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Abstract: This paper explores the boundary stabilization of a degenerate wave equation in the non-
divergence form, which includes a drift term and a singular potential term. Additionally, we introduce
boundary fractional derivative damping at the endpoint where divergence is absent. Using semi-group
theory and the multiplier method, we establish polynomial stability, with a decay rate depending upon
the order of the fractional derivative.
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1. Introduction

This paper is devoted to studying a class of degenerate and singular wave equations. These equa-
tions are characterized by degeneracy in the non-divergence form, accompanied by a drift term, and a
singular potential term with fractional derivative feedback on the boundary. The system is defined as
follows: 

vtt(x, t) − p(x)vxx(x, t) −
β

q(x)
v(x, t) − r(x)vx(x, t) = 0, (x, t) ∈ (0, 1) × (0,+∞),

v(0, t) = 0, (ηvx)(1, t) = −∂
α,η
t v(1, t), t ∈ (0,+∞),

(1.1)

with the following initial condition:

v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ (0, 1),
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where p, q, r ∈ C0[0, 1], p, q > 0 on (0, 1], p(0) = q(0) = 0, β ∈ R, and
r
p
∈ L1(0, 1). Hence, if

p(x) = xK , K > 0, we can consider r(x) = xm, m > 0, for any m > K − 1. This condition is
clearly satisfied if K < 1. In the boundary condition, η is the well-known absolutely continuous weight
function

η(x) := exp


∫ x

1
2

r(s)
p(s)

ds

 , x ∈ [0, 1]

introduced by Feller in a related context [1] (see also [2, 3] and the references therein). It is clear that
the function η : [0, 1] → R is well defined, and we immediately find that η ∈ C0[0, 1] ∩ C1(0, 1] is a
strictly positive function that is bounded above and below by a positive constant. Notice also that η can
be extended to a function of class C1[0, 1] when r degenerates at 0 not slower than p, for instance, if
p(x) = xn1 and r(x) = xn2 with n1 ≤ n2. The notation ∂α,τt represents Caputo’s fractional derivative of
order α ∈ (0, 1) with respect to time variable t and is defined by

[Dα,τω](t) = ∂α,τt ω(t) =
1

Γ(1 − α)

∫ t

0
(t − s)−αe−τ(t−s) dω

ds
(s)ds, (1.2)

where Γ denotes the Gamma function and τ ≥ 0.
The degeneracy of a function ϱ at x = 0 is measured by the parameter Kϱ defined by

Kϱ := sup
x∈(0,1]

x|ϱ′(x)|
ϱ(x)

. (1.3)

• We say that ϱ is weakly degenerate (WD) if ϱ ∈ C0[0, 1] ∩C1(0, 1] and Kϱ ∈ (0, 1).

• We say that ϱ is strongly degenerate (SD) if ϱ ∈ C1[0, 1] and Kϱ ∈ [1, 2).

We assume here that Kp,Kq < 2 because it is essential to the calculation that will be conducted later
below. Additionally, later, we will need a condition on Kp and Kq < 2 such that Kp + 2Kq ≤ 2.

Prior to exploring the system discussed in this paper, it is advantageous to conduct a comprehensive
literature review focusing on the study of degenerate systems. It is commonly known that investigating
the standard linear theory concerning transverse waves in a string of length L under tension T results
in the derivation of the classical wave equation:

ρ(x)utt(t, x) =
∂T

∂x
ux(t, x) + T (x, t)uxx(t, x),

where u(t, x) denotes the vertical displacement of the string from the x axis at position x ∈ (0, L) and
time t > 0, ρ(x) is the mass density of the string at position x, and T (t, x) denotes the tension in the
string at position x and time t. Divide by ρ(x), assumeT is independent of t, and set p(x) = T (x)ρ−1(x),
r(x) = T ′(x)ρ−1(x). In this way, we obtain

utt(t, x) = p(x)uxx(t, x) + r(x)ux(t, x).

Let us consider a scenario where the density at a specific point, say x = 0, is notably high. In such
cases, the equation degenerates at x = 0, as we can set p(0) = 0, and the remaining term becomes a
drift term.
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Recently, there has been a noticeable increase in interest in studying degenerate parabolic and hy-
perbolic equations. This indicates a substantial change in focus after a time of neglect in exploring
these types of systems. These equations have attracted interest because of their applicability in several
real-world situations, such as camouflage (to make operators undetectable), Levy noise phenomena,
meteorology, and biology [4–7]. Diverse disciplines have been faced with demanding control and
inverse problems due to the rise of degenerate partial differential equations (PDEs). The complex
mathematical difficulties related to degenerate partial differential equations have been exacerbated by
their extensive range of applications.

The literature provides limited insight into scenarios where the coefficient a(x) (in the equa-
tion utt − a(x)uxx) demonstrates degeneracy, despite numerous applications described by hyperbolic
equations that degenerate at the spatial domain’s boundary. This was investigated in the pioneer-
ing work by Alabau et al. [8] for a general function a(x) and by Gueye [9] for the prototype case
(a(x) = xα, α ∈ (0, 1)). More recently, Chouaou et al. [10] examined a one-dimensional weakly
degenerate wave equation with dynamic non-local boundary feedback of fractional type acting at a
degenerate point. They demonstrated the absence of uniform stability and established a polynomial
decay rate.

In the paper by Boutaayamou et al. [11], the authors examine a degenerate wave equation featuring
drift, where the leading operator does not conform to divergence form: utt − a(x)uxx − b(x)ux = 0,

u(t, 0) = 0, u(t, 1) = f (t)

and they studied the boundary controllability of the system. In addition, Akil et al. [12] investigate
a one-dimensional degenerate wave equation with degenerate damping. The equation includes a drift
term and a leading operator in non-divergence form. The same authors in [13] investigate the stability
of a transmission problem that involves a degenerate wave equation and a heat equation. The problem
is analyzed under the Coleman–Gurtin heat conduction law, or Gurtin–Pipkin law, which includes a
memory effect.

Lately, there has been a significant focus on addressing challenges related to controllability in
parabolic and hyperbolic situations, which include both degenerate and singular terms. In physics,
biology, and mathematical finance, degenerate parabolic equations with singular terms are often used
to describe a wide range of problems. For the physics and biology problems, several notable studies
have been conducted. For instance, in [14], the authors investigate the boundary controllability of a
system comprising two coupled degenerate and singular parabolic equations, with control applied to
only one of the equations. In [15], a model representing the interaction between two species, u and
v, is examined. The authors establish Carleman estimates and observability inequalities for the asso-
ciated non-homogeneous adjoint problem, using the Carleman estimates provided in [16] for a single
equation. A parabolic problem with degeneracy occurring within the interior of the spatial domain and
subject to Neumann boundary conditions is analyzed in [17], where new observability inequalities are
derived. Subsequently, [18] addresses the case in non-divergence form. In [19], the authors explore the
null controllability of a single population model. Additionally, the work in [20] focuses on degenerate
diffusion operators relevant to population biology. Finally, [21] examines the null controllability of the
heat equation perturbed by a singular inverse-square potential, a topic pertinent to quantum mechanics
and combustion theory. For mathematical finance problems refer to [22].
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In quantum physics, a singular potential term is of utmost importance due to its ability to reach infi-
nite values or display unconventional characteristics at specified points or areas in space. The singular
potential term’s sign in the wave equation can have a significant influence on the system’s physical
interpretation and behavior. A negative sign in the wave function causes it to diverge from the con-
centration of the potential, while a positive sign makes it an attracting potential. The controllability of
systems with regular degenerate coefficients is investigated in the studies [23–25]. Research has ex-
panded its scope to encompass non-smooth degenerate coefficient systems [17,26] and has investigated
issues of controllability in degenerate and singular coefficient systems [27, 28]. In addition, research
has investigated the wave equation with Kelvin–Voigt damping that degenerates near the interface. This
study has been examined in the 1-dimensional case in [29, 30] and in the multidimensional situation
in [31].

A recent study by Allal et al. in [32] addresses the issue of null controllability in wave equa-
tions characterized by both degeneracy and singularity, with a specific emphasis on cases involving
pure powers. Besides, Fragnelli et al. [33] introduce results for a degenerate hyperbolic equation in
non-divergence form with drift, where both the degeneracy and singularity are characterized by more
general functions. Specifically, they establish a controllability result considering a boundary control
acting on the non-degenerate point. Also, they studied in another work [34] the stability of the same
system with boundary damping. Subsequently, Akil et al. [35] investigated the stability of this same
system with localized singular damping. The purpose of this study is to fill the research gap regarding
the stabilization of degenerate wave equations that have both drift and singular potential terms, as well
as boundary fractional derivative feedback damping. This forms the primary novelty of this paper,
as we delve into the degenerate wave equation with a drift and a singular potential term, alongside
boundary fractional derivative damping. The inclusion of such damping is crucial from both theoreti-
cal and practical perspectives, describing memory and hereditary properties in various materials [36].
For instance, in viscoelasticity, materials like soils, concrete, rubber, biological tissue, and polymers
exhibit elastic solid and viscous fluid-like responses [37–39]. In our context, fractional dissipation
may represent an active boundary damping strategy designed to stabilize the system. Various systems
incorporating control mechanisms based on fractional derivatives have been explored in studies such
as [40–43].

Thus, the primary novelty of this work lies in investigating the degenerate wave equation with both
a drift term and a singular potential term, coupled with boundary fractional derivative feedback damp-
ing. In summary, this introduction has outlined the problem statement, reviewed relevant literature,
discussed the physical implications of the study, and highlighted its novelty. The subsequent sections
will delve into the methodology, results, and conclusions of our research.

This paper is structured as follows: In Section 2, we present preliminary results and reformulate
the system (1.1) into an augmented system by coupling the degenerate wave equation with a suitable
diffusion equation. The well-posedness of our problem is demonstrated through semigroup theory. In
Section 3, we establish the strong stability of the system. Finally, we derive a polynomial energy decay
rate whose order depends on the fractional derivative’s order, following the Borichev–Tomilov result
and multiplier techniques.
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2. Preliminary results

In this section, we will introduce several Hilbert spaces essential for our analysis, and we will
reformulate the system into an augmented model. Using the semi-group approach, we will establish
the well-posedness of the system.

2.1. Functional spaces

We start by setting the function σ as

σ(x) :=
p(x)
η(x)

, (2.1)

which is a continuous function in [0, 1], independent of the possible degeneracy of p. Moreover,
observe that if v is a sufficiently smooth function, e.g., v ∈ W2,1

loc (0, 1), then we can writeΛv := pvxx+rvx

as
Λv = σ(ηvx)x.

Using the definition of σ, the system (1.1) can be rewritten as
vtt(x, t) − σ(ηvx)x(x, t) −

β

q(x)
v(x, t) = 0, (x, t) ∈ (0, 1) × (0,+∞),

v(0, t) = 0, (ηvx)(1, t) = −∂α,τt v(1, t), t ∈ (0,+∞),

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0, 1).

(2.2)

We introduce the following weighted spaces:

L2
1
σ

(0, 1) :=
{
v ∈ L2(0, 1); ∥v∥ 1

σ
< +∞

}
, ⟨v, z⟩ 1

σ
:=

∫ 1

0

1
σ

vz̄dx, for every v, z ∈ L2
1
σ

(0, 1),

H1
1
σ

(0, 1) := L2
1
σ

(0, 1) ∩ H1(0, 1), ⟨v, z⟩1, 1
σ

:= ⟨v, z⟩ 1
σ
+

∫ 1

0
ηvxz̄xdx, for every v, z ∈ H1

1
σ

(0, 1),

H2
1
σ

(0, 1) :=
{
v ∈ H1

1
σ

(0, 1);Λv ∈ L2
1
σ

(0, 1)
}
, ⟨v, z⟩2 := ⟨v, z⟩1, 1

σ
+ ⟨Λv,Λz⟩ 1

σ
.

The previous inner products induce the related respective norms given by

∥v∥21
σ

=

∫ 1

0

1
σ
|v|2dx, ∥v∥2

1, 1
σ

= ∥v∥21
σ

+

∫ 1

0
η|vx|

2dx and ∥u∥22 = ∥v∥
2
1, 1
σ

+

∫ 1

0
σ|(ηvx)x|

2dx.

Also, we define the following Hilbert spaces:

H1
1
σ ,L

(0, 1) =
{
v ∈ H1

1
σ

(0, 1); v(0) = 0
}
, and H2

1
σ ,L

(0, 1) :=
{
v ∈ H1

1
σ ,L

(0, 1);Λv ∈ L2
1
σ

(0, 1)
}

endowed with the previous inner products and the previous norms. In the following, we will denote by
∥ · ∥ the usual norm in L2(0, 1), i.e., ∥ · ∥ := ∥ · ∥L2(0,1).
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Proposition 2.1. (see Proposition 2.2. in [35]) Assume that r
p ∈ L2(0, 1). Then, there exists C̄′ such

that for all v ∈ H1
1
σ ,L

(0, 1) ∫ 1

0
|v|2

1
σ(x)

dx ≤ C̄′
∫ 1

0
η|vx|

2dx. (2.3)

Also, if Kp +Kq ≤ 2 and v ∈ H1
1
σ ,L

(0, 1), then v
√

q ∈ L2
1
σ

(0, 1), and there exists a constant C̄ > 0 such that

∫ 1

0

1
σ(x)q(x)

|v|2dx ≤ C̄
∫ 1

0
η|vx|

2dx, (2.4)

where C̄′ = max
x∈[0,1]

1
η

4 max
x∈[0,1]

η(x)

p(1)

 and C̄ =
1

q(1)
C̄′.

Let C′H and CH be the best constants in (2.3) and (2.4), respectively. From (2.3), it is evident that

∥v∥1 :=
∫ 1

0
η|vx|

2dx and ∥v∥1, 1
σ

are equivalent in the functional space H1
1
σ ,L

(0, 1). Now, we will introduce

some assumptions that are essential to defining an equivalent norm on H1
1
σ ,L

(0, 1) and subsequently
presenting the energy.

Hypothesis 1.

a) The constant β ∈ R satisfies the condition β <
1

CH
.

b) The assumption r
p ∈ L1(0, 1) is satisfied. Also, p is (WD) or (SD), q is (WD), and such that

Kp + 2Kq ≤ 2.

We consider in H1
1
σ ,L

(0, 1) the following inner product:

⟨v, z⟩∗ :=
∫ 1

0
ηvxz̄xdx − β

∫ 1

0

vz̄
σq

dx (2.5)

which induces the following norm:

∥v∥2∗ :=
∫ 1

0
η|vx|

2dx − β
∫ 1

0

|v|2

σq
dx

and by using Proposition 2.1 (for details, one can see [35]), we have that the next equivalence holds.

Corollary 2.1. Under Hypothesis 1, the two norms ∥ · ∥1 and ∥ · ∥∗ are equivalent in H1
1
σ ,L

(0, 1).

2.2. Augmented model and well-posedness

In this part, we are concerned with studying the well-posedness of (1.1) by using a semigroup
approach. But first, we aim to reformulate the system (2.2) into an augmented model by coupling the
degenerate wave equation with a suitable diffusion equation. First, we recall the following theorem
presented in [40, 44].
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Theorem 2.1. Let µ be the function defined as

µ(ξ) = |ξ|
2α−1

2 , ξ ∈ R, α ∈ (0, 1).

The relation between the ’input’V and the ’output’ O of the following system

∂tφ(ξ, t) + (ξ2 + τ)φ(ξ, t) −V(t)µ(ξ) = 0, (ξ, t) ∈ R × (0,∞), τ ≥ 0, (2.6)
φ(ξ, 0) = 0, ξ ∈ R, (2.7)

O(t) − γ
∫
R

|ξ|
2α−1

2 φ(ξ, t)dξ = 0, t ∈ (0,∞), (2.8)

is given by
O = I1−α,τV, (2.9)

where

[Iα,τV](t) =
1
Γ(α)

∫ t

0
(t − θ)α−1e−τ(t−θ)V(θ)dθ and γ = π−1 sin(απ).

Lemma 2.1. (see Lemma 2.1 in [41]) Let α ∈ (0, 1), τ ≥ 0, then the following integrals

N0(τ, α) = κ(α)
∫
R

|ξ|2α−1

1 + ξ2 + τ
dξ , N1(τ, α) =

∫
R

|ξ|2α−1

(1 + ξ2 + τ)2 dξ

and N2(τ, α) =
∫ +∞

0

ξ2α+1

(1 + ξ2 + τ)2 dξ

(2.10)

are well defined.

Lemma 2.2. (see Lemma 2.7 in [41]) Let α ∈ (0, 1), τ ≥ 0, and λ ∈ R, then

N3(λ, τ, α) =
∫
R

|ξ|α+
1
2(

|λ| + ξ2 + τ
)2 dξ = c1 (|λ| + τ)

α
2−

5
4 ,

N4(λ, τ) =
(∫
R

1
(|λ| + ξ2 + τ)2 dξ

) 1
2

=

√
π

2
1

(|λ| + τ)
3
4

,

and

N5(λ, τ) =
∫
R

ξ2(
|λ| + ξ2 + τ

)4 dξ
 1

2

=

√
π

4
1

(|λ| + τ)
5
4

where c1 =

∫ ∞

1

(y − 1)
α
2−

1
4

y2 dy.

Now, we can reformulate the system (2.2). Utilizing theorem 2.1 and considering the input V(t) =
vt(1, t), we can express the output O using Eq (1.2) as:

O(t) = I1−α,τvt(1, t) =
1

Γ(1 − α)

∫ t

0
(t − θ)−αe−τ(t−θ)∂θv(1, θ)dθ = ∂α,τt v(1, t).
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Therefore, by taking the input V(t) = vt(1, t) and using the above equation, the system (2.2) can be
reformulated into the following augmented model:

vtt(x, t) − σ(ηvx)x(x, t) −
β

q(x)
v(x, t) = 0, (x, t) ∈ (0, 1) × (0,+∞),

∂tφ(ξ, t) + (|ξ|2 + τ)φ(ξ, t) − vt(1, t)µ(ξ) = 0, (ξ, t) ∈ R × (0,∞),

(ηvx)(1, t) = −γ
∫
R

µ(ξ)φ(ξ, t)dξ, (ξ, t) ∈ R × (0,∞),

v(0, t) = 0, t ∈ (0,+∞),

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0, 1).

(S)

Let (v, vt, φ) be a regular solution of (S). The energy associated with the system is given by

E(t) =
1
2

∫ 1

0

(
1
σ
|vt(x, t)|2 + η|vx(x, t)|2 −

β

σq
|v(x, t)|2

)
dx +

γ

2

∫
R

|φ(ξ, t)|2dξ. (2.11)

We note that the energy of the system is positive by using Hypothesis 1 and Corollary 2.1.

Lemma 2.3. Let Υ = (v, vt, φ) be a regular solution of the system (S). Then, the energy E(t) satisfies
the following estimation:

d
dt
E(t) = −γ

∫
R

(|ξ|2 + τ)|φ(ξ, t)|2dξ ≤ 0.

Proof. Multiplying (S)1 by 1
σ

vt, integrating over (0, 1), and using integration by parts lead to∫ 1

0

1
σ

vtt(x, t)vt(x, t)dx −
∫ 1

0
(ηvx)x(x, t)vt(x, t)dx −

∫ 1

0

β

σq
v(x, t)vt(x, t)dx = 0.

Then,

1
2

d
dt

∫ 1

0

1
σ
|vt(x, t)|2dx +

1
2

d
dt

∫
η|vx(x, t)|2dx −ℜ

([
ηvx(x, t)vt(x, t)

]1
0

)
−

1
2

d
dt

∫ 1

0

β

σq
|v(x, t)|2dx = 0.

Hence, using the boundary conditions in the above equation yields

1
2

d
dt

∫ 1

0

1
σ
|vt(x, t)|2dx +

1
2

d
dt

∫
η|vx(x, t)|2dx +ℜ

(
γvt(1, t)

∫
R

µ(ξ)φ(ξ, t)dξ
)

−
1
2

d
dt

∫ 1

0

β

σq
|v(x, t)|2dx = 0.

(2.12)

Multiplying (S)2 by γφ and integrating over R leads to

γ

2
d
dt

∫
R

|φ(ξ, t)|2dξ + γ
∫
R

(ξ2 + τ)|φ(ξ, t)|2dξ −ℜ
(
γvt(1, t)

∫
R

µ(ξ)φ(ξ, t)dξ
)
= 0. (2.13)

Combining (2.12) and (2.13) and using (2.11), we obtain

d
dt
E(t) = −γ

∫
R

(|ξ|2 + τ)|φ(ξ, t)|2dξ ≤ 0.

Thus, the proof is complete. □

Electronic Research Archive Volume 32, Issue 8, 4926–4953.



4934

Therefore, we can conclude that the system (S) is dissipative in the sense that its energy is a non
increasing function with respect to the time variable t.

In the following, we will demonstrate that under appropriate conditions, Eq (2.2) has solutions that
are regular, ensuring the well-definedness of the associated energy. First, we introduce the energy
Hilbert spaceH as

H = H1
1
σ ,L

(0, 1) × L2
1
σ

(0, 1) × L2(R).

For Υ1 = (v1, z1, φ1)⊤ and Υ2 = (v2, z2, φ2)⊤ we define the following inner product inH

⟨Υ1,Υ2⟩H =

∫ 1

0

(
1
σ

z1z2 + η(v1)x(v2)x −
β

σq
v1v2

)
dx + γ

∫
R

φ1φ2dξ,

and endowed with the associated norm ∥Υ∥2
H
=

∫ 1

0

(
1
σ
|z|2 + η|vx|

2 −
β

σq
|v|2

)
dx+γ

∫
R

|φ(ξ)|2dξ. More-

over, consider the unbounded linear operatorA is defined by

AΥ =


z

σ(ηvx)x +
β

q(x)
v

−(ξ2 + τ)φ(ξ) + µ(ξ)z(1)


for all Υ = (v, z, φ)⊤ ∈ D(A), where

D(A) =


Υ = (v, z, φ) ∈ H ; v ∈ H2

1
σ ,L

(0, 1), z ∈ H1
1
σ ,L

(0, 1), |ξ|φ ∈ L2(R),

−(ξ2 + τ)φ(ξ) + µ(ξ)z(1) ∈ L2(R), (ηvx)(1) = −γ
∫
R

µ(ξ)φ(ξ)dξ

 .
In D(A), we require v ∈ H2

1
σ ,L

(0, 1), which is ensured by v ∈ H1
1
σ ,L

(0, 1) giving
v
q
∈ L2

1
σ

(0, 1), and under

the condition Kp + 2Kq ≤ 2 is stated in Hypothesis 1. In fact, using the definition of σ, we have∫ 1

0

|v|2

σq2 dx =
∫ 1

0
η
|v|2

pq2 dx ≤ max
x∈[0,1]

η

∫ 1

0

|v|2

pq2 dx ≤
max
x∈[0,1]

η

p(1)q2(1)

∫ 1

0

|v|2

xKp+2Kq
dx

≤

max
x∈[0,1]

η

p(1)q2(1)

∫ 1

0

|v|2

x2 dx ≤
4 max

x∈[0,1]
η(x)

p(1)q2(1)

∫ 1

0
|vx|

2dx.

Thus, we can rewrite (S) as the following evolution equation:

Υt = AΥ, Υ(0) = Υ0, where Υ0 = (v0, v1, 0)⊤ . (2.14)

Proposition 2.2. The unbounded linear operatorA is m-dissipative in the energy spaceH .

Proof. For all Υ = (v, z, φ)⊤ ∈ D(A), we have

ℜ (⟨AΥ,Υ⟩H ) = −γ
∫
R

(|ξ|2 + τ)|φ(ξ, t)|2dξ ≤ 0, (2.15)
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which implies that A is dissipative. Now, let F = ( f1, f2, f3)⊤ ∈ H . We need to prove the existence of
Υ = (v, z, φ)⊤ ∈ D(A) unique solution of the equation

(I −A)Υ = F. (2.16)

Equation (2.16) is equivalent to the following
v − z = f1,

z − σ(ηvx)x −
β

q
v = f2,

φ + (ξ2 + τ)φ − µ(ξ)z(1) = f3.

(2.17)

From (2.17)3, we have

φ =
f3(ξ)

ξ2 + τ + 1
+

µ(ξ)z(1)
ξ2 + τ + 1

. (2.18)

Combining (2.17)1 and (2.17)2, we obtain

v − σ(ηvx)x −
β

q
v = f2 + f1. (2.19)

Let ψ ∈ H1
1
σ ,L

(0, 1). Multiplying (2.19) by
1
σ
ψ and integrating over (0, 1), we obtain

∫ 1

0

1
σ

vψdx +
∫ 1

0
ηvxψxdx −

∫ 1

0

β

σq
vψdx + γ

∫
R

µ2(ξ)
ξ2 + τ + 1

dξz(1)ψ(1)

=

∫ 1

0

1
σ

( f1 + f2)ψdx − γ
∫
R

µ(ξ)
ξ2 + τ + 1

f3(ξ)dξψ(1).
(2.20)

From (2.17)1, we have
z(1) = v(1) − f1(1).

Inserting the above equation in (2.20), we obtain∫ 1

0

1
σ

vψdx +
∫ 1

0
ηvxψxdx −

∫ 1

0

β

σq
vψdx + γ

∫
R

µ2(ξ)
ξ2 + τ + 1

dξv(1)ψ(1)

=

∫ 1

0

1
σ

( f1 + f2)ψdx − γ
∫
R

µ(ξ)
ξ2 + τ + 1

f3(ξ)dξψ(1) + γ
∫
R

µ2(ξ)
ξ2 + τ + 1

dξ f1(1)ψ(1).

The problem above has the following form:

S(v, ψ) = L(ψ), ∀ψ ∈ H1
1
σ ,L

(0, 1), (2.21)

where S(v, ψ) : H1
1
σ ,L

(0, 1) × H1
1
σ ,L

(0, 1)→ R is defined by

S(v, ψ) =
∫ 1

0

1
σ

vψdx +
∫ 1

0
ηvxψxdx −

∫ 1

0

β

σq
vψdx + γ

∫
R

µ2(ξ)
ξ2 + τ + 1

dξv(1)ψ(1)
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and L(ψ) : H1
1
σ ,L

(0, 1)→ R is defined by

L(ψ) =
∫ 1

0

1
σ

( f1 + f2)ψdx − γ
∫
R

µ(ξ)
ξ2 + τ + 1

f3(ξ)dξψ(1) + γ
∫
R

µ2(ξ)
ξ2 + τ + 1

dξ f1(1)ψ(1).

It is easy to see that S is a sesquilinear, continuous, and coercive form and that L is a continuous form
on H1

1
σ ,L

(0, 1). Then, using the Lax–Milgram Theorem, we deduce that there exists v ∈ H1
1
σ ,L

(0, 1)

unique solution of the variational problem (2.21). Now, taking z := v − f1, we obtain z ∈ H1
1
σ ,L

(0, 1). It
remains to prove that Υ ∈ D(A) and solve (2.16). To this end, we have that Eq (2.21) holds for every
ψ ∈ C∞c (0, 1), thus

−(ηvx)x −
β

σq
v =

1
σ

( f2 − z) a.e. in (0, 1).

Hence, −σ(ηvx)x ∈ L2
1
σ

(0, 1), i.e., Λu ∈ L2
1
σ

(0, 1). Now, we define

φ =
f3(ξ)

ξ2 + τ + 1
+

µ(ξ)z(1)
ξ2 + τ + 1

. (2.22)

We need to prove that φ, |ξ|φ ∈ L2(R). From (2.18), using Lemma 2.1 and the fact that f3 ∈ L2(R),
we have∫

R

|φ|2dx ≤ 2
∫
R

| f3(ξ)|2

(ξ2 + τ + 1)2 dξ + 2
∫
R

µ2(ξ)
(ξ2 + τ + 1)2 dξ|z(1)|2 ≤ 2

∫
R

| f3(ξ)|2

(τ + 1)2 dξ + 2N1|z(1)|2 < ∞

and ∫
R

|ξφ|2dx ≤ 2
∫
R

ξ2| f3(ξ)|2

(ξ2 + τ + 1)2 dξ + 2
∫
R

ξ2α+1

(ξ2 + τ + 1)2 dξ|z(1)|2

≤ 2 max
ξ∈R

ξ2

(ξ2 + τ + 1)2

∫
R

| f3(ξ)|2dξ + N2|z(1)|2

≤
1

2(τ + 1)

∫
R

| f3(ξ)|2dξ + N2|z(1)|2 < ∞.

(2.23)

Based on this, it can be deduced that |ξ|φ ∈ L2(R). From (2.22) we have −(ξ2 + τ)φ(ξ) + µ(ξ)z(1) =
φ(ξ) − f3(ξ) ∈ L2(R) and we have that (2.17)3 holds. Finally, taking into account that (2.21) holds for
every ψ ∈ H1

1
σ ,L

(0, 1) and integrating by parts, we obtain that

∫ 1

0

1
σ

(v − σ(ηvx)x −
β

q
v)ψdx + (ηv)x(1)ψ(1) + γ

∫
R

µ(ξ)φ(ξ)dξψ(1) =
∫ 1

0

1
σ

( f2 + f1)ψdx

for all ψ ∈ H1
1
σ ,L

(0, 1). Thus, using the fact that (2.19) is valid, from the above equation we can deduce
that

(ηv)x(1) = −γ
∫
R

µ(ξ)φ(ξ)dξ.

Thus, we finally reach the conclusion that Υ ∈ D(A), and consequently, (v, z, φ) ∈ D(A) is the unique
solution of (2.16). Then, using the results in [45] (Theorems 4.5 and 4.6), we deduce that R(λI −A) =
H for all λ > 0. Thus,A is m-dissipative, and the proof is complete. □
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According to the Lumer–Phillips Theorem (see [45]), Proposition 2.2 implies that the operator A
generates a C0−semigroup of contractions (T (t))t≥0 = (etA)t≥0 in H , which gives the well-posedness
of (2.14). Then, we have the following result:

Theorem 2.2. For any Υ0 ∈ H , problem (2.14) admits a unique weak solution satisfying

Υ(t) ∈ C0(R+;H).

Moreover, if Υ0 ∈ D(A), (2.14) admits a unique strong solution Υ satisfying

Υ(t) ∈ C1(R+,H) ∩C0(R+,D(A)).

Lemma 2.4. (See [46, Lemma 2.2] and [12, Lemma 2.5]) Assume r
p ∈ L1(0, 1). Then, we have:

1) If p is (WD) or (SD), then lim
x→0

z(x)vx(x) = 0, for all v ∈ H2
1
σ ,L

(0, 1) and for all z ∈ H1
1
σ ,L

(0, 1).

2) If p is (WD) or (SD), then xvx(ηvx)x ∈ L1(0, 1), for all v ∈ H2
1
σ ,L

(0, 1).

3) If Kp ≤ 1, then lim
x→0

x|vx|
2 = 0, for all v ∈ H2

1
σ ,L

(0, 1).

4) If Kp > 1 and
xr
p
∈ L∞(0, 1), then lim

x→0
x|vx|

2 = 0, for all v ∈ H2
1
σ ,L

(0, 1).

5) If p is (WD) or (SD), then lim
x→0

x
p
|v(x)|2 = 0, for all v ∈ H1

1
σ ,L

(0, 1).

6) Assume b) in Hypothesis 1. If v ∈ H1
1
σ

(0, 1), then lim
x→0

x
σq
|v(x)|2 = 0.

3. Strong stability

This section is devoted to studying the strong stability of system (S), whether p is weakly or strongly
degenerate. We will present this result under some conditions related to p, q, and r. For this reason and
in order to avoid any inconvenience, we start by denoting the following:

P0 :=
∥∥∥∥∥x

p′ − r
p

∥∥∥∥∥
L∞(0,1)

, Q0 :=
∥∥∥∥∥x

q′

q

∥∥∥∥∥
L∞(0,1)

and R0 :=
∥∥∥∥∥x

r
p

∥∥∥∥∥
L∞(0,1)

. (3.1)

Hypothesis 2. Assume Hypothesis 1 holds. Also, assume that

• If β > 0: P0 + Q0 < 1 +
Kp

2
and R0 < 1 −

Kp

2

• If β < 0: P0 < 1 +
Kp

2
and R0 < 1 −

Kp

2
+ 4βCH.

Example 3.1. To demonstrate that the conditions outlined in Hypothesis 2 hold for a specific choice of
the functions p, q, and r, we provide examples for each case.

• If β > 0:
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– If p is weakly degenerate, consider the following example: Let p(x) = x
1
2 , r(x) = 1

4 , and
q(x) = x

1
4 . It is evident that Kp =

1
2 and Kq =

1
4 , hence Kp + 2Kq ≤ 2. In this case, we find

P0 =
1
2 , Q0 =

1
4 , and R0 =

1
4 . A straightforward verification confirms that the conditions

outlined in Hypothesis 2 hold true.
– If p is strongly degenerate, consider the following example: Let p(x) = x

3
2 , r(x) = 1

16 x, and
q(x) = x

1
8 . It is evident that Kp + 2Kq ≤ 2. In this case, we find P0 =

3
2 , Q0 =

1
8 , and

R0 =
1
16 . A straightforward verification confirms that the conditions outlined in Hypothesis 2

hold true.

• If β < 0:

– If p is weakly degenerate, consider this example: Let p(x) = x
1
2 , r(x) = 1

4 , and q(x) be any
functions such that Kp + 2Kq ≤ 2, with β = −1

16CH
. Here, we find P0 =

1
2 and R0 =

1
4 . Notably,

P0 <
5
4 and R0 <

1
2 . Thus, the conditions outlined in Hypothesis 2 are satisfied.

– If p is strongly degenerate, consider the following example: Let p(x) = x
3
2 , r(x) = 1

8 x,
β = −1

36CH
and q(x) be chosen to be any function such that Kp + 2Kq ≤ 2. In this case, we

find P0 =
3
2 and R0 =

1
8 . Notably, P0 <

7
4 and R0 <

5
36 . Thus, the conditions outlined in

Hypothesis 2 are met.

Theorem 3.1. The C0− semigroup of contractions (etA)t≥0 is strongly stable inH , i.e., for all Υ0 ∈ H ,
the solution of (2.14) satisfies the following:

lim
t→+∞
∥etAΥ0∥H = 0.

To prove Theorem 3.1, we need to satisfy two conditions based on the Arendt–Batty Theorem [47]:

• The operatorA has no pure imaginary eigenvalues.
• The set σ(A) ∩ iR is countable.

Lemma 3.1. If τ = 0, then the operatorA is not invertible, and consequently, 0 ∈ σ(A).

Proof. Let F0 =
(
sin(πx

2 ), 0 , 0
)
∈ H , in fact sin(πx

2 ) ∈ H1
1
σ

(0, 1), since from the equivalence between
norms ∥ · ∥1 and ∥ · ∥H1

1
σ

(0,1), and the fact that η is bounded from above and below, then∥∥∥∥∥sin(
πx
2

)
∥∥∥∥∥

H1
1
σ

(0,1)
≤
π2

4

∫ 1

0
η(x) cos2(

πx
2

)dx ≤ max
x∈(0,1)

η(x)
π2

8

and thus F0 ∈ H . Assume there exists U0 = (z0, v0, φ0) ∈ D(A) such that AU0 = F0. In this case,
φ0(ξ) = |ξ|

2α−5
2 . This implies that, φ0 < L2(R) for 0 < α < 1. □

Corollary 3.1. For the case when τ > 0, we can prove that −A is a surjective operator. In fact, letting
F = ( f1, f2, f3) ∈ H , we need to prove that there exists a unique solution Υ = (v, z, φ)⊤ ∈ D(A) of the
equation

−AΥ = F.

Equivalently, 
−z = f1,

−σ(ηvx)x −
β

q
v = f2,

(ξ2 + τ)φ − µ(ξ)z(1) = f3.

(3.2)
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and by proceeding in a similar way as in the computations in Proposition 2.2, we reach that Υ ∈ D(A)
is a unique solution of −AΥ = F, and consequently, −A is surjective, and since ρ(A) is an open set
of C, we can consequently deduce that 0 ∈ ρ(A).

The proof of Theorem 3.1 will rely on the subsequent proposition. We note that R∗ = R\ {0}.

Proposition 3.1. We have  iR ⊆ ρ(A) if τ , 0,

iR∗ ⊆ ρ(A) if τ = 0.
(3.3)

Proof. We will prove Proposition 3.1 through a contradiction argument. Note that, according to Lemma
3.1, for τ = 0, it follows that 0 ∈ σ(A), hence 0 < ρ(A). Furthermore, as indicated in Corollary 3.1,
we have 0 ∈ ρ(A). Thus, our focus narrows to demonstrating that iR∗ ⊆ ρ(A). Now, suppose that
iR∗ ⊈ ρ(A), then there exists δ ∈ R∗ such that iδ < ρ(A). According to Remark A.3 in [48] and page
25 in [49] , there exists {ζn,Υ

n = (vn, zn, φn)⊤}n≥1 ⊂ R
∗ × D(A), such that

ζn → δ as n→ ∞ and |ζn| < |δ|, (3.4)

∥Υn∥H = ∥(vn, zn, φn)⊤∥H = 1, (3.5)

and
(iζnI −A)Υn = Fn := ( f 1

n , f 2
n , f 3

n (ξ))→ 0 in H , as n→ ∞. (3.6)

Equivalently, we obtain
iζnvn − zn = f 1

n ,

iζnzn − σ(ηvn
x)x −

β

q
vn = f 2

n ,

(iζn + |ξ|
2 + τ)φn(ξ) − µ(ξ)zn(1) = f 3

n (ξ), ∀ ξ ∈ R.

(3.7)

Inserting (3.7)1 into (3.7)2, we obtain

ζ2
nvn + σ(ηvn

x)x +
β

q
vn = −( f 2

n + iζn f 1
n ). (3.8)

For clarity, we break down the computational analysis into several steps.
Step 1. The aim of this step is to show that the solution (vn, zn, φn) of (3.7) satisfies the following:∫

R

(ξ2 + τ)|φn(ξ)|2dξ −−−→
n→∞

0, |zn(1)| −−−→
n→∞

0, and
∫
R

|φn(ξ)|2dξ −−−→
n→∞

0. (3.9)

First, taking the inner product of (3.6) with Υn inH and using the fact that ∥Fn∥H −−−→
n→∞

0 and ∥Υn∥H =

1, we obtain

γ

∫
R

(|ξ|2 + τ)|φn(ξ)|2dξ = −ℜ(⟨AΥn,Υn⟩H ) ≤ ∥Fn∥H∥Υ
n∥H −−−→

n→∞
0.

In fact,

ℜ⟨AΥn, Υn⟩H =ℜ

(∫ 1

0
(ηvn

x)xzndx
)
+ℜ

(∫ 1

0

β

σq
vnzndx

)
+ℜ

(∫ 1

0
ηzn

xvn
xdx

)
−ℜ

(∫ 1

0

β

σq
znvndx

)
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− γ

∫
R

(ξ2 + τ)|φn(ξ)|2dξ +ℜ
(
γzn(1)

∫
R

µ(ξ)φn(ξ)dξ
)

= −ℜ

(∫ 1

0
ηvn

xzn
xdx

)
+ℜ

(
(ηvn

x)(1)zn(1)
)
+ℜ

(∫ 1

0

β

σq
vnzndx

)
+ℜ

(∫ 1

0
ηzn

xvn
xdx

)
−ℜ

(∫ 1

0

β

σq
znvndx

)
− γ

∫
R

(ξ2 + τ)|φn(ξ)|2dξ +ℜ
(
γzn(1)

∫
R

µ(ξ)φn(ξ)dξ
)

Using the fact that (ηvn
x)(1) = −γ

∫
R

µ(ξ)φn(ξ)dξ in the above equation, we obtain

ℜ⟨AΥn, Υn⟩H = −ℜ

(
γzn(1)

∫
R

µ(ξ)φn(ξ)dξ
)
− γ

∫
R

(ξ2 + τ)|φn(ξ)|2dξ +ℜ
(
γzn(1)

∫
R

µ(ξ)φn(ξ)dξ
)
.

Hence,

ℜ⟨AΥn, Υn⟩H = −γ

∫
R

(ξ2 + τ)|φn(ξ)|2dξ.

Thus, taking the inner product of (3.6) with Υn inH

γ

∫
R

(|ξ|2 + τ)|φn(ξ)|2dξ = ℜ(⟨(iζnI −A)Υn,Υn⟩H ) = −ℜ(⟨AΥn,Υn⟩H ) ≤ ∥Fn∥H∥Υ
n∥H −−−→

n→∞
0.

Thus, we obtain the first limit in (3.9). From (3.7)3, we have that

µ(ξ)|zn(1)| ≤ (|ζn| + |ξ|
2 + τ)|φn(ξ)| + | f 3

n (ξ)|.

Multiplying the above equation by |ξ|

(|ζn |+|ξ|2+τ)2 and integrating over R leads to

N3(ζ, τ, α)|zn(1)| ≤ N4(ζ, τ)
(∫
R

|ξφn(ξ)|2dξ
) 1

2

+ N5(ζ, τ)
(∫
R

| f n
3 (ξ)|2dξ

) 1
2

,

where N3(ζ, τ, α), N4(ζ, τ), and N5(ζ, τ) are defined in Lemma 2.2.
Applying Young’s inequality to the above equation leads to

|zn(1)|2 ≤ 2
N2

4

N2
3

∫
R

|ξφn(ξ)|2dξ + 2
N2

5

N2
3

∫
R

| f n
3 (ξ)|2dξ

≤
1

c1(|ζn| + τ)α−1

∫
R

|ξφn(ξ)|2dξdx +
√
π

4
1

c1 (|ζn| + τ)α

∫
R

| f n
3 (ξ)|2dξ.

By taking the limit in the preceding inequality and utilizing the first limit provided in (3.9), along with
the fact that ∥Fn∥ −−−→

n→∞
0 and that ζn −−−→

n→∞
δ, we deduce the convergence of the second limit stated in

(3.9).
Now, if τ , 0, then it is clear that from the first limit in (3.9), we have∫

R

|φn(ξ)|2dξ −−−→
n→∞

0.
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For the case when τ = 0, multiplying (3.7)3 by 1
iζn
φ and integrating over R, we obtain∫

R

|φn|2dξ = −
1

iζn

∫
R

|ξφn|2dξ +
1

iζn

∫
R

µ(ξ)φndξ zn(1) +
1

iζn

∫
R

f 3
n (ξ)φndξ. (3.10)

Applying Cauchy–Schwarz inequality, the first limit in (3.9), and using the fact that ∥Fn∥ −−−→
n→∞

0,

ζn −−−→
n→∞

δ and φn is bounded in L2(R), we obtain

1
|ζn|

∫
R

|ξφn(ξ)|2dξ −−−→
n→∞

0, (3.11)

∣∣∣∣∣ 1
iζn

∫
R

f 3
n (ξ)φn(ξ)dξ

∣∣∣∣∣ ≤ 1
|ζn|

(∫
R

| f 3
n (ξ)|2dξ

) 1
2
(∫
R

|φn(ξ)|2dξ
) 1

2

−−−→
n→∞

0, (3.12)

and ∣∣∣∣∣ 1
iζn

∫
R

µ(ξ)φn(ξ)dξ zn(1)
∣∣∣∣∣ ≤ |zn(1)|

ζn

∫
R

|ξ|
2α−1

2√
1 + ξ2

√
1 + ξ2|φn(ξ)|dξ

≤
|zn(1)|
ζn
M1

(∫
R

(1 + ξ2)|φn(ξ)|2dξ
) 1

2

−−−→
n→∞

0,

(3.13)

where M1 =

(∫
R

|ξ|2α−1

1 + ξ2

) 1
2

and we have that

|ξ|2α−1

ξ2 + 1
∼
0

1
ξ1−2α and

|ξ|2α−1

|ξ|2 + 1
∼
+∞

1
|ξ|3−2α , (3.14)

thus, M1 is well defined since 0 < α < 1. Therefore, by using Eqs (3.11)–(3.13) into (3.10), we can
infer that for τ ≥ 0, the following holds:∫

R

|φn(ξ)|2dx −−−→
n→∞

0.

Step 2. The aim of this step is to show that the solution (vn, zn, φn) of (3.7) satisfies the following:

|ζnvn(1)| −−−→
n→∞

0 and |(ηvn
x)(1)| −−−→

n→∞
0. (3.15)

From (3.7)1, we have
|ζnvn(1)| ≤ |zn(1)| + | f 1

n (1)|.

Utilizing the fact that | f 1
n (1)| = |

∫ 1

0
( f 1

n )xdx| ≤
√

max
x∈[0,1]

η−1

(∫ 1

0
η|( f 1

n )x|
2dx

) 1
2

≤
√

max
x∈[0,1]

η−1∥F∥H −−−→
n→∞

0 and the second limit in (3.9) in the above equation, we obtain

|ζnvn(1)| −−−→
n→∞

0.

Now, from the boundary conditions, we have that

|(ηvn
x)(1)|2 =

∣∣∣∣∣−γ∫
R

µ(ξ)φ(ξ)dξ
∣∣∣∣∣2 ≤ γ2

∣∣∣∣∣∣∣
∫
R

|ξ|
2α−1

2√
ξ2 + 1

√
ξ2 + 1φ(ξ)dξ

∣∣∣∣∣∣∣
2

≤ γ2M2
1

∫
R

(ξ2+1)|φ(ξ)|2dξ (3.16)
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Thus, by using the first limit in (3.9) and the fact that M1 is well defined, we deduce that |(ηvn
x)(1)| −−−→

n→∞
0.
Step 3. The aim of this step is to show that the solution (vn, zn, φn) of (3.7) satisfies the following:(

1 +
Kp

2

) ∫ 1

0

1
σ
|ζnvn|2dx +

(
1 −

Kp

2

) ∫ 1

0
η|vn

x|
2dx +

(
1 +

Kp

2

) ∫ 1

0

β

σq
|vn|2dx

=

∫ 1

0

x
σ

(
p′ − r

p

)
|ζnvn|2dx +

∫ 1

0

xr
p
η|vn

x|
2dx +

∫ 1

0

βx
σq

(
p′ − r

p

)
|vn|2dx

+

∫ 1

0

βxq′

σq2 |v
n|2dx + 2ℜ

(∫ 1

0

(
f 2
n + iζn f 1

n

) x
σ

vn
xdx

)
−

Kp

2
ℜ

(
i
∫ 1

0

1
σ

f 1
n ζnvndx

)
+

1
σ(1)
|ζnvn(1)|2 + η(1)|vn

x(1)|2 +
β

σ(1)q(1)
|vn(1)|2 −

Kp

2
ℜ

(∫ 1

0

1
σ

f 2
n vndx

)
−

Kp

2
(ηvn

x)(1)vn(1).

(3.17)

First, multiplying (3.8) by −
2x
σ

vn
x, integrating over (0, 1), and taking the real part, we obtain

∫ 1

0

( x
σ

)′
|ζnvn|2dx −

1
σ(1)
|ζnvn(1)|2 + lim

x→0

x
σ
|ζnvn|2 − 2ℜ

(∫ 1

0
(ηvn

x)xxvn
xdx

)
+

∫ 1

0

(
βx
σq

)′
|vn|2dx

−
β

σ(1)q(1)
|vn(1)|2 + lim

x→0

βx
σq
|vn|2 = 2ℜ

(∫ 1

0

(
f 2 + iζn f 1

n

) x
σ

vn
xdx

)
.

(3.18)

We have that
( x
σ

)′
=

1
σ
−

x
σ

(
p′ − r

p

)
, η′ =

r
p
η and

(
x
σq

)′
=

1
σq
−

x
σq

(
p′ − r

p

)
−

xq′

σq2 ; thus, we obtain

∫ 1

0

( x
σ

)′
|ζnvn|2dx =

∫ 1

0

1
σ
|ζnvn|2dx −

∫ 1

0

x
σ

(
p′ − r

p

)
|ζnvn|2dx,

−2ℜ
(∫ 1

0
(ηvn

x)xxvn
xdx

)
= 2ℜ

(∫ 1

0
ηvn

x(xvn
x)xdx

)
− 2

[
ηx|vn

x|
2
]1

0
= 2

∫ 1

0
η|vn

x|
2dx

−

∫ 1

0
(xη)′|vn

x|
2dx −

[
ηx|vn

x|
2
]1

0
=

∫ 1

0
η|vn

x|
2dx −

∫ 1

0

xr
p
η|vn

x|
2dx − η(1)|vn

x(1)|2 + lim
x→0

xη|vn
x|

2

and ∫ 1

0

(
βx
σq

)′
|vn|2dx =

∫ 1

0

β

σq
|vn|2dx −

∫ 1

0

βx
σq

(
p′ − r

p

)
|vn|2dx −

∫ 1

0

βxq′

σq2 |v
n|2dx.

By using the above equations in (3.18), we obtain∫ 1

0

1
σ
|ζnvn|2dx +

∫ 1

0
η|vn

x|
2dx +

∫ 1

0

β

σq
|vn|2dx =

∫ 1

0

x
σ

(
p′ − r

p

)
|ζnvn|2dx +

∫ 1

0

xr
p
η|vn

x|
2dx

+

∫ 1

0

βx
σq

(
p′ − r

p

)
|vn|2dx +

∫ 1

0

βxq′

σq2 |v
n|2dx + 2ℜ

(∫ 1

0

(
f 2
n + iζn f 1

n

) x
σ

vn
xdx

)
+

1
σ(1)
|ζnvn(1)|2

− lim
x→0

x
σ
|ζnvn|2 + η(1)|vn

x(1)|2 − lim
x→0

xη|vn
x|

2 +
β

σ(1)q(1)
|vn(1)|2 − lim

x→0

βx
σq
|vn|2.

(3.19)
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Now, multiplying (3.8) by
Kp

2σ
vn and integrating over (0, 1) leads to

Kp

2

∫ 1

0

1
σ
|ζnvn|2dx −

Kp

2

∫ 1

0
η|vn

x|
2dx +

Kp

2

∫ 1

0

β

σq
|vn|2dx = −

Kp

2
(ηvn

x)(1)vn(1)

+
Kp

2
lim
x→0

(ηvn
x)vn −

Kp

2
ℜ

(∫ 1

0

1
σ

f 2
n vndx

)
−

Kp

2
ℜ

(
i
∫ 1

0

1
σ

f 1
n ζnvndx

)
.

(3.20)

Adding (3.19) and (3.20) and using Lemma 2.4, we obtain (3.17).
Step 4. The aim of this step is to show that the solution (vn, zn, φn) of (3.7) satisfies the following:∫ 1

0
|ζnvn|dx −−−→

n→∞
0 and

∫ 1

0
|ηvn

x|
2dx −

∫ 1

0

β

σq
|vn|2dx −−−→

n→∞
0. (3.21)

From (3.17), we have(
1 +

Kp

2

) ∫ 1

0

1
σ
|ζnvn|2dx +

(
1 −

Kp

2

) ∫ 1

0
η|vn

x|
2dx +

(
1 +

Kp

2

) ∫ 1

0

β

σq
|vn|2dx

≤ P0

∫ 1

0

1
σ
|ζnvn|2dx + R0

∫ 1

0
η|vn

x|
2dx + (P0 + Q0)

∫ 1

0

|β|

σq
|vn|2dx +Ln,

(3.22)

where

Ln =

∣∣∣∣∣∣2ℜ
(∫ 1

0

(
f 2
n + iζn f 1

n

) x
σ

vn
xdx

)∣∣∣∣∣∣ +
∣∣∣∣∣∣Kp

2
ℜ

(
i
∫ 1

0

1
σ

f 1
n ζnvndx

)∣∣∣∣∣∣ +
∣∣∣∣∣Kp

2
(ηvn

x)(1)vn(1)
∣∣∣∣∣

+

∣∣∣∣∣∣Kp

2
ℜ

(∫ 1

0

1
σ

f 2
n vndx

)∣∣∣∣∣∣ + 1
σ(1)
|ζnvn(1)|2 + η(1)|vn

x(1)|2 +
β

σ(1)q(1)
|vn(1)|2.

Next, we need to estimate the terms of Ln. By applying the Cauchy–Schwarz inequality and con-
sidering the fact that x

√
p is non-decreasing on the interval (0, 1], ∥F∥H −−−→

n→∞
0 and ζn −−−→

n→∞
δ, we

obtain: ∣∣∣∣∣∣2ℜ
(∫ 1

0
f 2
n

x
σ

vn
xdx

)∣∣∣∣∣∣ ≤ 2√
p(1)

(∫ 1

0

1
σ
| f 2

n |
2
) 1

2
(∫ 1

0
η|vn

x|
2
) 1

2

−−−→
n→∞

0,

∣∣∣∣∣∣2ℜ
(∫ 1

0
iζn f 1

n
x
σ

vn
xdx

)∣∣∣∣∣∣ ≤ 2|ζn|

√
C′H
p(1)

(∫ 1

0
η|( f 1

n )x|
2
) 1

2
(∫ 1

0
η|vn

x|
2
) 1

2

−−−→
n→∞

0,

∣∣∣∣∣∣Kp

2
ℜ

(
i
∫ 1

0

1
σ

f 1
n ζnvndx

)∣∣∣∣∣∣ ≤ KpC′H |ζn|

2

(∫ 1

0
η|( f 1

n )x|
2
) 1

2
(∫ 1

0
η|vn

x|
2
) 1

2

−−−→
n→∞

0,

∣∣∣∣∣∣Kp

2
ℜ

(∫ 1

0

1
σ

f 2
n vndx

)∣∣∣∣∣∣ ≤ Kp

2

√
C′H
p(1)

(∫ 1

0

1
σ
| f 2

n |
2
) 1

2
(∫ 1

0
η|vn

x|
2
) 1

2

−−−→
n→∞

0.

Thus, using the above limits with the limits in (3.15), we deduce that

Ln −−−→
n→∞

0. (3.23)
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Now, let us consider two cases based on the value of β:
If β > 0: from (3.22), we obtain that(

1 +
Kp

2
− P0

) ∫ 1

0

1
σ
|ζnvn|2dx +

(
1 −

Kp

2
− R0

) ∫ 1

0
η|vn

x|
2dx

+

(
1 +

Kp

2
− P0 − Q0

) ∫ 1

0

β

σq
|vn|2dx ≤ Ln.

By using Hypothesis 2 and the result in (3.23) in the above equation, we obtain that∫ 1

0

1
σ
|ζnvn|2dx −−−→

n→∞
0,

∫ 1

0
η|vn

x|
2dx −−−→

n→∞
0,

∫ 1

0

β

σq
|vn|2dx −−−→

n→∞
0. (3.24)

From Eq (3.7)1, we have∫ 1

0

1
σ
|zn|2dx ≤ 2

∫ 1

0

1
σ
|ζnvn|2dx + 2

∫ 1

0

1
σ
| f 1

n |
2dx −−−→

n→∞
0. (3.25)

Therefore, the limits stated in (3.21) hold true in this case.

If β < 0: from (3.22), we obtain(
1 +

Kp

2
− P0

) ∫ 1

0

1
σ
|ζnvn|2dx +

(
1 −

Kp

2
− R0

) ∫ 1

0
η|vn

x|
2dx

+

(
1 +

Kp

2
+ P0 + Q0

) ∫ 1

0

β

σq
|vn|2dx ≤ Ln.

(3.26)

Hardy’s inequality in Proposition 2.1 and the fact that β < 0 lead to∫ 1

0

β

σq
|vn|2dx ≥ βCH

∫ 1

0
η|vn

x|
2dx.

Using the above inequality, the fact that Kp + Kq ≤ 2, and Hypothesis 2, we obtain(
1 +

Kp

2
+ P0 + Q0

) ∫ 1

0

β

σq
|vn|2dx ≥

(
1 +

Kp

2
+ P0 + Kq

) ∫ 1

0

β

σq
|vn|2dx ≥ 4βCH

∫ 1

0
η|vn

x|
2dx.

Using the above inequality and Hypothesis 2 in (3.26), we obtain∫ 1

0

1
σ
|ζnvn|2dx −−−→

n→∞
0 and

∫ 1

0
η|vn

x|
2dx −−−→

n→∞
0. (3.27)

Using (3.7)1 and the first limit in the preceding equation, we establish the first limit in (3.21). Further,
using the norm equivalence from Corollary 2.1, we get the second limit in (3.21). Finally, using (3.9)
and (3.21), we deduce that ∥Υn∥H tends to 0 as n approaches infinity. This contradicts the assertion that
∥Υn∥H = 1 in (3.5). Hence, iR∗ ⊆ ρ(A) holds true, completing the proof of Proposition 3.1. □

Proof of Theorem 3.1. By Proposition 3.1, we have iR ⊆ ρ(A) if τ > 0 and consequently σ(A) ∩
iR = ∅ and iR∗ ⊆ ρ(A) if τ = 0 and consequently σ(A) ∩ iR = ∅ . Therefore, according to Arendt–
Batty’s Theorem, we obtain the C0-semigroup (etA)t≥0 of contractions is strongly stable, and the proof
is complete.
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4. Polynomial stability

This section is devoted to studying the polynomial stability of the system (S) when τ > 0 and when
p is weakly or strongly degenerate. The main results are presented in the following theorem.

Theorem 4.1. Assume that τ > 0 and Hypothesis 2 holds. Then, the C0− semigroup (etA)t≥0 is polyno-
mially stable, i.e., there exists a constant C > 0 such that for every Υ0 ∈ D(A), we have

E(t) ≤
C

t
2

1−α

∥Υ0∥
2
D(A), t > 0, ∀Υ ∈ D(A). (4.1)

According to the Theorem of Borichev and Tomilov [50] (see also [51,52]), in order to prove Theorem
4.1, we need to prove that the following two conditions hold:

iR ⊆ ρ(A), (P1)

and
lim sup
|ζ |→∞

1
|ζ |1−α

∥∥∥(iζI −A)−1
∥∥∥
L(H)

< ∞ (P2)

are satisfied.
Noting that when τ > 0, Proposition 3.1 implies iR ⊆ ρ(A), we infer, according to the Borichev–

Tomilov Theorem, that polynomial stability depends on the fulfillment of conditions (P1) and (P2).
Since condition (P1) has already been established (as seen in Proposition 3.1), we must now establish
condition (P2). To do so, we will proceed by contradiction. Let’s assume that (P2) is false. Conse-
quently, there exists a sequence

{(
ζn,Υ

n = (zn, vn, φn)⊤
)}
⊂ R∗ × D(A) such that

|ζn| → +∞ and ∥Υn∥H = ∥(vn, zn, φn)∥H = 1, (4.2)

and
(ζn)1−α (iζnI −A)Υn = Fn = ( f 1

n , f 2
n , f 3

n )⊤ → 0 in H . (4.3)

Detailing the above equation yields:

iζnvn − zn =
f 1
n

ζ1−α
n

,

iζnzn − σ(ηvn
x)x −

β

q
v =

f 2
n

ζ1−α
n

,

(|ξ|2 + τ + iζn)φn(ξ) − µ(ξ)zn(1) =
f 3
n (ξ)
ζ1−α

n
, ∀ ξ ∈ R.

(4.4)

Combining (4.4)1 and (4.4)2 yields

ζ2
nvn + σ(ηvn

x)x +
β

q
vn = −

1
ζ1−α

n
( f 2

n + iζn f 1
n ). (4.5)

Here, we will verify condition (P2) by seeking a contradiction with ∥Υn∥H = 1 through the demonstra-
tion of ∥Υn∥H = o(1). To maintain clarity, we divide the proof into several lemmas.
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Lemma 4.1. Assume Hypothesis 2 and τ > 0. Then, the solution (vn, zn, φn) of (4.3) satisfies the
following: ∫

R

(ξ2 + τ)|φn(ξ)|2dξ =
o(1)
ζ1−α

n
, |zn(1)| = o(1), and

∫
R

|φn(ξ)|2dξ =
o(1)
ζ1−α

n
. (4.6)

Proof. First, taking the inner product of (3.6) with Υn in H and using the fact that ∥Fn∥H = o(1) and
∥Υn∥H = 1, we derive

γ

∫
R

(|ξ|2 + τ)|φn(ξ)|2dξ = ℜ(⟨(iζnI −A)Υn,Υn⟩H ) = −ℜ(⟨AΥn,Υn⟩H ) ≤
1
|ζn|

1−α ∥F ∥H∥Υ
n∥H =

o(1)
ζ1−α

n
.

In fact,

ℜ (⟨AΥn,Υn⟩H ) = −ℜ
(∫ 1

0
ηvn

xzn
xdx

)
+ℜ

(
(ηvn

x)(1)zn(1)
)
+ℜ

(∫ 1

0

β

σq
vnzndx

)
+ℜ

(∫ 1

0
ηzn

xvn
xdx

)
−ℜ

(∫ 1

0

β

σq
znvndx

)
− γ

∫
R

(ξ2 + τ)|φn(ξ)|2dξ +ℜ
(
γzn(1)

∫
R

µ(ξ)φn(ξ)dξ
)

= −ℜ

(
γzn(1)

∫
R

µ(ξ)φ(ξ)dξ
)
− γ

∫
R

(ξ2 + τ)|φn(ξ)|2dξ +ℜ
(
γzn(1)

∫
R

µ(ξ)φn(ξ)dξ
)

= −γ

∫
R

(ξ2 + τ)|φn(ξ)|2dξ

Now, from (4.4)3, we have that

µ(ξ)|zn(1)| ≤ (|ζn| + |ξ|
2 + τ)|φn(ξ)| +

| f 3(ξ)|
ζ1−α

n
.

Multiplying the above equation by |ξ|

(|ζn |+|ξ|2+τ)2 and integrating over R leads to

N3(ζ, τ, α)|zn(1)| ≤ N4(ζ, τ)
(∫
R

|ξφn(ξ)|2dξ
) 1

2

+ N5(ζ, τ)
(∫
R

| f n
3 (ξ)|2dξ

) 1
2

,

where N3(ζ, τ, α), N4(ζ, τ), and N5(ζ, τ) are defined in Lemma 2.2.
Applying Young’s inequality to the above equation, we obtain

|zn(1)|2 ≤
1

c1(|ζn| + τ)α−1

∫
R

|ξφn(ξ)|2dξdx +
√
π

4
1

c1ζ2−2α
n (|ζn| + τ)α

∫
R

| f n
3 (ξ)|2dξ.

By applying the first estimate in (4.6), together with the fact that ∥F n∥ = o(1), we derive the second
estimate in (4.6). Now, regarding the final estimate in (4.6), in the case where τ > 0, it becomes evident
that: ∫

R

|φn(ξ)|2dξ ≤
∫
R

(ξ2 + τ)|φn(ξ)|2dξ =
o(1)
|ζn|

1−α .

□

Lemma 4.2. Assume Hypothesis 2. Then, the solution (vn, zn, φn) of (4.3) satisfies the following:∫ 1

0

1
σ
|ζnvn|2dx = o(1),

∫ 1

0
η|vn

x|
2dx −

∫ 1

0

β

σq
|vn|2dx = o(1). (4.7)
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Proof. By multiplying (4.5) by
−2x
σ

vx, integrating over (0, 1), and employing a similar computation,
as in Step 3. in Proposition 3.1, we obtain that the following equation holds:(

1 +
Kp

2

) ∫ 1

0

1
σ
|ζnvn|2dx +

(
1 −

Kp

2

) ∫ 1

0
η|vn

x|
2dx +

(
1 +

Kp

2

) ∫ 1

0

β

σq
|vn|2dx

=

∫ 1

0

x
σ

(
p′ − r

p

)
|ζnvn|2dx +

∫ 1

0

xr
p
η|vn

x|
2dx +

∫ 1

0

βx
σq

(
p′ − r

p

)
|vn|2dx

+

∫ 1

0

βxq′

σq2 |v
n|2dx + 2ℜ

(
1
ζ1−α

n

∫ 1

0

(
f 2
n + iζn f 1

n

) x
σ

vn
xdx

)
−

Kp

2
ℜ

(
i

ζ1−α
n

∫ 1

0

1
σ

f 1
n ζnvndx

)
+

1
σ(1)
|ζnvn(1)|2 + η(1)|vn

x(1)|2 +
β

σ(1)q(1)
|vn(1)|2 −

Kp

2
ℜ

(
1
ζ1−α

n

∫ 1

0

1
σ

f 2
n vndx

)
−

Kp

2
(ηvn

x)(1)vn(1).

(4.8)

By integrating by parts, the termℜ
(

2i
ζ1−α

n

∫ 1

0
ζn f 1

n
x
σ

vn
xdx

)
in (4.8), using the fact that

(
x
σ

)′
= 1

σ
− 1
σ

(
p′−r

p

)
along with Lemma 2.4, we derive:(

1 +
Kp

2

) ∫ 1

0

1
σ
|ζnvn|2dx +

(
1 −

Kp

2

) ∫ 1

0
η|vn

x|
2dx +

(
1 +

Kp

2

) ∫ 1

0

β

σq
|vn|2dx

≤ P0

∫ 1

0

1
σ
|ζnvn|2dx + R0

∫ 1

0
η|vn

x|
2dx + (P0 + Q0)

∫ 1

0

|β|

σq
|vn|2dx +Mn,

(4.9)

where

Mn =

∣∣∣∣∣∣ 2
ζ1−α

n
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f 2
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f 1
n ζnvndx

)∣∣∣∣∣∣ +
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n
ℜ

(
i
∫ 1

0
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σ

f 1
n ζnvndx
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n
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(∫ 1

0
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σ
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+

1
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β
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∣∣∣∣∣∣ℜ
(
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)∣∣∣∣∣∣ +
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2
(ηvn

x)(1)vn(1)
∣∣∣∣∣ .

Our aim now is to show thatMn = o(1). First, using (4.4)1 and Hardy’s inequality, we obtain∫ 1

0

1
σ
|ζnvn|2dx ≤ 2

∫ 1

0

1
σ
|zn|2dx + 2CH

∫ 1

0
η|( f 1

n )x|
2dx ≤ 2 max(1,CH)

(
∥Υ∥2

H
+ ∥F ∥2

H

)
. (4.10)

To estimate the terms inMn, we employ the Cauchy–Schwarz inequality, together with the fact that
Fn = o(1) and x

√
p is non-decreasing on (0, 1]. Utilizing (4.10), we arrive at:

∣∣∣∣∣∣ 2
ζ1−α

n
ℜ

(∫ 1

0
f 2
n

x
σ

vn
xdx
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n

√
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(∫ 1

0

1
σ
| f 2

n |
2dx

) 1
2
(∫ 1

0
η|vn

x|
2dx

) 1
2

=
o(1)
ζ1−α

n
, (4.11)

∣∣∣∣∣∣ 2
ζ1−α

n
ℜ

(∫ 1

0
i( f 1

n )x
x
σ
ζnvndx
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p(1)ζ1−α

n

(∫ 1

0
η|( f 1

n )x|
2dx

) 1
2
(∫ 1

0

1
σ
|ζnvn|2dx

) 1
2

=
o(1)
ζ1−α

n
, (4.12)

Electronic Research Archive Volume 32, Issue 8, 4926–4953.



4948

∣∣∣∣∣∣ℜ
(
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(4.13)

∣∣∣∣∣∣ Kp

2ζ1−α
n
ℜ

(∫ 1

0

1
σ

f 2
n vndx

)∣∣∣∣∣∣ ≤ Kp

2ζ1−α
n

(∫ 1

0

1
σ
| f 2

n |
2dx

) 1
2
(∫ 1

0

1
σ
|vn|2dx

) 1
2

=
o(1)
ζ1−α

n
, (4.14)

Now, we have that from (4.4)1:

|ζnvn(1)| ≤ |zn(1)| +
1
ζ1−α

n
| f 1

n (1)|.

Using the fact that | f 1
n (1)| ≤

√
max
x∈[0,1]

η−1∥F∥H = o(1) and using the second estimation in (4.6) in the

above inequality, we obtain
|ζnvn(1)| = o(1). (4.15)

Also, we can deduce that ∣∣∣∣∣∣ℜ
(

2i
ζ1−α

n
f 1
n (1)

1
σ(1)

ζnvn(1)
)∣∣∣∣∣∣ = o(1)

ζ1−α
n

. (4.16)

Now, from the boundary conditions, we have

|(ηvn
x)(1)|2 =

∣∣∣∣∣−γ∫
R

µ(ξ)φ(ξ)dξ
∣∣∣∣∣2 ≤ γ2
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1

∫
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ζ1−α

n
.

(4.17)
For the last term inMn, we have ∣∣∣∣∣Kp

2
(ηvn

x)(1)vn(1)
∣∣∣∣∣ ≤ o(1)

ζ
3−α

2
n

(4.18)

Thus, using (4.11)–(4.18), we deduce thatMn = o(1).
Next, we proceed by distinguishing two cases according to the sign of β:

Case 1. If β > 0 :
From (4.9) and the fact thatMn = o(1), we have(

1 +
Kp

2
− P0

) ∫ 1

0

1
σ
|ζnvn|2dx +

(
1 −

Kp

2
− R0

) ∫ 1

0
η|vn

x|
2dx

+

(
1 +

Kp

2
− P0 − Q0

) ∫ 1

0

β

σq
|vn|2dx = o(1).

By using Hypothesis 2, we deduce that∫ 1

0

1
σ
|ζnvn|2dx = o(1),

∫ 1

0
η|vn

x|
2dx = o(1), and

∫ 1

0

β

σq
|vn|2dx = o(1). (4.19)

From Eq (4.4)1, we have∫ 1

0

1
σ
|zn|2dx ≤ 2

∫ 1

0

1
σ
|ζnvn|2dx +

2
ζ1−α

∫ 1

0

1
σ
| f 1

n |
2dx = o(1). (4.20)
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Therefore, we proved (4.7) in this case.
Case 2. If β < 0: From (4.9), we obtain(

1 +
Kp

2
− P0

) ∫ 1

0

1
σ
|ζnvn|2dx +

(
1 −

Kp

2
− R0

) ∫ 1

0
η|vn

x|
2dx

+

(
1 +

Kp

2
+ P0 + Q0

) ∫ 1

0

β

σq
|vn|2dx = o(1).

(4.21)

Utilizing Hardy’s inequality from Proposition 2.1 and the condition β < 0, along with the condition
Kp + Kq ≤ 2 and Hypothesis 2, we obtain:(

1 +
Kp

2
+ P0 + Q0

) ∫ 1

0

β

σq
|vn|2dx ≥

(
1 +

Kp

2
+ P0 + Kq

) ∫ 1

0

β

σq
|vn|2dx ≥ 4βCH

∫ 1

0
η|vn

x|
2dx.

Applying the aforementioned inequality along with Hypotheses 2 to (4.21), we obtain∫ 1

0

1
σ
|ζnvn|2dx = o(1) and

∫ 1

0
η|vn

x|
2dx = o(1).

Employing (4.4)1 and the preceding estimation, we establish the first estimate in (4.7). Also, using the
norm equivalence provided by Corollary 2.1, we derive the second estimate in (4.7). □

Proof of Theorem 4.1: Finally, using Lemmas 4.1 and 4.2, we conclude that ∥Υn∥H = o(1). This
contradicts the assertion ∥Υn∥H = 1 in (4.3). Conequently, (P2) holds true, and thus the proof is
complete.

Remark 1.

• This work generalizes the results in [34]. Specifically, by considering α → 1 in our work, we
obtain the system studied in [34].
• We conjecture that the energy decay rate t1−α is optimal. However, the conditions assumed to

achieve stability have not been proven to be optimal, leaving this an open problem.
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