalevskaya exponents, weak Painleve property and integrability for quasi-homogeneous differential systems, Regul. Chaot. Dyn., 25 (2020), 295–312. https://doi.org/10.1134/S1560354720030053 doi: 10.1134/S1560354720030053 |
[35] | E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. |
[36] | W. G. Kelley, A. C. Peterson, The Theory of Differential Equations: Classical and Qualitative, Springer, New York, 2010. http://doi.org/10.1007/978-1-4419-5783-2 |
[37] | V. Rovenski, Geometry of Curves and Surfaces with MAPLE, Birkhäuser, Boston, 2000. https://doi.org/10.1007/978-1-4612-2128-9 |
[38] | V. A. Toponogov, Differential Geometry of Curves and Surfaces, Birkhäuser, Boston, 2006. https://doi.org/10.1007/b137116 |
[39] | D. J. Struik, Lectures on Classical Differential Geometry, 2nd edition, Dover Publications, New York, 1988. |
[40] | E. Abbena, S. Salamon, A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd, Chapman and Hall/CRC, New York, 2006. https://doi.org/10.1201/9781315276038 |