The subject of this research is a coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels $ g_{i} :{\bf R}_{+}\rightarrow {\bf R}_{+} $ holds true the below
$ g_{i}'(t)\leq-\zeta_{i}(t)G_{i}(g_{i}(t)), \quad \forall t\in {\bf R}_{+}, \quad {\rm{for}} \quad i = 1, 2, $
in which $ \zeta_{i} $ and $ G_{i} $ are functions. We demonstrate the stability of the system under this highly generic assumptions on the behaviour of $ g_i $ at infinity and by dropping the boundedness assumptions in the historical data.
Citation: Abdelbaki Choucha, Salah Boulaaras, Djamel Ouchenane, Salem Alkhalaf, Rashid Jan. General decay for a system of viscoelastic wave equation with past history, distributed delay and Balakrishnan-Taylor damping terms[J]. Electronic Research Archive, 2022, 30(10): 3902-3929. doi: 10.3934/era.2022199
The subject of this research is a coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels $ g_{i} :{\bf R}_{+}\rightarrow {\bf R}_{+} $ holds true the below
$ g_{i}'(t)\leq-\zeta_{i}(t)G_{i}(g_{i}(t)), \quad \forall t\in {\bf R}_{+}, \quad {\rm{for}} \quad i = 1, 2, $
in which $ \zeta_{i} $ and $ G_{i} $ are functions. We demonstrate the stability of the system under this highly generic assumptions on the behaviour of $ g_i $ at infinity and by dropping the boundedness assumptions in the historical data.
[1] | A. M. Al-Mehdi, M. M. Al-Gharabli, S. A. Messaoudi, New general decay result for a system of viscoelastic wave equation with past hystory, Commun. Pure Appl. Anal., 20 (2021), 389–404. |
[2] | D. R. Bland, The Theory of Linear Viscoelasticity, Mineola, Courier Dover Publications, 2016. |
[3] | S. Boulaaras, A. Choucha, D. Ouchenane, General decay and well-posedness of the Cauchy problem for the Jordan-Moore-Gibson-Thompson equation with memory, Filomat, 35 (2021), 1745–1773. https://doi.org/10.2298/fil2105745b doi: 10.2298/fil2105745b |
[4] | S. Boulaaras, A. Choucha, A. Scapellato, General decay of the Moore-Gibson- Thompson equation with viscoelastic memory of type Ⅱ, J. Funct. Spaces, 2022 (2022). https://doi.org/10.1155/2022/9015775 doi: 10.1155/2022/9015775 |
[5] | A. Choucha, D. Ouchenane, K. Zennir, B. Feng, Global well-posedness and exponential stability results of a class of Bresse-Timoshenko-type systems with distributed delay term, Math. Methods Appl. Sci., 2020 (2020), 1–26. https://doi.org/10.1002/mma.6437 doi: 10.1002/mma.6437 |
[6] | A. Choucha, S. Boulaaras, D. Ouchenane, S. Beloul, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms, Math. Methods Appl. Sci., 44 (2020), 5436–5457. https://doi.org/10.1002/mma.7121 doi: 10.1002/mma.7121 |
[7] | A. Choucha, S. M. Boulaaras, D. Ouchenane, B. B. Cherif, M. Abdalla, Exponential stability of swelling porous elastic with a viscoelastic damping and distributed delay term, J. Funct. Spaces, 2021 (2021). https://doi.org/10.1155/2021/5581634 doi: 10.1155/2021/5581634 |
[8] | B. D. Coleman, W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys., 33 (1961). https://doi.org/10.1103/RevModPhys.33.239 doi: 10.1103/RevModPhys.33.239 |
[9] | N. C. Eddine, M. A. Ragusa, Generalized critical Kirchhoff-type potential systems with Neumann boundary conditions, Appl. Anal., 101 (2022), 3958–3988. https://doi.org/10.1080/00036811.2022.2057305 doi: 10.1080/00036811.2022.2057305 |
[10] | B. Feng, A. Soufyane, Existence and decay rates for a coupled Balakrishnan-Taylor viscoelastic system with dynamic boundary conditions, Math. Methods Appl. Sci., 43 (2020), 3375–3391. https://doi.org/10.1002/mma.6127 doi: 10.1002/mma.6127 |
[11] | B. Gheraibia, N. Boumaza, General decay result of solution for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term, Z. Angew. Math. Phys., 71 (2020). https://doi.org/10.1007/s00033-020-01426-1 doi: 10.1007/s00033-020-01426-1 |
[12] | A. Guesmia, New general decay rates of solutions for two viscoelastic wave equations with infinite memory, Math. Model. Anal., 25 (2020), 351–373. https://doi.org/10.3846/mma.2020.10458 doi: 10.3846/mma.2020.10458 |
[13] | A. Guesmia, N. Tatar, Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay, Commun. Pure Appl. Anal., 14 (2015), 457–491. https://doi.org/10.3934/cpaa.2015.14.457 doi: 10.3934/cpaa.2015.14.457 |
[14] | F. Mesloub, S. Boulaaras, General decay for a viscoelastic problem with not necessarily decreasing kernel, J. Appl. Math. Comput., 58 (2018), 647–665. https://doi.org/10.1007/S12190-017-1161-9 doi: 10.1007/S12190-017-1161-9 |
[15] | M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134–152. https://doi.org/10.1016/j.jmaa.2017.08.019 doi: 10.1016/j.jmaa.2017.08.019 |
[16] | D. Ouchenane, S. Boulaaras, F. Mesloub, General decay for a viscoelastic problem with not necessarily decreasing kernel, Appl. Anal., 98 (2018), 1677–1693. https://doi.org/10.1080/00036811.2018.1437421 doi: 10.1080/00036811.2018.1437421 |
[17] | A. Zaraï, N. Tatar, Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping, Arch. Math., 46 (2010), 157–176. Available from: https://eudml.org/doc/116480. |
[18] | A. V. Balakrishnan, L. W. Taylor, Distributed parameter nonlinear damping models for flight structures, in Proceedings "Damping 89", Flight Dynamics Lab and Air Force Wright Aeronautical Labs, Washington, 89 (1989). |
[19] | R. W. Bass, D. Zes, Spillover nonlinearity and flexible structures, in Proceedings of the 30th IEEE Conference on Decision and Control, 2 (1991), 1633–1637. https://doi.org/10.1109/CDC.1991.261683 |
[20] | S. Boulaaras, A. Draifia, K. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity, Math. Methods Appl. Sci., 42 (2019), 4795–4814. https://doi.org/10.1002/mma.5693 doi: 10.1002/mma.5693 |
[21] | W. Liu, B. Zhu, G. Li, D. Wang, General decay for a viscoelastic Kirchhoof equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term, Evol. Equations Control Theory, 6 (2017), 239–260. https://doi.org/10.3934/eect.2017013 doi: 10.3934/eect.2017013 |
[22] | C. Mu, J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91–113. https://doi.org/10.1007/s00033-013-0324-2 doi: 10.1007/s00033-013-0324-2 |
[23] | A. Choucha, D. Ouchenane, S. Boulaaras, Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms, J. Nonlinear Funct. Anal., 2020 (2020). https://doi.org/10.23952/jnfa.2020.31 doi: 10.23952/jnfa.2020.31 |
[24] | S. Boulaaras, A. Choucha, D. Ouchenane, B. Cherif, Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms, Adv. Differ. Equations, 2020 (2020). https://doi.org/10.1186/s13662-020-02772-0 doi: 10.1186/s13662-020-02772-0 |
[25] | A. Choucha, D. Ouchenane, S. Boulaaras, Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term, Math. Methods Appl. Sci., 43 (2020), 9983–10004. https://doi.org/10.1002/mma.6673 doi: 10.1002/mma.6673 |
[26] | S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integr. Equations, 21 (2008), 935–958. Available from: https://projecteuclid.org/journals/differential-and-integral-equations/volume-21/issue-9-10/. |
[27] | R. Adams, J. Fourier, Sobolev Space, Academic Press, New York, 2003. https://doi.org/10.3934/cpaa.2020273 |
[28] | C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297–308. https://doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609 |
[29] | V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, NY, USA, 1989. |