Research article Special Issues

Bifurcation of a discrete predator-prey model with increasing functional response and constant-yield prey harvesting


  • Received: 06 July 2022 Revised: 02 August 2022 Accepted: 10 August 2022 Published: 30 August 2022
  • Using the forward Euler method, we derive a discrete predator-prey system of Gause type with constant-yield prey harvesting and a monotonically increasing functional response in this paper. First of all, a detailed study for the existence and local stability of fixed points of the system is obtained by invoking an important lemma. Mainly, by utilizing the center manifold theorem and the bifurcation theory some sufficient conditions are obtained for the saddle-node bifurcation and the flip bifurcation of this system to occur. Finally, with the use of Matlab software, numerical simulations are carried out to illustrate the theoretical results obtained and reveal some new dynamics of the system-chaos occuring.

    Citation: Jiange Dong, Xianyi Li. Bifurcation of a discrete predator-prey model with increasing functional response and constant-yield prey harvesting[J]. Electronic Research Archive, 2022, 30(10): 3930-3948. doi: 10.3934/era.2022200

    Related Papers:

  • Using the forward Euler method, we derive a discrete predator-prey system of Gause type with constant-yield prey harvesting and a monotonically increasing functional response in this paper. First of all, a detailed study for the existence and local stability of fixed points of the system is obtained by invoking an important lemma. Mainly, by utilizing the center manifold theorem and the bifurcation theory some sufficient conditions are obtained for the saddle-node bifurcation and the flip bifurcation of this system to occur. Finally, with the use of Matlab software, numerical simulations are carried out to illustrate the theoretical results obtained and reveal some new dynamics of the system-chaos occuring.



    加载中


    [1] M. Haque, A detailed study of the Beddington-DeAngelis predator-prey model, Math. Biosci., 234 (2011), 1–16. https://doi.org/10.1016/j.mbs.2011.07.003 doi: 10.1016/j.mbs.2011.07.003
    [2] A. Zegeling, R. E. Kooij, Singular perturbations of the Holling Ⅰ predator-prey system with a focus, J. Differ. Equation, 269 (2020), 5434–5462. https://doi.org/10.1016/j.jde.2020.04.011 doi: 10.1016/j.jde.2020.04.011
    [3] S. M. Li, X. L. Wang, X. L. Li, K. l. Wu, Relaxation oscillations for Leslie-type predator-prey model wemith Holling Type Ⅰ response functional function, Appl. Math. Lett., 120 (2021), 1–6. https://doi.org/10.1016/j.aml.2021.107328 doi: 10.1016/j.aml.2021.107328
    [4] B. Liu, Y. J. Zhang, L. S. Chen, Dynamic complexities of a Holling Ⅰ predator-prey model concerning periodic biological and chemical control, Chaos Solitons Fractals, 22 (2004), 123–134. https://doi.org/10.1016/j.chaos.2003.12.060 doi: 10.1016/j.chaos.2003.12.060
    [5] M. Liu, K. Wang, Dynamics of a Leslie-Gower Holling-type ii predator-prey system with levy jumps, Nonlinear Anal., 85 (2013), 204–213. https://doi.org/10.1016/j.na.2013.02.018 doi: 10.1016/j.na.2013.02.018
    [6] Y. Xu, M. Liu, Y. Yang, Analysis of a stochastic two-predators one prey system with modified Leslie-Gower and holling-type Ⅱ schemes, J. Appl. Anal. Comput., 7 (2017), 713–727. https://doi.org/10.1016/j.physa.2019.122761 doi: 10.1016/j.physa.2019.122761
    [7] X. L. Zou, Y. T. Zheng, L. R. Zhang, J. L. Lv, Survivability and stochastic bifurcations for a stochastic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 1–20. https://doi.org/10.1016/j.cnsns.2019.105136 doi: 10.1016/j.cnsns.2019.105136
    [8] M. Lu, J. C. Huang, Global analysis in Bazykins model with Holling Ⅱ functional response and predator competition, J. Differ. Equation, 280 (2021), 99–138. https://doi.org/10.1016/j.jde.2021.01.025 doi: 10.1016/j.jde.2021.01.025
    [9] A. K. Misra, Modeling the depletion of dissolved oxygen due to algal bloom in a lake by taking Holling type-Ⅲ interaction, Appl. Math. Comput., 217 (2011), 8367–8376. https://doi.org/10.1016/j.amc.2011.03.034 doi: 10.1016/j.amc.2011.03.034
    [10] R. Banerjee, P. Das, D. Mukherjee, Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-Ⅲ functional response, Chaos Solitons Fractals, 117 (2018), 240–248. https://doi.org/10.1016/j.chaos.2018.10.032 doi: 10.1016/j.chaos.2018.10.032
    [11] C. Wang, X. Zhang, Heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type Ⅲ, J. Differ. Equation, 267 (2019), 3397–3441. https://doi.org/10.1016/j.jde.2019.04.008 doi: 10.1016/j.jde.2019.04.008
    [12] J. C. Huang, S. G. Ruan, J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differ. Equation, 257 (2014), 1721–1752. https://doi.org/10.1016/J.JDE.2014.04.024 doi: 10.1016/J.JDE.2014.04.024
    [13] D. Jyotiska, J. Debaldev, U. R. Kumar, Bifurcation and bio-economic analysis of a prey-generalist predator model with Holling type Ⅳ functional response and nonlinear age-selective prey harvesting, Chaos Solitons Fractals, 122 (2019), 229–235. https://doi.org/10.1016/j.chaos.2019.02.010 doi: 10.1016/j.chaos.2019.02.010
    [14] Y. L. Li, D. M. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Chaos Solitons Fractals, 34 (2007), 606–620. https://doi.org/10.1016/j.chaos.2006.03.068 doi: 10.1016/j.chaos.2006.03.068
    [15] S. W. Zhang, F. Y. Wang, L. S. Chen, A food chain model with impulsive perturbations and Holling Ⅳ functional response, Chaos Solitons Fractals, 26 (2005), 855–866. https://doi.org/10.1016/j.chaos.2005.01.053 doi: 10.1016/j.chaos.2005.01.053
    [16] S. G. Ruan, D. M. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445–1472. https://doi.org/10.1137/S0036139999361896 doi: 10.1137/S0036139999361896
    [17] C. A. I. Claudio, A. Pablo, F. Jos, V. H. Peter, Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response, Appl. Math. Comput., 402 (2021), 1–20. https://doi.org/10.1016/j.amc.2021.126152 doi: 10.1016/j.amc.2021.126152
    [18] X. Y. Zou, Q. W. Li, J. L. Lv, Stochastic bifurcations, a necessary and sufficient condition for a stochastic Beddington-DeAngelis predator-prey model, Appl. Math. Lett., 117 (2021), 1–7. https://doi.org/10.1016/j.aml.2021.107069 doi: 10.1016/j.aml.2021.107069
    [19] D. M. Luo, Q. R. Wang, Global dynamics of a Beddington-DeAngelis amensalism system with weak Allee effect on the first species, Appl. Math. Comput., 408 (2021), 1–19. https://doi.org/10.1007/s12190-021-01533-w doi: 10.1007/s12190-021-01533-w
    [20] G. D. Zhang, Y. Shen, Periodic solutions for a neutral delay Hassell-Varley type predator-prey system, Appl. Math. Comput., 264 (2015), 443–452. https://doi.org/10.1016/j.amc.2015.04.110 doi: 10.1016/j.amc.2015.04.110
    [21] D. S. Wang, On a non-selective harvesting prey-predator model with Hassell-Varley type functional response, Appl. Math. Comput., 246 (2014), 678–695. https://doi.org/10.1016/j.amc.2014.08.081 doi: 10.1016/j.amc.2014.08.081
    [22] C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385–398. https://doi.org/10.4039/Ent91385-7 doi: 10.4039/Ent91385-7
    [23] C. Cosner, D. L. DeAngelis, J. S. Ault, D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65–75. https://doi.org/10.1006/tpbi.1999.1414 doi: 10.1006/tpbi.1999.1414
    [24] K. Ryu, W. Ko, M. Haque, Bifurcation analysis in a predator-prey system with a functional response increasing in both predator and prey densities, Nonlinear Dyn., 94 (2018), 1639–1656. https://doi.org/10.1007/s11071-018-4446-0 doi: 10.1007/s11071-018-4446-0
    [25] T. A. Micka$\ddot{e}$l, F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theoret. Biol., 419 (2017), 13–22. https://doi.org/10.1016/j.jtbi.2017.02.002 doi: 10.1016/j.jtbi.2017.02.002
    [26] F. Capone, M. F. Carfora, R. De Luca, I. Torcicollo, Turing patterns in a reaction-diffusion system modeling hunting cooperation, Math. Comput. Simul., 165 (2019), 172–180. https://doi.org/10.1016/j.matcom.2019.03.010 doi: 10.1016/j.matcom.2019.03.010
    [27] Y. S. Chow, S. R. J. Jang, H. M. Wang, Cooperative hunting in a discrete predator-prey system, J. Biol. Dyn., 13 (2019), 247–264. https://doi.org/10.1080/17513758.2018.1555339 doi: 10.1080/17513758.2018.1555339
    [28] J. Duarte, C. Janurio, N. Martins, J. Sardanys, Chaos and crises in a model for cooperative hunting: a symbolic dynamics approach, Chaos, 19 (2009), 1–12. https://doi.org/10.1063/1.3243924 doi: 10.1063/1.3243924
    [29] S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complex., 39 (2019), 1–18. https://doi.org/10.1016/j.ecocom.2019.100770 doi: 10.1016/j.ecocom.2019.100770
    [30] N. C. Pati, G. C. Layek, N. Pal, Bifurcations and organized structures in a predator-prey model with hunting cooperation, Chaos Solitons Fractals, 140 (2020), 1–11. https://doi.org/10.1016/j.chaos.2020.110184 doi: 10.1016/j.chaos.2020.110184
    [31] Z. C. Shang, Y. H. Qiao, L. J. Duan, J. Miao, Bifurcation analysis in a predator-prey system with an increasing functional response and constant-yield prey harvesting, Math. Comput. Simul., 190 (2021), 976–1002. https://doi.org/10.1016/j.matcom.2021.06.024 doi: 10.1016/j.matcom.2021.06.024
    [32] W. Li, X. Y. Li, Neimark-Sacker bifurcation of a semi-discrete hematopoiesis model, J. Appl. Anal. Comput., 8 (2018), 1679–1693. https://doi.org/10.11948/2018.1679 doi: 10.11948/2018.1679
    [33] C. Wang, X. Y. Li, Stability and Neimark-Sacker bifurcation of a semi-discrete population model, J. Appl. Anal. Comput., 4 (2014), 419–435. https://doi.org/10.11948/2014024 doi: 10.11948/2014024
    [34] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Second edition, Springer-verlag, New York, 2003.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1742) PDF downloads(74) Cited by(7)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog