Research article

Stabilization for a degenerate wave equation with drift and potential term with boundary fractional derivative control

  • Received: 08 June 2024 Revised: 23 July 2024 Accepted: 08 August 2024 Published: 16 August 2024
  • This paper explores the boundary stabilization of a degenerate wave equation in the non-divergence form, which includes a drift term and a singular potential term. Additionally, we introduce boundary fractional derivative damping at the endpoint where divergence is absent. Using semi-group theory and the multiplier method, we establish polynomial stability, with a decay rate depending upon the order of the fractional derivative.

    Citation: Ibtissam Issa, Zayd Hajjej. Stabilization for a degenerate wave equation with drift and potential term with boundary fractional derivative control[J]. Electronic Research Archive, 2024, 32(8): 4926-4953. doi: 10.3934/era.2024227

    Related Papers:

  • This paper explores the boundary stabilization of a degenerate wave equation in the non-divergence form, which includes a drift term and a singular potential term. Additionally, we introduce boundary fractional derivative damping at the endpoint where divergence is absent. Using semi-group theory and the multiplier method, we establish polynomial stability, with a decay rate depending upon the order of the fractional derivative.



    加载中


    [1] W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. Math., 55 (1952), 468–519. https://doi.org/10.2307/1969644 doi: 10.2307/1969644
    [2] P. Cannarsa, G. Fragnelli, D. Rocchetti, Null controllability of degenerate parabolic operators with drift, Networks Heterogen. Media, 2 (2007), 695–715. https://doi.org/10.1137/04062062X doi: 10.1137/04062062X
    [3] G. Fragnelli, Interior degenerate/singular parabolic equations in nondivergence form: well-posedness and carleman estimates, J. Differ. Equations, 260 (2016), 1314–1371. https://doi.org/10.1016/j.jde.2015.09.019 doi: 10.1016/j.jde.2015.09.019
    [4] M. Badii, J. I. Díaz, Time periodic solutions for a diffusive energy balance model in climatology, J. Math. Anal. Appl., 233 (1999), 713–729. https://doi.org/10.1006/jmaa.1999.6335 doi: 10.1006/jmaa.1999.6335
    [5] I. H. Biswas, A. K. Majee, G. Vallet, On the cauchy problem of a degenerate parabolic-hyperbolic pde with lévy noise, Adv. Nonlinear Anal., 8 (2019), 809–844. https://doi.org/10.1515/anona-2017-0113 doi: 10.1515/anona-2017-0113
    [6] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev., 51 (2009), 3–33. https://doi.org/10.1137/080716827 doi: 10.1137/080716827
    [7] O. Nikan, Z. Avazzadeh, J. A. T. Machado, Numerical simulation of a degenerate parabolic problem occurring in the spatial diffusion of biological population, Chaos, Solitons Fractals, 151 (2021), 111220. https://doi.org/10.1016/j.chaos.2021.111220 doi: 10.1016/j.chaos.2021.111220
    [8] F. Alabau-Boussouira, P. Cannarsa, G. Leugering, Control and stabilization of degenerate wave equations, SIAM J. Control Optim., 55 (2017), 2052–2087. https://doi.org/10.1137/15M1020538 doi: 10.1137/15M1020538
    [9] M. Gueye, Exact boundary controllability of 1-d parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037–2054. https://doi.org/10.1137/120901374 doi: 10.1137/120901374
    [10] F. Chouaou, C. Aichi, A. Benaissa, Decay estimates for a degenerate wave equation with a dynamic fractional feedback acting on the degenerate boundary, Filomat, 35 (2021), 3219–3239. https://doi.org/10.2298/FIL2110219C doi: 10.2298/FIL2110219C
    [11] I. Boutaayamou, G. Fragnelli, D. Mugnai, Boundary controllability for a degenerate wave equation in nondivergence form with drift, SIAM J. Control Optim., 61 (2023), 1934–1954. https://doi.org/10.1137/22M151491X doi: 10.1137/22M151491X
    [12] M. Akil, G. Fragnelli, I. Issa, Stability for degenerate wave equations with drift under simultaneous degenerate damping, preprint, arXiv: 2308.08645. https://doi.org/10.48550/arXiv.2308.08645
    [13] M. Akil, G. Fragnelli, I. Issa, Energy decay rate of a transmission system governed by degenerate wave equation with drift and under heat conduction with memory effect, preprint, arXiv: 2311.16296. https://doi.org/10.48550/arXiv.2311.16296
    [14] B. Allal, A. Hajjaj, J. Salhi, A. Sbai, Boundary controllability for a coupled system of degenerate/singular parabolic equations, Evol. Equations Control Theory, 11 (2022), 1579–1604. https://doi.org/10.3934/eect.2021055 doi: 10.3934/eect.2021055
    [15] I. Boutaayamou, G. Fragnelli, A degenerate population system: Carleman estimates and controllability, Nonlinear Anal., 195 (2020), 111742. https://doi.org/10.1016/j.na.2019.111742 doi: 10.1016/j.na.2019.111742
    [16] G. Fragnelli, Carleman estimates and null controllability for a degenerate population model, J. Math. Pures Appl., 115 (2018), 74–126. https://doi.org/10.1016/j.matpur.2018.01.003 doi: 10.1016/j.matpur.2018.01.003
    [17] I. Boutaayamou, G. Fragnelli, L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and neumann boundary conditions, J. Anal. Math., 135 (2018), 1–35. https://doi.org/10.1007/s11854-018-0030-2 doi: 10.1007/s11854-018-0030-2
    [18] G. Fragnelli, Null controllability for a degenerate population model in divergence form via carleman estimates, Adv. Nonlinear Anal., 9 (2019), 1102–1129. https://doi.org/10.1515/anona-2020-0034 doi: 10.1515/anona-2020-0034
    [19] G. Fragnelli, M. Yamamoto, Carleman estimates and controllability for a degenerate structured population model, Appl. Math. Optim., 84 (2020), 999–1044. https://doi.org/10.1007/s00245-020-09669-0 doi: 10.1007/s00245-020-09669-0
    [20] C. L. Epstein, R. Mazzeo, Degenerate Diffusion Operators Arising in Population Biology, Princeton University Press, 2013. https://doi.org/10.1365/s13291-015-0131-0
    [21] J. Vancostenoble, E. Zuazua, Null controllability for the heat equation with singular inverse-square potentials, J. Funct. Anal., 254 (2008), 1864–1902. https://doi.org/10.1016/j.jfa.2007.12.015 doi: 10.1016/j.jfa.2007.12.015
    [22] P. S. Hagan, D. E. Woodward, Equivalent black volatilities, Appl. Math. Finance, 6 (1999), 147–157. https://doi.org/10.1080/135048699334500 doi: 10.1080/135048699334500
    [23] F. Alabau-Boussouira, P. Cannarsa, G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equations, 6 (2006), 161–204. https://doi.org/10.1007/s00028-006-0222-6 doi: 10.1007/s00028-006-0222-6
    [24] P. Cannarsa, P. Martinez, J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1–19. https://doi.org/10.1137/04062062X doi: 10.1137/04062062X
    [25] G. Fragnelli, D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Adv. Nonlinear Anal., 2 (2013). https://doi.org/10.1515/anona-2013-0015
    [26] G. Fragnelli, D. Mugnai, Carleman Estimates, Observability Inequalities and Null Controllability for Interior Degenerate Non Smooth Parabolic Equations, American Mathematical Society, 242 (2016). https://doi.org/10.1090/MEMO/1146
    [27] M. Fotouhi, L. Salimi, Controllability results for a class of one dimensional degenerate/singular parabolic equations, Commun. Pure Appl. Anal., 12 (2013), 1415–1430. https://doi.org/10.3934/cpaa.2013.12.1415 doi: 10.3934/cpaa.2013.12.1415
    [28] G. Fragnelli, D. Mugnai, Singular parabolic equations with interior degeneracy and non smooth coefficients: The neumann case, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 1495–1511. https://doi.org/10.3934/dcdss.2020084 doi: 10.3934/dcdss.2020084
    [29] Z. J. Han, Z. Liu, J. Wang, Sharper and finer energy decay rate for an elastic string with localized kelvin-voigt damping, Discrete Contin. Dyn. Syst. Ser. S, 15 (2022), 1455–1467. https://doi.org/10.3934/dcdss.2022031 doi: 10.3934/dcdss.2022031
    [30] Z. J. Han, Z. Liu, Q. Zhang, Sharp stability of a string with local degenerate kelvin–voigt damping, ZAMM, 102 (2022). https://doi.org/10.1002/zamm.202100602
    [31] Z. J. Han, Z. Liu, K. i Yu, Stabilization for wave equation with localized kelvin–voigt damping on cuboidal domain: A degenerate case, SIAM J. Control Optim., 62 (2024), 441–465. https://doi.org/10.1137/22M153210X doi: 10.1137/22M153210X
    [32] B. Allal, A. Moumni, J. Salhi, Boundary controllability for a degenerate and singular wave equation, Math. Methods Appl. Sci., 45 (2022), 11526–11544. https://doi.org/10.1002/mma.8464 doi: 10.1002/mma.8464
    [33] G. Fragnelli, D. Mugnai, A. Sbai, Boundary controllability for degenerate/singular hyperbolic equations in nondivergence form with drift, preprint, arXiv: 2402.18247. https://doi.org/10.48550/arXiv.2402.18247
    [34] G. Fragnelli, D. Mugnai, A. Sbai, Stabilization for degenerate equations with drift and small singular term, preprint, arXiv: 2403.17802. https://doi.org/10.48550/arXiv.2403.17802
    [35] M. Akil, G. Fragnelli, I. Issa, Stability of degenerate wave equation with a singular potential and local damping, (2024), hal-04539408f, In press.
    [36] D. Matignon, Asymptotic stability of webster-lokshin equation, Math. Control Relat. Fields, 4 (2014). https://doi.org/10.3934/mcrf.2014.4.481
    [37] R. L. Bagley, P. J. Torvik, Fractional calculus–-a different approach to the analysis of viscoelastically damped structures, AIAA J., 21 (1983), 741–748. https://doi.org/10.2514/3.8142 doi: 10.2514/3.8142
    [38] M. Mainardi, E. Bonetti, The application of real-order derivatives in linear viscoelasticity, in Progress and Trends in Rheology II, Steinkopff, Heidelberg, (1988), 64–67. https://doi.org/10.1007/978-3-642-49337-9_11
    [39] P. Torvik, R. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984). https://doi.org/10.1115/1.3167615
    [40] M. Akil, Y. Chitour, M. Ghader, A. Wehbe. Stability and exact controllability of a timoshenko system with only one fractional damping on the boundary, Asymptotic Anal., 119 (2020), 221–280. https://doi.org/10.3233/ASY-191574 doi: 10.3233/ASY-191574
    [41] M. Akil, I. Issa, A. Wehbe, Energy decay of some boundary coupled systems involving wave euler-bernoulli beam with one locally singular fractional kelvin-voigt damping, Math. Control Relat. Fields, 13 (2023), 330–381. https://doi.org/10.3934/mcrf.2021059 doi: 10.3934/mcrf.2021059
    [42] M. Akil, A. Wehbe, Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions, Math. Control Relat. Fields, 9 (2019), 97–116. https://doi.org/10.3934/mcrf.2019005 doi: 10.3934/mcrf.2019005
    [43] A. Benaissa, S. Gaouar, Asymptotic stability for the lamé system with fractional boundary damping, Comput. Math. Appl., 77 (2019), 1331–1346. https://doi.org/10.1016/j.camwa.2018.11.011 doi: 10.1016/j.camwa.2018.11.011
    [44] B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Control Inf., 23 (2006), 237–257. https://doi.org/10.1093/imamci/dni056 doi: 10.1093/imamci/dni056
    [45] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44 (1983). https://doi.org/10.1007/978-1-4612-5561-1
    [46] G. Fragnelli, D. Mugnai, Linear stabilization for a degenerate wave equation in non divergence form with drift, preprint arXiv: 2212.05264. https://doi.org/10.48550/arXiv.2212.05264
    [47] W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Am. Math. Soc., 306 (1988), 837–852. https://doi.org/10.2307/2000826 doi: 10.2307/2000826
    [48] M. Akil, Stability of piezoelectric beam with magnetic effect under (coleman or pipkin)–gurtin thermal law, Z. Angew. Math. Phys., 73 (2022). https://doi.org/10.1007/s00033-022-01867-w
    [49] Z. Liu, S. Zheng, Semigroups Associated with Dissipative Systems, CRC Press, 1999.
    [50] A. Borichev, Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455–478. https://doi.org/10.1007/s00208-009-0439-0 doi: 10.1007/s00208-009-0439-0
    [51] Z. Liu, B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630–644. https://doi.org/10.1007/s00033-004-3073-4 doi: 10.1007/s00033-004-3073-4
    [52] C. J. K. Batty, T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equations, 8 (2008), 765–780. https://doi.org/10.1007/s00028-008-0424-1 doi: 10.1007/s00028-008-0424-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(444) PDF downloads(32) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog