The subject of this research is a coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels gi:R+→R+ holds true the below
g′i(t)≤−ζi(t)Gi(gi(t)),∀t∈R+,fori=1,2,
in which ζi and Gi are functions. We demonstrate the stability of the system under this highly generic assumptions on the behaviour of gi at infinity and by dropping the boundedness assumptions in the historical data.
Citation: Abdelbaki Choucha, Salah Boulaaras, Djamel Ouchenane, Salem Alkhalaf, Rashid Jan. General decay for a system of viscoelastic wave equation with past history, distributed delay and Balakrishnan-Taylor damping terms[J]. Electronic Research Archive, 2022, 30(10): 3902-3929. doi: 10.3934/era.2022199
[1] | Yang Liu . Long-time behavior of a class of viscoelastic plate equations. Electronic Research Archive, 2020, 28(1): 311-326. doi: 10.3934/era.2020018 |
[2] | Minzhi Wei . Existence of traveling waves in a delayed convecting shallow water fluid model. Electronic Research Archive, 2023, 31(11): 6803-6819. doi: 10.3934/era.2023343 |
[3] | Ibtissam Issa, Zayd Hajjej . Stabilization for a degenerate wave equation with drift and potential term with boundary fractional derivative control. Electronic Research Archive, 2024, 32(8): 4926-4953. doi: 10.3934/era.2024227 |
[4] | Jinheng Liu, Kemei Zhang, Xue-Jun Xie . The existence of solutions of Hadamard fractional differential equations with integral and discrete boundary conditions on infinite interval. Electronic Research Archive, 2024, 32(4): 2286-2309. doi: 10.3934/era.2024104 |
[5] | Zayd Hajjej . Asymptotic stability for solutions of a coupled system of quasi-linear viscoelastic Kirchhoff plate equations. Electronic Research Archive, 2023, 31(6): 3471-3494. doi: 10.3934/era.2023176 |
[6] | Lingrui Zhang, Xue-zhi Li, Keqin Su . Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D. Electronic Research Archive, 2023, 31(11): 6881-6897. doi: 10.3934/era.2023348 |
[7] | Xiaoli Wang, Peter Kloeden, Meihua Yang . Asymptotic behaviour of a neural field lattice model with delays. Electronic Research Archive, 2020, 28(2): 1037-1048. doi: 10.3934/era.2020056 |
[8] | Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu . Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28(1): 91-102. doi: 10.3934/era.2020006 |
[9] | Abdelhadi Safsaf, Suleman Alfalqi, Ahmed Bchatnia, Abderrahmane Beniani . Blow-up dynamics in nonlinear coupled wave equations with fractional damping and external source. Electronic Research Archive, 2024, 32(10): 5738-5751. doi: 10.3934/era.2024265 |
[10] | Meiyu Sui, Yejuan Wang, Peter E. Kloeden . Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays. Electronic Research Archive, 2021, 29(2): 2187-2221. doi: 10.3934/era.2020112 |
The subject of this research is a coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels gi:R+→R+ holds true the below
g′i(t)≤−ζi(t)Gi(gi(t)),∀t∈R+,fori=1,2,
in which ζi and Gi are functions. We demonstrate the stability of the system under this highly generic assumptions on the behaviour of gi at infinity and by dropping the boundedness assumptions in the historical data.
In this research, we mainly focused on wave equation to study and examine the coupled system. In this system, we assumed a bounded domain Ω∈RN where ∂Ω indicates sufficiently smooth boundary of Ω∈RN and take the positive constants ξ0,ξ1,σ,β1,β3 where m≥1 for N=1,2, and 1<m≤N+2N−2 for N≥3. The coupled system with these terms is given by
{vtt−(ξ0+ξ1‖∇v‖22+δ(∇v,∇vt)L2(Ω))Δv(t)+∫∞0g1(s)Δv(t−s)ds+β1|vt(t)|m−2vt(t)+∫τ2τ1|β2(r)||vt(t−r)|m−2vt(t−r)dr+f1(v,w)=0.wtt−(ξ0+ξ1‖∇w‖22+δ(∇w,∇wt)L2(Ω))Δw(t)+∫∞0g2(s)Δw(t−s)ds+β3|wt(t)|m−2wt(t)+∫τ2τ1|β4(r)||wt(t−r)|m−2wt(t−r)dr+f2(v,w)=0.v(z,−t)=v0(z),vt(z,0)=v1(z),w(z,−t)=w0(z),wt(z,0)=w1(z),inΩvt(z,−t)=j0(z,t),wt(z,−t)=ϱ0(z,t),inΩ×(0,τ2)v(z,t)=w(z,t)=0,in∂Ω×(0,∞) | (1.1) |
in which G=Ω×(τ1,τ2)×(0,∞) and τ1<τ2 are taken to be non-negative constants in a manner that β2, β4:[τ1,τ2]→R indicates distributive time delay while gi, i=1,2 are positive.
The viscoelastic damping term, whose kernel is the function g, is a physical term used to describe the link between the strain and stress histories in a beam that was inspired by the Boltzmann theory. There are several publications that discuss this subject and produce a lot of fresh and original findings [1,2,3,4,5], particularly the hypotheses regarding the initial condition [6,7,8,9,10,11,12] and the kernel. See [13,14,15,16,17]. As it concerns to the plate equation and the span problem, Balakrishnan and Taylor introduced a novel damping model in [18] that they dubbed the Balakrishnan-Taylor damping. Here are a few studies that specifically addressed the research of this dampening for further information [18,19,20,21,22,23].
Several applications and real-world issues are frequently affected by the delay, which transforms numerous systems into interesting research topics. Numerous writers have recently studied the stability of the evolution systems with time delays, particularly the effect of distributed delay. See [24,25,26].
In [1], the authors presented the stability result of the system over a considerably broader class of kernels in the absence of delay and Balakrishnan-Taylor damping ξ0=1,ξ1=δ=βi=0,i=1,…,4.
Based on everything said above, one specific problem may be solved by combining these damping terms (distributed delay terms, Balakrishnan-Taylor damping and infinite memory), especially when the past history and the distributed delay
∫τ2τ1|βi(r)||ut(t−r)|m−2ut(t−r)dr, i=2,4 |
are added. We shall attempt to throw light on it since we think it represents a fresh topic that merits investigation and analysis in contrast to the ones mentioned before. Our study is structured into multiple sections: in the second section, we establish the assumptions, notions, and lemmas we require; in the final section, we substantiate our major finding.
In this section of the paper, we will introduce some basic results related to the theory for the analysis of our problem. Let us take the below:
(G1) hi:R+→R+ are a non-increasing C1 functions fulfills the following
gi(0)>0,,ξ0−∫∞0hi(s)ds=li>0,i=1,2, | (2.1) |
and
g0=∫∞0h1(s)ds,ˆg0=∫∞0g2(s)ds, |
(G2) One can find a function C1 functions Gi:R+→R+ holds true Gi(0)=G′i(0)=0.
The functions Gi(t) are strictly increasing and convex of class C2(R+) on (0,ϱ],r≤gi(0) or linear in a manner that
g′i(t)≤−ζi(t)Gi(gi(t)),∀t≥0,fori=1,2, | (2.2) |
in which ζi(t) are a C1 functions fulfilling the below
ζi(t)>0,ζ′i(t)≤0,∀t≥0. | (2.3) |
(G3) β2, β4:[τ1,τ2]→R are a bounded function fulfilling the below
∫τ2τ1|β2(r)|dr<β1,∫τ2τ1|β4(r)|dr<β3. | (2.4) |
(G4) fi:R2→R are C1 functions with fi(0,0)=0, and one can find a function F in a way that
f1(c,e)=dFdc(c,e),f2(c,e)=dFde(c,e),F≥0,af1(c,e)+ef2(c,e)=F(c,e)≥0, | (2.5) |
and
dfidc(c,e)+dfide(c,e)≤d(1+cpi−1+epi−1).∀(c,e)∈R2. | (2.6) |
Take the below
(g∘ϕ)(t):=∫Ω∫∞0h(r)|ϕ(t)−ϕ(t−r)|2drdz, |
and
M1(t):=(ξ0+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω)),M2(t):=(ξ0+ξ1‖∇w‖22+δ(∇w(t),∇wt(t))L2(Ω)). |
Lemma 2.1. (Sobolev-Poincare inequality [27]). Assume that 2≤q<∞ for n=1,2 and 2≤q<2nn−2 for n≥3. Then, one can find c∗=c(Ω,q)>0 in a manner that
‖v‖q≤c∗‖∇v‖2,∀v∈G10(Ω). |
Moreover, choose the below as in [26]:
x(z,ρ,r,t)=vt(z,t−rρ),y(z,ρ,r,t)=wt(z,t−rρ) |
with
{rxt(z,ρ,r,t)+xρ(z,ρ,r,t)=0,syt(z,ρ,r,t)+yρ(z,ρ,r,t)=0x(z,0,r,t)=vt(z,t),y(z,0,r,t)=wt(z,t). | (2.7) |
Take the auxiliary variable (see [28])
ηt(z,s)=v(z,t)−v(z,t−s),s≥0,ϑt(z,s)=w(z,t)−w(z,t−s),s≥0. |
Then
ηtt(z,s)+ηts(z,s)=vt(z,t),ϑtt(z,s)+ϑts(z,s)=wt(z,t). | (2.8) |
Rewrite the problem (1.1) as follows
{vtt−(l1+ξ1‖∇v‖22+δ(∇v,∇vt)L2(Ω))Δv(t)+∫∞0g1(s)Δηt(s)ds+β1|vt(t)|m−2vt(t)+∫τ2τ1|β2(s)||x(z,1,r,t)|m−2x(z,1,r,t)dr+f1(v,w)=0,wtt−(l2+ξ1‖∇w‖22+δ(∇w,∇wt)L2(Ω))Δw(t)+∫∞0g2(s)Δϑt(s)ds+β3|wt(t)|m−2wt(t)+∫τ2τ1|β4(r)||y(z,1,r,t)|m−2y(z,1,r,t)dr+f2(v,w)=0,rxt(z,ρ,r,t)+xρ(z,ρ,r,t)=0,ryt(z,ρ,r,t)+yρ(z,ρ,r,t)=0,ηtt(z,s)+ηts(z,s)=vt(z,t)ϑtt(z,s)+ϑts(z,s)=wt(z,t), | (2.9) |
where
(z,ρ,r,t)∈Ω×(0,1)×(τ1,τ2)×(0,∞). |
with
{v(z,−t)=v0(z),vt(z,0)=v1(z),w(z,−t)=w0(z),wt(z,0)=w1(z),inΩx(z,ρ,r,0)=j0(z,ρr),y(z,ρ,r,0)=ϱ0(z,ρr),inΩ×(0,1)×(0,τ2)v(z,t)=ηt(z,s)=0,z∈∂Ω,t,s∈(0,∞),ηt(z,0)=0,∀t≥0,η0(z,s)=η0(s)=0,∀s≥0,w(z,t)=ϑt(z,s)=0,z∈∂Ω,t,s∈(0,∞),ϑt(z,0)=0,∀t≥0,ϑ0(z,s)=ϑ0(s)=0,∀s≥0. | (2.10) |
In the upcoming Lemma, the energy functional will be introduced.
Lemma 2.2. Let the energy functional is symbolized by E, then it is given by
E(t)=12(‖vt‖22+‖wt‖22)+ξ14(‖∇v(t)‖42+‖∇w(t)‖42)+∫ΩF(v,w)dz+12(l1‖∇v(t)‖22+l2‖∇w(t)‖22)+12((g1∘∇v)(t)+(g2∘∇w)(t))+m−1m∫10∫τ2τ1s(|β2(r)|‖x(z,ρ,r,t)‖mm+|β4(r)|‖y(z,ρ,r,t)‖mm)drdρ. | (2.11) |
The above fulfills the below
E′(t)≤−γ0(‖vt(t)‖mm+‖wt(t)‖mm)+12((g′1∘∇v)(t)+(g′2∘∇w)(t))−δ4{(ddt{‖∇v(t)‖22})2+(ddt{‖∇w(t)‖22})2}≤0, | (2.12) |
in which γ0=min{β1−∫τ2τ1|β2(r)|dr,β3−∫τ2τ1|β4(r)|dr}.
Proof. To prove the result, we take the inner product of (2.9) with vt,wt and after that integrating over Ω, the following is obtained
(vtt(t),vt(t))L2(Ω)−(M3(t)Δv(t),vt(t))L2(Ω)+(∫∞0h1(s)Δηt(s)ds,vt(t))L2(Ω)+β1(|vt|m−2vt,vt)L2(Ω)+∫τ2τ1|β2(s)|(|x(z,1,r,t)|m−2x(z,1,r,t),vt(t))L2(Ω)dr+(wtt(t),wt(t))L2(Ω)−(M4(t)Δw(t),wt(t))L2(Ω)+(∫∞0h2(s)Δϑt(s)ds,wt(t))L2(Ω)+β3(|wt|m−2wt,wt)L2(Ω)+∫τ2τ1|β4(s)|(|y(z,1,r,t)|m−2y(z,1,r,t),wt(t))L2(Ω)dr+(f1(v,w),vt(t))L2(Ω)+(f2(v,w),wt(t))L2(Ω)=0. | (2.13) |
in which
M3(t):=(l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω)),M4(t):=(l2+ξ1‖∇w‖22+δ(∇w(t),∇wt(t))L2(Ω)). |
Using mathematical skills, the following is obtained
(vtt(t),vt(t))L2(Ω)=12ddt(‖vt(t)‖22), | (2.14) |
further simplification leads us to the following
−(M3(t)Δv(t),vt(t))L2(Ω)=−((l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω))Δv(t),vt(t))L2(Ω)=(l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω))∫Ω∇v(t).∇vt(t)dz=(l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω))ddt{∫Ω|∇v(t)|2dz}=ddt{12(l1+ξ12‖∇v‖22)‖∇v(t)‖22}+δ4ddt{‖∇v(t)‖22}2. | (2.15) |
The following is obtained after calculation
(∫∞0g1(s)Δηt(s)ds,vt(t))L2(Ω)=∫Ω∇vt∫∞0g1(s)∇ηt(s)dsdz=∫∞0g1(s)∫Ω∇vt∇ηt(s)dzds=∫∞0g1(s)∫Ω(∇ηtt+∇ηts)∇ηt(s)dzds=∫∞0g1(s)∫Ω∇ηtt∇ηt(s)dzds+∫Ω∫∞0g1(s)∇ηts∇ηt(∇)d∇dz=12ddt(g1∘∇v)(t)−12(g′1∘∇v)(t). | (2.16) |
In the same way, we have
(wtt(t),wt(t))L2(Ω)=12ddt(‖wt(t)‖22),−(M4(t)Δw(t),wt(t))L2(Ω)=ddt{12(l2+ξ12‖∇w‖22)‖∇w(t)‖22}+δ4ddt{‖∇w(t)‖22}2,(∫∞0g2(s)Δϑt(s)ds,wt(t))L2(Ω)=12ddt(g2∘∇w)(t)−12(g′2∘∇w)(t). | (2.17) |
Now, multiplying the equation (2.9) by −x|β2(r)|,−y|β4(r)|, and integrating over Ω×(0,1)×(τ1,τ2) and utilizing (2.7), the below is obtained
ddtm−1m∫Ω∫10∫τ2τ1r|β2(r)|.|x(z,ρ,r,t)|mdrdρdz=−(m−1)∫Ω∫10∫τ2τ1|β2(r)|.|y|m−1xρdrdρdz=−m−1m∫Ω∫10∫τ2τ1|β2(r)|ddρ|x(z,ρ,r,t)|mdrdρdz=m−1m∫Ω∫τ2τ1|β2(r)|(|x(z,0,r,t)|m−|x(z,1,r,t)|m)drdz=m−1m(∫τ2τ1|β2(r)|dr)∫Ω|vt(t)|mdz−m−1m∫Ω∫τ2τ1|β2(r)|.|x(z,1,r,t)|mdrdz=m−1m(∫τ2τ1|β2(r)|dr)‖vt(t)‖mm−m−1m∫τ2τ1|β2(r)|‖x(z,1,r,t)‖mmdr. | (2.18) |
Similarly, we have
ddtm−1m∫Ω∫10∫τ2τ1r|β4(r)|.|y(z,ρ,r,t)|mdrdρdz=m−1m(∫τ2τ1|β4(r)|dr)‖wt(t)‖mm−m−1m∫τ2τ1|β4(r)|‖y(z,1,r,t)‖mmdr. | (2.19) |
Here, we utilize the inequalities of Young as
∫τ2τ1|β2(r)|(|x(z,1,r,t)|m−2x(z,1,r,t),vt(t))L2(Ω)ds≤1m(∫τ2τ1|β2(r)|dr)‖vt(t)‖mm+m−1m∫τ2τ1|β2(r)|‖x(z,1,r,t)‖mmdr, | (2.20) |
and
∫τ2τ1|β4(r)|(|y(z,1,r,t)|m−2y(z,1,r,t),wt(t))L2(Ω)dr≤1m(∫τ2τ1|β4(r)|dr)‖wt(t)‖mm+m−1m∫τ2τ1|β4(r)|‖y(z,1,r,t)‖mmdr. | (2.21) |
Finally, we have
(f1(v,w),vt(t))L2(Ω)+(f2(v,w),wt(t))L2(Ω)=ddt∫ΩF(v,w)dz. | (2.22) |
Thus, after replacement of (2.14)–(2.22) into (2.13), we determined (2.11) and (2.12). As a result, we obtained that E is a non-increasing function by (2.2)–(2.5), which is required.
Theorem 2.3. Take the function U=(v,vt,w,wt,x,y,ηt,ϑt)T and assume that (2.1)–(2.5) holds true. Then, for any U0∈H, then one can find a unique solution U of problems (2.9) and (2.10) in a manner that
U∈C(R+,G). |
If U0∈G1, then U fulfills the following
U∈C1(R+,G)∩C(R+,G1), |
in which
G=(G10(Ω)×L2(Ω))2×(L2(Ω,(0,1),(τ1,τ2)))2×(Lg1×Lg2).G1={U∈G/v,w∈G2∩G10,vt,wt∈G10(Ω),x,y,xρ,yρ∈L2(Ω,(0,1),(τ1,τ2)),(ηt,ϑt)∈Lg1×Lg2,ηt(z,0)=ϑt(z,0)=0,x(z,0,r,t)=vt,y(z,0,r,t)=wt}. |
Here, the stability of the systems (2.9) and (2.10) will be established and investigated. For which the following lemma is needed
Lemma 3.1. Let us suppose that (2.1) and (2.2) fulfills.
∫Ω(∫∞0gi(s)(v(t)−v(t−s))ds)2dz≤Cκ,i(hi∘v)(t),i=1,2. | (3.1) |
where
Cκi:=∫∞0g2i(s)κgi(s)−g′i(s)dshi(t):=κgi(t)−g′i(t),i=1,2. |
Proof.
∫Ω(∫∞0gi(s)(v(t)−v(t−s))ds)2dz=∫Ω(∫t−∞gi(t−s)(v(t)−v(t−s))ds)2dz=∫Ω(∫t−∞gi(t−s)√κgi(t−s)−g′i(t−s)√κgi(t−s)−g′i(t−s)(v(t)−v(s))ds)2dz | (3.2) |
which is obtained through Young's inequality (Eq 3.1).
Lemma 3.2. (Jensens inequality). Let f:Ω→[c,e] and h:Ω→R are integrable functions in a manner that for any z∈Ω, h(z)>0 and ∫Ωh(z)dz=k>0. Furthermore, assume a convex function G such that G:[c,e]→R. Then
G(1k∫Ωf(z)h(z)dz)<1k∫ΩG(f(z))h(z)dz. | (3.3) |
Lemma 3.3. It is mentioned in [12] that one can find a positive constant β, ˆβ in a manner that
I1(t)=∫Ω∫∞tg1(s)|∇ηt(δ)|2dsdz≤βμ(t),I2(t)=∫Ω∫∞tg2(s)|∇ϑt(δ)|2dsdz≤ˆβˆμ(t), | (3.4) |
in which
μ(t)=∫∞0g1(t+s)(1+∫Ω∇v20(z,s)dz)ds,ˆμ(t)=∫∞0g2(t+s)(1+∫Ω∇w20(z,s)dz)ds. |
Proof. As the function E(t) is decreasing and utilizing (2.11), we have the following
∫Ω|∇ηt(s)|2dz=∫Ω(∇v(z,t)−v(z,t−s)2dz≤2∫Ω∇v2(z,t)dz+2∫Ω∇v2(z,t−s)dz≤2sups>0∫Ω∇v2(z,s)dz+2∫Ω∇v2(z,t−x)dz≤4E(0)l1+2∫Ω∇v2(z,t−s)dz, | (3.5) |
for any t,s≥0. Further, we have
I1(t)≤4E(0)l1∫∞tg1(s)ds+2∫∞tg1(s)∫Ω∇v2(z,t−s)dzds≤4E(0)l1∫∞0g1(t+s)ds+2∫∞0g1(t+s)∫Ω∇v20(z,s)dzds≤βμ(t), | (3.6) |
in which β=max{4E(0)l1,2} and μ(t)=∫∞0g1(t+s)(1+∫Ω∇u20(z,s)dz)ds.
In the same way, we can deduce that
I2(t)≤4E(0)l2∫∞0g2(t+s)ds+2∫∞0g2(t+s)∫Ω∇w20(z,s)dzds≤ˆβˆμ(t), | (3.7) |
in which ˆβ=max{4E(0)l2,2} and ˆμ(t)=∫∞0g2(t+s)(1+∫Ω∇w20(z,s)dz)ds. In the upcoming part, we set the following
Ψ(t):=∫Ω(v(t)vt(t)+w(t)wt(t))dz+δ4(‖∇v(t)‖42+‖∇w(t)‖42), | (3.8) |
and
Φ(t):=−∫Ωvt∫∞0g1(s)(v(t)−v(t−s))dsdz−∫Ωwt∫∞0g2(s)(w(t)−w(t−s))dsdz, | (3.9) |
and
Θ(t):=∫10∫τ2τ1re−ρr(|β2(r)|.‖x(z,ρ,r,t)‖mm+|β4(r)|.‖y(z,ρ,r,t)‖mm)drdρ. | (3.10) |
Lemma 3.4. In (3.8), the functional Ψ(t) fulfills the following
Ψ′(t)≤‖vt‖22+‖wt‖22−(l−ε(c1+c2)−σ1)(‖∇v‖22+‖∇w‖22)−ξ1(‖∇v‖42+‖∇w‖42)+c(ε)(‖vt‖mm+‖wt‖mm)+c(σ1)(Cκ,1(g1∘∇v)(t)+Cκ,2(h2∘∇w)(t))−∫ΩF(v,w)dz+c(ε)∫τ2τ1(|β2(r)‖x(z,1,r,t)‖mm+|β4(r)‖y(z,1,r,t)‖mm)dr. | (3.11) |
for any ε,σ1>0 with l=min{l1,l2}.
Proof. To prove the result, differentiate (3.8) first and then apply (2.9), we have the following
Ψ′(t)=‖vt‖22+∫Ωvttvdz+δ‖∇v‖22∫Ω∇vt∇vdz+‖wt‖22+∫Ωwttwdz+δ‖∇w‖22∫Ω∇wt∇wdz=‖vt‖22+‖wt‖22−ξ0(‖∇v‖22+‖∇w‖22)−ξ1(‖∇v‖42+‖∇w‖42)−β1∫Ω|vt|m−2vtvdz⏟I11−β3∫Ω|wt|m−2wtwdz⏟I12+∫Ω∇v(t)∫∞0g1(s)∇v(t−s)dsdz⏟I21+∫Ω∇w(t)∫∞0g2(s)∇w(t−s)dsdz⏟I22−∫Ω∫τ2τ1|β2(r)||x(z,1,r,t)|m−2x(z,1,r,t)vdrdz⏟I31−∫Ω∫τ2τ1|β4(r)||y(z,1,r,t)|m−2y(z,1,r,t)wdrdz⏟I32−∫Ω(vf1(v,w)+wf2(v,w))dz⏟I4. | (3.12) |
We estimate the last 6 terms of the RHS of (3.12). The following is obtained by applying Young's, Sobolev-Poincare and Hölder's inequalities on (2.1) and (2.11), we have
I11≤εβm1‖v‖mm+c(ε)‖vt‖mm≤εβm1cmp‖∇v‖m2+c(ε)‖vt‖mm≤εβm1cmp(E(0)l1)(m−2)/2‖∇v‖22+c(ε)‖vt‖mm≤εc11‖∇v‖22+c(ε)‖vt‖mm. | (3.13) |
In addition to this, for any σ1>0, by Lemma 3.1, we have the below
I21≤(∫∞0g1(s)ds)‖∇v‖22−∫Ω∇v(t)∫∞0g1(s)(∇v(t)−∇v(t−s))dsdz≤(ξ0−l1+σ1)‖∇v‖22+cσ1Cκ,1(h1∘∇v)(t). | (3.14) |
Taking same steps to I12, the below is obtained
I31≤εc21‖∇v‖22+c(ε)∫τ2τ1|β2(r)|.‖x(z,1,r,t)‖mmdr. | (3.15) |
Same steps for I11,I21 and I31, we have
I12≤εc12‖∇w‖22+c(ε)‖wt‖mmI22≤(ξ0−l2+σ1)‖∇w‖22+cσ1Cκ,2(h2∘∇w)(t),I32≤εc22‖∇w‖22+c(ε)∫τ2τ1|β4(r)|.‖y(z,1,r,t)‖mmdr. | (3.16) |
Combining (3.13)–(3.21), (3.12) and (2.5), the required (3.11) is obtained.
Lemma 3.5. For any σ,σ2,σ3>0, the functional Φ(t) introduced in (3.9) holds true
Φ′(t)≤−(l0−σ3)(‖vt‖22+‖wt‖22)+ξ1σ(‖∇v‖42+‖∇w‖42)+σ(ξ0+^l02+cˆl)‖∇v‖22+σ(ξ0+ˆh20+cl2)‖∇w‖22+σ22δE(0)(1l1(12ddt‖∇v‖22)2+1l2(12ddt‖∇w‖22)2)+c(σ,σ2,σ3)(Cκ,1(h1∘∇v)(t)+Cκ,2(h2∘∇w)(t))+c(σ)(‖vt‖mm+∫τ2τ1|β2(r)‖x(z,1,r,t)‖mmdr)+c(σ)(‖wt‖mm+∫τ2τ1|β4(r)‖y(z,1,r,t)‖mmdr). | (3.17) |
where ˆl=max{l1,l2}, l0=min{g0,ˆg0} and ^l0=max{g0,ˆg0}.
Proof. To prove the result, simplification of (3.9) and (2.9) through mathematical skills leads us to the following
Φ′(t)=−∫Ωvtt∫∞0g1(s)(v(t)−v(t−s))dsdz−∫Ωvt∂∂t(∫∞0g1(s)(v(t)−v(t−s))ds)dz−∫Ωwtt∫∞0g2(s)(w(t)−w(t−s))dsdz−∫Ωwt∂∂t(∫∞0g2(s)(w(t)−w(t−s))ds)dz=(ξ0+ξ1‖∇v‖22)∫Ω∇v∫∞0g1(s)(∇v(t)−∇v(t−s))dsdz⏟J11+(ξ0+ξ1‖∇w‖22)∫Ω∇w∫∞0g2(s)(∇w(t)−∇w(t−s))dsdz⏟J12+δ∫Ω∇v∇vtdz.∫Ω∇v∫∞0g1(s)(∇v(t)−∇v(t−s))dsdz⏟J21+δ∫Ω∇w∇wtdz.∫Ω∇w∫∞0g2(s)(∇w(t)−∇w(t−s))dsdz⏟J22−∫Ω(∫∞0g1(s)∇v(t−s)ds).(∫∞0g1(s)(∇v(t)−∇v(t−s))ds)dz⏟J31−∫Ω(∫∞0g2(s)∇w(t−s)ds).(∫∞0g2(s)(∇w(t)−∇w(t−s))ds)dz⏟J32−β1∫Ω|vt|m−2vt(∫∞0g1(s)(∇v(t)−∇v(t−s))ds)dz⏟J41−β3∫Ω|wt|m−2wt(∫∞0g2(s)(∇w(t)−∇w(t−s))ds)dx⏟J42−∫Ω∫τ2τ1|β2(r)||x(z,1,r,t)|m−2x(z,1,r,t)×∫∞0g1(s)(∇v(t)−∇v(t−s))ds)dsdz⏟J51−∫Ω∫τ2τ1|β4(r)||y(z,1,r,t)|m−2y(z,1,r,t)×∫∞0g2(s)(∇w(t)−∇w(t−s))ds)dsdz⏟J51−∫Ωvt∂∂t(∫∞0g(s)(v(t)−v(t−s))ds)dz⏟J61−∫Ωwt∂∂t(∫∞0g2(s)(w(t)−w(t−s))ds)dz⏟J62−∫Ωf1(v,w).(∫∞0g1(s)(v(t)−v(t−s))ds)dz⏟J71−∫Ωf2(v,w).(∫∞0g2(s)(w(t)−w(t−s))ds)dz⏟J72. | (3.18) |
Here, we will find our the approximation of the terms of the RHS of (3.18). Using the well-known Young's, Sobolev-Poincare and Hölder's inequalities on (2.1), (2.11) and Lemma 3.1, we proceed as follows
|J11|≤(ξ0+ξ1‖∇v‖22)(σ‖∇v‖22+14σCκ,1(h1∘∇v)(t))≤σξ0‖∇v‖22+σξ1‖∇v‖42+(ξ04σ+ξ1E(0)4l1ξ)Cκ,1(h1∘∇v)(t), | (3.19) |
and
J21≤σ2δ(∫Ω∇v∇vtdz)2‖∇v‖22+δ4σ2Cκ,1(h1∘∇v)(t)≤σ22δE(0)l1(12ddt‖∇v‖22)2+δ4σ2Cκ,1(h1∘∇v)(t), | (3.20) |
|J31|≤∫Ω(∫∞0g1(s)∇v(t)ds)(∫∞0g1(s)(∇v(t−s)−∇v(t))ds)dz−∫Ω(∫∞0g1(s)(∇v(t)−∇v(t−s))ds)2dz≤δg20‖∇v‖22+(1+14δ)Cκ,1(h1∘∇v)(t), | (3.21) |
|J41|≤c(σ)‖∇vt‖mm+σβm1∫Ω(∫∞0g1(s)(v(t)−v(t−s))ds)mdz≤c(σ)‖∇vt‖mm+σ(βm1cmp[4g0E(0)l1](m−2))Cκ,1(h1∘∇v)(t)≤c(σ)‖∇vt‖mm+σc3Cκ,1(h1∘∇v)(t). | (3.22) |
In the same, we obtained the following
J51≤c(σ)‖x(z,1,r,t)‖mm+σc4Cκ,1(h1∘∇v)(t), | (3.23) |
and to find the approximation of J61, we have
∂∂t(∫∞0g1(s)(v(t)−v(t−s))ds)=∂∂t(∫t−∞g1(t−s)(v(t)−v(s))ds)=∫t−∞g′1(t−s)(v(t)−v(s))ds+(∫t−∞g1(t−s)ds)vt(t)=∫∞0g′1(s)(v(t)−v(t−s))ds+g0vt(t), |
the (2.2) implies that
J61≤−(g0−σ3)‖vt‖22+cσ3Cκ,1(h1∘∇v)(t). | (3.24) |
In the same steps, the estimation of Ji2, i=1,..,6 are obtained and
J71≤cσl1‖∇v‖22+c(σ)Cκ,1(h1∘∇v)(t)J72≤cσl2‖∇w‖22+c(σ)Cκ,2(h2∘∇v)(t). | (3.25) |
Here, put (3.19)–(3.25) into (3.18), the required result is obtained.
Lemma 3.6. The functional Θ(t) introduced in (3.10) fulfills the below
Θ′(t)≤−γ1∫10∫τ2τ1r(|β2(r)|.‖x(z,ρ,r,t)‖mm+|β4(r)|.‖y(z,ρ,r,t)‖mm)drdρ−γ1∫τ2τ1(|β2(s)|.‖x(z,1,r,t)‖mm+|β4(r)|.‖y(z,1,r,t)‖mm)dr+β5(‖vt(t)‖mm+‖wt(t)‖mm). | (3.26) |
in which β5=max{β1,β3}.
Proof. To prove the result, using Θ(t), and (2.9), we obtained the following
Θ′(t)=−m∫Ω∫10∫τ2τ1e−rρ|β2(r)|.|x|m−1xρ(z,ρ,r,t)drdρdz−m∫Ω∫10∫τ2τ1e−rρ|β4(r)|.|y|m−1yρ(z,ρ,r,t)drdρdz=−∫Ω∫10∫τ2τ1re−rρ|β2(r)|.|x(z,ρ,r,t)|mdrdρdz−∫Ω∫τ2τ1|β2(r)|[e−r|x(z,1,r,t)|m−|x(z,0,r,t)|m]drdz−∫Ω∫10∫τ2τ1re−rρ|β4(r)|.|y(z,ρ,r,t)|mdrdρdz−∫Ω∫τ2τ1|β4(r)|[e−r|y(z,1,r,t)|m−|y(z,0,r,t)|m]drdz |
Utilizing x(z,0,r,t)=vt(z,t),y(z,0,r,t)=wt(z,t), and e−r≤e−rρ≤1, for any 0<ρ<1, moreover, select γ1=e−τ2, we have
Θ′(t)≤−γ1∫Ω∫10∫τ2τ1r(|β2(r)|.|z(z,ρ,r,t)|m+|β4(r)|.|y(z,ρ,r,t)|m)drdρdz−γ1∫Ω∫τ2τ1(|β2(r)||x(z,1,r,t)|m+|β4(r)||y(z,1,r,t)|m)drdz+∫τ2τ1|β2(r)|dr∫Ω|vt|m(t)dz+∫τ2τ1|β4(r)|dr∫Ω|wt|m(t)dz, |
applying (2.4), the required proof is obtained. In the next step, we below functional are introduced
A1(t):=∫Ω∫t0φ1(t−s)∇v(s)2dsdz,A2(t):=∫Ω∫t0φ2(t−s)∇w(s)2dsdz, | (3.27) |
in which φ1(t)=∫∞tg1(s)ds,φ2(t)=∫∞tg2(s)ds.
Lemma 3.7. Let us suppose that (2.1) and (2.2) satisfied. Then, the functional F1=A1+A2 and fulfills the following
F′1(t)≤−12((g1∘∇v)(t)+(g2∘∇w)(t))+3g0∫Ω∇v2dz+3ˆg0∫Ω∇w2dz+12∫Ω∫∞tg1(s)(∇v(t)−∇v(t−s))2dsdz+12∫Ω∫∞tg2(s)(∇w(t)−∇w(t−s))2dsdz. | (3.28) |
Proof. We can easily prove this lemma with the help of Lemma 3.7 in [13] and Lemma 3.4 in [15].
Now, we have sufficient mathematical tools to prove the below mentioned Theorem.
Theorem 3.8. Take (2.1)–(2.5), then one can find positive constants ςi,i=1,2,3 and positive function ς4(t) in a way that the energy functionalmentioned in (2.11) fulfills
E(t)≤ς1D−12(ς2+ς3∫t0ˆζ(ν)D4(ς4(ν)μ0(ν))dν∫t0ζ0(ν)dν), | (3.29) |
in which
D2(t)=tD′(ε0t),D3(t)=tD′−1(t),D4(t)=¯D∗3(t), | (3.30) |
and
μ0=max{μ,ˆμ},ˆζ=max{ζ1,ζ2},ζ0=min{ζ1,ζ2}, |
which are increasing and convex in (0, ϱ].
Proof. For the proof, we define the below functional
G(t):=NE(t)+N1Ψ(t)+N2Φ(t)+N3Θ(t), | (3.31) |
we determined the positive constants N,Ni,i=1,2,3. Simplifying (3.36) and utilizing 2.12, the Lemmas 3.4–3.6, we have
G′(t):=NE′(t)+N1Ψ′(t)+N2Φ′(t)+N3Θ′(t)≤−{N2(l0−σ3)−N1}(‖vt‖22+‖wt‖22)−{N3ξ1−N2ξ1σ}(‖∇v‖42+‖∇w‖42)−{N1(l−ε(c1+c2)−σ1)−N2σ(ξ0+^l02+cˆl)}(‖∇v‖22+‖∇w‖22)−{Nδ4−N2σ22δE(0)l}[(12ddt‖∇v‖22)2+(12ddt‖∇w‖22)2]+{N1c(σ1)+N2c(σ,σ2,σ3)}(Cκ,1(h1∘∇v)(t)+Cκ,2(h2∘∇w)(t))+N2((g′1∘∇v)(t)+(g′2∘∇w)(t))−{γ0N−N1c(ε)−N2c(σ)−N3β5}(‖vt‖mm+‖wt‖mm)−(γ1N3−N1c(ε)−N2c(σ))∫τ2τ1|β2(r)‖x(z,1,r,t)‖mmds)−N3γ1∫10∫τ2τ1r|β2(r)|.‖x(z,ρ,r,t)‖mmdrdρ−(γ1N3−N1c(ε)−N2c(σ))∫τ2τ1|β4(r)‖y(z,1,r,t)‖mmdr)−N3γ1∫10∫τ2τ1r|β4(r)|.‖y(z,ρ,r,t)‖mmdrdρ−N1∫ΩF(v,w)dz. | (3.32) |
We select the various constants at this point such that the values included in parenthesis are positive in this stage. Here, putting
σ3=l02,ε=l4(c1+c2),σ1=l4,σ2=lN16E(0)N2,N1=l04N2. |
Thus, we arrive at
H′(t)≤−l04N2(‖wt‖22+‖wt‖22)−ζ1N2(l04−δ)(‖∇w‖42+‖∇u‖42)−N2(ll08−δ(ζ0+^h02+cˆl))(‖∇w‖22+‖∇u‖22)−Nδ8[(12ddt‖∇v‖22)2+(12ddt‖∇w‖22)2]+N2c(σ,σ1,σ2,σ3)(Cκ,1(h1∘∇v)(t)+Cκ,2(h2∘∇w)(t))+N2((g′1∘∇v)(t)+(g′2∘∇v)(t))−N1∫ΩF(v,w)dz−(γ0N−N2c(σ,ε)−N3β5)(‖vt‖mm+‖wt‖mm)−(γ1N3−N2c(σ,ε))∫τ2τ1|β2(r)‖x(z,1,r,t)‖mmds)−N3γ1∫10∫τ2τ1r|β2(r)|.‖x(z,ρ,r,t)‖mmdrdρ−(γ1N3−N2c(σ,ε))∫τ2τ1|β4(r)‖y(z,1,r,t)‖mmdr)−N3γ1∫10∫τ2τ1r|β4(r)|.‖y(z,ρ,r,t)‖mmdrdρ. | (3.33) |
In the upcoming, we select σ in a manner that
σ<min{l04,ll08(ξ0+^g02+cˆl)}. |
After that, we take N2 in a way that
N2(ll08−σ(ξ0+^g02+cˆl))>4l0, |
and take N3 large enough in a way that
γ1N3−N2c(σ,ε)>0. |
As a result, for positive constants di,i=1,2,3,4,5, (3.33) can be written as
H′(t)≤−d1(‖vt‖22+‖wt‖22)−d2(‖∇v‖42+‖∇w‖42)−4l0(‖∇v‖22+‖∇w‖22)−Nδ8[(12ddt‖∇v‖22)2+(12ddt‖∇w‖22)2]−(N2−d3Cκ)((h1∘∇v)(t)+(h2∘∇w)(t))+Nκ2((g1∘∇v)(t)+(g2∘∇w)(t))−(γ0N−c)(‖vt‖mm+‖wt‖mm)−d5∫ΩF(v,w)dz−d4∫10∫τ2τ1s(|β2(r)|.‖x(z,ρ,r,t)‖mm+|β4(r)|.‖y(z,ρ,r,t)‖mm)drdρ, | (3.34) |
in which Cκ=max{Cκ,1,Cκ,2}.
We know that κg2i(s)κgi(s)−gi(s)≤gi(s), then from from Lebesgue Dominated Convergence, we have the below
limκ→0+κCκ,i=limκ→0+∫∞0κg2i(s)κgi(s)−gi(s)ds=0,i=1,2 | (3.35) |
which leads to
limκ→0+κCκ=0. |
As a result of this, one can find 0<κ0<1 in a manner that if κ<κ0, then
κCκ≤1d3. | (3.36) |
From (3.8)–(3.10) through mathematical skills, we have the following
|H(t)−NE(t)|≤N12(‖vt(t)‖22+‖wt(t)‖22+cp‖∇w(t)‖22+cp‖∇w(t)‖22)+δN14(‖∇v(t)‖42+‖∇w(t)‖42)+N22(‖vt(t)‖22+‖wt(t)‖22)+N22cp(Cκ,1(g1∘∇v)(t)+Cκ,2(g2∘∇w)(t))+N3∫10∫τ2τ1re−ρr(|β2(r)|.‖x(z,ρ,r,t)‖mm+|β4(r)|.‖y(z,ρ,r,t)‖mm)drdρ. | (3.37) |
By the fact e−ρr<1 and (2.2), we have the below
|H(t)−NE(t)|≤C(N1,N2,N3)E(t)=C1E(t). | (3.38) |
that is
(N−C1)E(t)≤H(t)≤(N+C1)E(t). | (3.39) |
Here, set κ=12N and take N large enough in a manner that
N−C1>0,,γ0N−c>0,12N−12κ0>0,κ=12N<κ0, |
we find
H′(t)≤−k2E(t)+14((g1∘∇v)(t)+(g2∘∇w)(t)) | (3.40) |
for some k2>0, and
c5E(t)≤H(t)≤c6E(t),∀t≥0 | (3.41) |
for some c5,c6>0, we have
H(t)∼E(t). |
After that, the below cases are considered:
Case 3.9. Gi,i=1,2 are linear. Multiplying (3.40) by ζ0(t)=min{ζ1(t),ζ2(t)}, we find
ζ0(t)H′(t)≤−k2ζ0(t)E(t)+14ζ0(t)((g1∘∇v)(t)+(g2∘∇w)(t))≤−k2ζ0(t)E(t)+14ζ1(t)(g1∘∇v)(t)+14ζ2(t)(g2∘∇w)(t). | (3.42) |
The last two terms in (3.42), we have
ζ1(t)4(g1∘∇v)(t)=ζ1(t)4∫Ω∫∞0g1(δ)|∇ηt(s)|2dsdz=ζ1(t)4∫Ω∫t0g1(s)|∇ηt(s)|2dsdz⏟I1+ζ1(t)4∫Ω∫∞tg1(s)|∇ηt(s)|2dsdz⏟I2 | (3.43) |
To estimate I1, using (2.11),
I1≤14∫Ω∫t0ζ1(s)g1(s)|∇ηt(s)|2dsdz=−14∫Ω∫t0g′1(s)|∇ηt(s)|2dsdz≤−12l1E′(t), | (3.44) |
and by (3.4), we get
I2≤β4ζ1(t)μ(t). | (3.45) |
In the same way, we obtained
ζ2(t)4(g2∘∇w)(t)≤−12l2E′(t)+ˆβ4ζ2(t)ˆμ(t). | (3.46) |
As a result of this, we get
ζ0(t)H′(t)≤−k2ζ0(t)E(t)−1ˆlE′(t)+2β0w(t), | (3.47) |
where β0=max{β4,ˆβ4} and w(t)=ˆζ(t)μ0(t).
Applying ζ′i(t)≤0, we get
H′1(t)≤−k2ζ0(t)E(t)+2β0w(t), | (3.48) |
with
H1(t)=ζ0(t)H(t)+1ˆlE(t)∼E(t), |
we have
k4E(t)≤H1(t)≤k5E(t), | (3.49) |
then, the following is obtained from (3.48)
k2E(T)∫T0ζ0(t)dt≤k2∫T0ζ0(t)E(t)dt≤H1(0)−H1(T)+2β0∫T0w(t)dt≤H1(0)+2β0∫T0ˆζ(t)μ0(t)dt. |
Further analysis implies that
E(T)≤1k2(G1(0)+2β0∫T0ˆξ(t)μ0(t)dt∫T0ξ0(t)dt), |
From the linearity of D, the linearity of the functions D2,D′2 and D4 can easily be determined. This implies that
E(T)≤λ1D−12(H1(0)k2+2β0k2∫T0ˆζ(t)μ0(t)dt∫T0ζ0(t)dt), | (3.50) |
which gives (3.29) with ς1=λ1, ς2=H1(0)k2, ς3=2β0λ2k2, and ς4(t)=Id(t)=t. Hence, the required proof is completed.
Case 3.10. Let Hi,i=1,2 are nonlinear. Then, with the help of (3.28) and (3.40). Assume the positive functional
H2(t)=H(t)+F1(t) |
then for all t≥0 and for some k3>0, the following holds true
H′2(t)≤−k3E(t)+12∫Ω∫∞tg1(s)(∇v(t)−∇v(t−s))2dsdz+12∫Ω∫∞tg2(s)(∇w(t)−∇w(t−s))2dsdz, | (3.51) |
with the help of (3.4), we have
k3∫t0E(x)dx≤H2(0)−H2(t)+β0∫t0μ0(ς)dς≤H2(0)+β0∫t0μ0(ς)dς. | (3.52) |
Therefore
∫t0E(x)dx≤k6μ1(t), | (3.53) |
where k6=max{H2(0)k3,β0k3} and μ1(t)=1+∫t0μ0(ς)dς.
Corollary 3.11. The following is obtained from (2.11) and (3.53):
∫t0∫Ω|∇v(t)−∇v(t−s)|2dzds+∫t0∫Ω|∇w(t)−∇w(t−s)|2dzds≤2∫t0∫Ω∇v2(t)−∇v2(t−s)dzds+2∫t0∫Ω∇w2(t)−∇w2(t−s)dzds≤4l0∫t0E(t)−E(t−s)ds≤8l0∫t0E(x)dx≤8k6l0μ1(t). | (3.54) |
Now, we define ϕi(t),i=1,2 by
ϕ1(t):=B(t)∫t0∫Ω|∇v(t)−∇v(t−s)|2dzds,ϕ2(t):=B(t)∫t0∫Ω|∇w(t)−∇w(t−s)|2dzds | (3.55) |
where B(t)=B0μ1(t) and 0<B0<min{1,l8k6}.
Then, by (3.53), we have
ϕi(t)<1,∀t>0,i=1,2 | (3.56) |
Further, we suppose that ϕi(t)>0,∀t>0,i=1,2. In addition to this, we define another functional Γ1,Γ2 by
Γ1(t):=−∫t0g′1(s)∫Ω|∇v(t)−∇v(t−s)|2dzds,Γ2(t):=−∫t0g′2(s)∫Ω|∇w(t)−∇w(t−s)|2dzds | (3.57) |
Here, obviously Γi(t)≤−cE′(t),i=1,2. As Gi(0)=0,i=1,2 and Gi(t) are convex strictly on (0, ϱ], then
Gi(λz)≤λGi(z),0<λ<1,z∈(0,ϱ],i=1,2. | (3.58) |
Applying (2.3) and (3.56), we get
Γ1(t)=−1B(t)ϕ1(t)∫t0ϕ1(t)(g′1(s))∫ΩB(t)|∇v(t)−∇v(t−s)|2dzds≥1B(t)ϕ1(t)∫t0ϕ1(t)ζ1(s)G1(g1(s))∫ΩB(t)|∇v(t)−∇v(t−s)|2dzds≥ζ1(t)B(t)ϕ1(t)∫t0G1(ϕ1(t)g1(s))∫ΩB(t)|∇v(t)−∇v(t−s)|2dzds≥ζ1(t)B(t)G1(1ϕ1(t)∫t0ϕ1(t)g1(s)∫ΩB(t)|∇v(t)−∇v(t−s)|2dzds)=ζ1(t)B(t)G1(B(t)∫t0g1(s)∫Ω|∇v(t)−∇v(t−s)|2dzds)=ζ1(t)B(t)¯G1(B(t)∫t0g1(s)∫Ω|∇v(t)−∇v(t−s)|2dzds). | (3.59) |
Γ2(t)≥ζ2(t)B(t)¯G2(B(t)∫t0g2(s)∫Ω|∇w(t)−∇w(t−s)|2dzds). | (3.60) |
Taking the same steps, ¯Gi,i=1,2 are C2-extension of Gi that are convex strictly and increasing strictlyon R+. From (3.59), we have the following
∫t0g1(s)∫Ω|∇v(t)−∇v(t−s)|2dzds≤1B(t)¯G1−1(B(t)Γ1(t)ζ1(t))∫t0g2(s)∫Ω|∇w(t)−∇w(t−s)|2dzds≤1B(t)¯G2−1(B(t)Γ2(t)ζ2(t)). | (3.61) |
Putting (3.61) and (3.4) into (3.40), we have
H′(t)≤−k2E(t)+cB(t)¯G1−1(B(t)Γ1(t)ζ1(t))+cB(t)¯G2−1(B(t)Γ2(t)ζ2(t))+k6μ0(t) | (3.62) |
Here, introduce K1(t) for ε0<r by
K1(t)=D′(ε0B(t)E(t)E(0))H(t)+E(t), | (3.63) |
in which D′=min{G1,G2} and is equivalent to E(t). Because of this E′(t)≤0,¯Gi′>0, and ¯Gi′′>0,i=1,2. Also applying (3.62), we obtained that
K′1(t)=ε0(E′(t)B(t)E(0)+E(t)B′(t)E(0))D′′(ε0E(t)B(t)E(0))H(t)+D′(ε0E(t)B(t)E(0))H′(t)+E′(t)≤−k2E(t)D′(ε0B(t)E(t)E(0))+k6μ0(t)D′(ε0B(t)E(t)E(0))+cB(t)¯G1−1(B(t)Γ1(t)ζ1(t)))D′(ε0B(t)E(t)E(0))+cB(t)¯G2−1(B(t)Γ2(t)ζ2(t)))D′(ε0B(t)E(t)E(0))+E′(t) | (3.64) |
According to [29], we introduce the conjugate function of ¯Gi by ¯Gi∗, which fulfills
AB≤¯Gi∗(A)+¯Gi(B),i=1,2 | (3.65) |
For A=D′(ε0(E(t)B(t))/(E(0)))) and Bi=¯Gi−1((B(t)Γi(t))/(ζi(t))),i=1,2 and applying (3.64), we have
K′1(t)≤−k2E(t)D′(ε0E(t)B(t)E(0))+k6μ0(t)D′(ε0E(t)B(t)E(0))+cB(t)¯G1∗(D′(ε0E(t)B(t)E(0)))+cB(t)B(t)Γ1(t)ζ1(t)+cB(t)¯G2∗(D′(ε0E(t)B(t)E(0)))+cB(t)B(t)Γ2(t)ζ2(t)+E′(t)≤−k2E(t)D′(ε0E(t)B(t)E(0))+k6μ0(t)D′(ε0E(t)B(t)E(0))+cB(t)D′(ε0E(t)B(t)E(0))(¯G1′)−1[D′(ε0E(t)B(t)E(0))]+cB(t)D′(ε0E(t)B(t)E(0))(¯G2′)−1[D′(ε0E(t)B(t)E(0))]+cΓ1(t)ζ1(t)+cΓ2(t)ζ2(t). | (3.66) |
Here, we multiply (3.66) by ζ0(t) and get
ζ0(t)K′1(t)≤−k2ζ0(t)E(t)D′(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D′(ε0E(t)B(t)E(0))+2cζ0(t)B(t)ε0E(t)B(t)E(0)D′(ε0E(t)B(t)E(0))+cΓ1(t)+cΓ2(t)≤−k2ζ0(t)E(t)D′(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D′(ε0E(t)B(t)E(0))+2cζ0(t)B(t)ε0E(t)B(t)E(0)D′(ε0E(t)B(t)E(0))−cE′(t) | (3.67) |
where we utilized the following ε0(B(t)E(t)/E(0))<r, D′=min{G1,G2} and Γi<−cE′(t),i=1,2, and define the functional K2(t) as
K2(t)=ζ0(t)K1(t)+cE(t) | (3.68) |
Effortlessly, one can prove that K2(t)∼E(t), i.e., one can find two positive constants m1 and m2 in a manner that
m1K2(t)≤E(t)≤m2K2(t), | (3.69) |
then, we have
K′2(t)≤−β6ζ0(t)E(t)E(0)D′(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D′(ε0E(t)B(t)E(0))=−β6ζ0(t)B(t)D2(E(t)B(t)E(0))+k6ζ0(t)μ0(t)D′(ε0E(t)B(t)E(0)), | (3.70) |
where β6=(k2E(0)−2cε0) and D2(t)=tD′(ε0t).
Choosing ε0 so small such that β6>0, since D′2(t)=D′(ε0t)+ε0tD′′(ε0t). As D′2(t),D2(t)>0 on (0, 1] and Gi on (0, ϱ] are strictly increasing. Applying Young's inequality (3.65) on the last term in (3.70)
with A=D′(ε0E(t)B(t)E(0)) and B=k6δμ(t), we find
k6μ0(t)D′(ε0E(t)B(t)E(0))=σB(t)(k6σB(t)μ0(t))(D′(ε0E(t)B(t)E(0)))<σB(t)D∗3(k6σB(t)μ0(t))+σB(t)D3(D′(ε0E(t)B(t)E(0)))<σB(t)D4(k6σB(t)μ0(t))+σB(t)(ε0E(t)B(t)E(0))D′(ε0E(t)B(t)E(0))<σB(t)D4(k6σB(t)μ0(t))+σε0B(t)D2(ε0E(t)B(t)E(0)). | (3.71) |
Here, choose σ small enough in a manner that β6−σε0>0 andcombining (3.70) and (3.71), we have
K′2(t)≤−β7ζ0(t)B(t)D2(E(t)B(t)E(0))+σζ0(t)B(t)D4(k6δB(t)μ0(t)). | (3.72) |
where β7=β6−σε0>0, D3(t)=tD′−1(t) and D4(t)=¯D∗3(t).
In light of fact E′<0 and B′<0, then D2(E(t)B(t)E(0)) is decreasing. As a consequences of this, for 0≤t≤T, we have
D2(E(T)B(T)E(0))<D2(E(t)B(t)E(0)). | (3.73) |
In the next step, combine (3.72) with (3.73) and multiply by B(t), the following is obtained
B(t)K′2(t)+β7ζ0(t)D2(E(T)B(T)E(0))<σζ0(t)D4(k6σB(t)μ0(t)). | (3.74) |
Since B′<0, then for any 0<t<T
(BK2)′(t)+β7ζ0(t)D2(E(T)B(T)E(0))<σζ0(t)D4(k6σB(t)μ0(t))<σˆζ(t)D4(k6σB(t)μ0(t)). | (3.75) |
Simplify (3.75) over [0,T] and apply B(0)=1, the following is obtained
D2(E(T)B(T)E(0))∫T0ζ0(t)dt<K2(0)β7+σβ7∫T0ˆζ(t)D4(k6σB(t)μ0(t))dt. | (3.76) |
Consequently, we have
D2(E(T)B(T)E(0))<K2(0)β7+σβ7∫T0ˆζ(t)D4(k6σB(t)μ0(t))dt∫T0ζ0(t)dt. | (3.77) |
As a results of this, we obtain
(E(T)B(T)E(0))<D−12(K2(0)β7+σβ7∫T0ˆζ(t)D4(k6σB(t)μ0(t))dt∫T0ζ0(t)dt). | (3.78) |
As a result of this, we get
E(T)<E(0)B(T)D−12(K2(0)β7+σβ7∫T0ˆζ(t)D4(k6σB(t)μ0(t))dt∫T0ζ0(t)dt). | (3.79) |
where, we have (3.29) with ς1=E(0)B(T), ς2=K2(0)β7, ς3=σβ7, and ς4(t)=k6σB(t).
Hence, the required result is obtained 3.8.
The purpose of this work was to study when the coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels gi:R+→R+ holds true the below
g′i(t)≤−ζi(t)Gi(gi(t)),∀t∈R+,fori=1,2, |
in which ζi and Gi are functions. We prove the stability of the system under this highly generic assumptions on the behaviour of gi at infinity and by dropping the boundedness assumptions in the historical data. This type of problem is frequently found in some mathematical models in applied sciences. Especially in the theory of viscoelasticity. What interests us in this current work is the combination of these terms of damping, which dictates the emergence of these terms in the problem. In the next work, we will try to using the same method with same problem. But in added of other dampings.
The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.
The authors declare there is no conflicts of interest.
[1] | A. M. Al-Mehdi, M. M. Al-Gharabli, S. A. Messaoudi, New general decay result for a system of viscoelastic wave equation with past hystory, Commun. Pure Appl. Anal., 20 (2021), 389–404. |
[2] | D. R. Bland, The Theory of Linear Viscoelasticity, Mineola, Courier Dover Publications, 2016. |
[3] |
S. Boulaaras, A. Choucha, D. Ouchenane, General decay and well-posedness of the Cauchy problem for the Jordan-Moore-Gibson-Thompson equation with memory, Filomat, 35 (2021), 1745–1773. https://doi.org/10.2298/fil2105745b doi: 10.2298/fil2105745b
![]() |
[4] |
S. Boulaaras, A. Choucha, A. Scapellato, General decay of the Moore-Gibson- Thompson equation with viscoelastic memory of type Ⅱ, J. Funct. Spaces, 2022 (2022). https://doi.org/10.1155/2022/9015775 doi: 10.1155/2022/9015775
![]() |
[5] |
A. Choucha, D. Ouchenane, K. Zennir, B. Feng, Global well-posedness and exponential stability results of a class of Bresse-Timoshenko-type systems with distributed delay term, Math. Methods Appl. Sci., 2020 (2020), 1–26. https://doi.org/10.1002/mma.6437 doi: 10.1002/mma.6437
![]() |
[6] |
A. Choucha, S. Boulaaras, D. Ouchenane, S. Beloul, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms, Math. Methods Appl. Sci., 44 (2020), 5436–5457. https://doi.org/10.1002/mma.7121 doi: 10.1002/mma.7121
![]() |
[7] |
A. Choucha, S. M. Boulaaras, D. Ouchenane, B. B. Cherif, M. Abdalla, Exponential stability of swelling porous elastic with a viscoelastic damping and distributed delay term, J. Funct. Spaces, 2021 (2021). https://doi.org/10.1155/2021/5581634 doi: 10.1155/2021/5581634
![]() |
[8] |
B. D. Coleman, W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys., 33 (1961). https://doi.org/10.1103/RevModPhys.33.239 doi: 10.1103/RevModPhys.33.239
![]() |
[9] |
N. C. Eddine, M. A. Ragusa, Generalized critical Kirchhoff-type potential systems with Neumann boundary conditions, Appl. Anal., 101 (2022), 3958–3988. https://doi.org/10.1080/00036811.2022.2057305 doi: 10.1080/00036811.2022.2057305
![]() |
[10] |
B. Feng, A. Soufyane, Existence and decay rates for a coupled Balakrishnan-Taylor viscoelastic system with dynamic boundary conditions, Math. Methods Appl. Sci., 43 (2020), 3375–3391. https://doi.org/10.1002/mma.6127 doi: 10.1002/mma.6127
![]() |
[11] |
B. Gheraibia, N. Boumaza, General decay result of solution for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term, Z. Angew. Math. Phys., 71 (2020). https://doi.org/10.1007/s00033-020-01426-1 doi: 10.1007/s00033-020-01426-1
![]() |
[12] |
A. Guesmia, New general decay rates of solutions for two viscoelastic wave equations with infinite memory, Math. Model. Anal., 25 (2020), 351–373. https://doi.org/10.3846/mma.2020.10458 doi: 10.3846/mma.2020.10458
![]() |
[13] |
A. Guesmia, N. Tatar, Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay, Commun. Pure Appl. Anal., 14 (2015), 457–491. https://doi.org/10.3934/cpaa.2015.14.457 doi: 10.3934/cpaa.2015.14.457
![]() |
[14] |
F. Mesloub, S. Boulaaras, General decay for a viscoelastic problem with not necessarily decreasing kernel, J. Appl. Math. Comput., 58 (2018), 647–665. https://doi.org/10.1007/S12190-017-1161-9 doi: 10.1007/S12190-017-1161-9
![]() |
[15] |
M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134–152. https://doi.org/10.1016/j.jmaa.2017.08.019 doi: 10.1016/j.jmaa.2017.08.019
![]() |
[16] |
D. Ouchenane, S. Boulaaras, F. Mesloub, General decay for a viscoelastic problem with not necessarily decreasing kernel, Appl. Anal., 98 (2018), 1677–1693. https://doi.org/10.1080/00036811.2018.1437421 doi: 10.1080/00036811.2018.1437421
![]() |
[17] | A. Zaraï, N. Tatar, Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping, Arch. Math., 46 (2010), 157–176. Available from: https://eudml.org/doc/116480. |
[18] | A. V. Balakrishnan, L. W. Taylor, Distributed parameter nonlinear damping models for flight structures, in Proceedings "Damping 89", Flight Dynamics Lab and Air Force Wright Aeronautical Labs, Washington, 89 (1989). |
[19] | R. W. Bass, D. Zes, Spillover nonlinearity and flexible structures, in Proceedings of the 30th IEEE Conference on Decision and Control, 2 (1991), 1633–1637. https://doi.org/10.1109/CDC.1991.261683 |
[20] |
S. Boulaaras, A. Draifia, K. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity, Math. Methods Appl. Sci., 42 (2019), 4795–4814. https://doi.org/10.1002/mma.5693 doi: 10.1002/mma.5693
![]() |
[21] |
W. Liu, B. Zhu, G. Li, D. Wang, General decay for a viscoelastic Kirchhoof equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term, Evol. Equations Control Theory, 6 (2017), 239–260. https://doi.org/10.3934/eect.2017013 doi: 10.3934/eect.2017013
![]() |
[22] |
C. Mu, J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91–113. https://doi.org/10.1007/s00033-013-0324-2 doi: 10.1007/s00033-013-0324-2
![]() |
[23] |
A. Choucha, D. Ouchenane, S. Boulaaras, Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms, J. Nonlinear Funct. Anal., 2020 (2020). https://doi.org/10.23952/jnfa.2020.31 doi: 10.23952/jnfa.2020.31
![]() |
[24] |
S. Boulaaras, A. Choucha, D. Ouchenane, B. Cherif, Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms, Adv. Differ. Equations, 2020 (2020). https://doi.org/10.1186/s13662-020-02772-0 doi: 10.1186/s13662-020-02772-0
![]() |
[25] |
A. Choucha, D. Ouchenane, S. Boulaaras, Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term, Math. Methods Appl. Sci., 43 (2020), 9983–10004. https://doi.org/10.1002/mma.6673 doi: 10.1002/mma.6673
![]() |
[26] | S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integr. Equations, 21 (2008), 935–958. Available from: https://projecteuclid.org/journals/differential-and-integral-equations/volume-21/issue-9-10/. |
[27] | R. Adams, J. Fourier, Sobolev Space, Academic Press, New York, 2003. https://doi.org/10.3934/cpaa.2020273 |
[28] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297–308. https://doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609
![]() |
[29] | V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, NY, USA, 1989. |
1. | Abdelbaki Choucha, Salah Boulaaras, Fares Yazid, Rashid Jan, Ibrahim Mekawy, Results on a nonlinear wave equation with acoustic and fractional boundary conditions coupling by logarithmic source and delay terms: Global existence and asymptotic behavior of solutions, 2024, 24, 25900374, 100515, 10.1016/j.rinam.2024.100515 |