Research article

Nanocrystalline SEM image restoration based on fractional-order TV and nuclear norm

  • Received: 28 April 2024 Revised: 05 August 2024 Accepted: 13 August 2024 Published: 16 August 2024
  • To obtain high-quality nanocrystalline scanning electron microscopy (SEM) images, this paper proposed a Poisson denoising model that combined the fractional-order total variation (TV) and nuclear norm regularizers. The developed novel model integrated the superiorities of fractional-order TV and nuclear norm constraints, which contributed to significantly improving the accuracy of image restoration while preventing the staircase effect and preserving edge details. By combining the variable separation method and singular value thresholding method, an improved alternating direction method of multipliers was developed for numerical computation. Compared with some existing popular solvers, numerical experiments demonstrated the superiority of the new method in visual effects and quality evaluation.

    Citation: Ruini Zhao. Nanocrystalline SEM image restoration based on fractional-order TV and nuclear norm[J]. Electronic Research Archive, 2024, 32(8): 4954-4968. doi: 10.3934/era.2024228

    Related Papers:

  • To obtain high-quality nanocrystalline scanning electron microscopy (SEM) images, this paper proposed a Poisson denoising model that combined the fractional-order total variation (TV) and nuclear norm regularizers. The developed novel model integrated the superiorities of fractional-order TV and nuclear norm constraints, which contributed to significantly improving the accuracy of image restoration while preventing the staircase effect and preserving edge details. By combining the variable separation method and singular value thresholding method, an improved alternating direction method of multipliers was developed for numerical computation. Compared with some existing popular solvers, numerical experiments demonstrated the superiority of the new method in visual effects and quality evaluation.



    加载中


    [1] T. Le, R. Chartrand, T. J. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vision, 27 (2007), 257–263. https://doi.org/10.1007/s10851-007-0652-y doi: 10.1007/s10851-007-0652-y
    [2] D. di Serafino, G. Landi, M. Viola, ACQUIRE: An inexact iteratively reweighted norm approach for TV-based Poisson image restoration, Appl. Math. Comput., 364 (2020), 124678. https://doi.org/10.1016/j.amc.2019.124678 doi: 10.1016/j.amc.2019.124678
    [3] T. Chan, A. Marquina, P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503–516. https://doi.org/10.1137/S1064827598344169 doi: 10.1137/S1064827598344169
    [4] K. Bredies, M. Holler, Higher-order total variation approaches and generalisations, Inverse Probl., 36 (2020), 123001. https://doi.org/10.1088/1361-6420/ab8f80 doi: 10.1088/1361-6420/ab8f80
    [5] K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492–526. https://doi.org/10.1137/090769521 doi: 10.1137/090769521
    [6] X. Liu, Augmented Lagrangian method for total generalized variation based Poissonian image restoration, Comput. Math. Appl., 71 (2016), 1694–1705. https://doi.org/10.1016/j.camwa.2016.03.005 doi: 10.1016/j.camwa.2016.03.005
    [7] X. Liu, W. Lian, Restoration of Poissonian images using non-convex regularizer with overlapping group sparsity, Informatica, 33 (2022), 573–592. https://doi.org/10.15388/22-INFOR480 doi: 10.15388/22-INFOR480
    [8] M. R. Chowdhury, J. Qin, Y. Lou, Non-blind and blind deconvolution under poisson noise using fractional-order total variation, J. Math. Imaging Vision, 62 (2020), 1238–1255. https://doi.org/10.1007/s10851-020-00987-0 doi: 10.1007/s10851-020-00987-0
    [9] J. Xiang, H. Xiang, L. Wang, Poisson noise image restoration method based on variational regularization, Signal Image Video Process., 17 (2023), 1555–1562. https://doi.org/10.1007/s11760-022-02364-3 doi: 10.1007/s11760-022-02364-3
    [10] M. Diwakar, P. Singh, D. Garg, Edge-guided filtering based CT image denoising using fractional order total variation, Biomed. Signal Process. Control, 92 (2024), 106072. https://doi.org/10.1016/j.bspc.2024.106072 doi: 10.1016/j.bspc.2024.106072
    [11] C. Zou, Y. Xia, Poissonian hyperspectral image superresolution using alternating direction optimization, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 9 (2016), 4464–4479. https://doi.org/10.1109/JSTARS.2016.2585158 doi: 10.1109/JSTARS.2016.2585158
    [12] C. Zou, Y. Xia, Restoration of hyperspectral image contaminated by Poisson noise using spectral unmixing, Neurocomputing, 275 (2018), 430–437. https://doi.org/10.1016/j.neucom.2017.09.010 doi: 10.1016/j.neucom.2017.09.010
    [13] T. Goldstein, S. Osher, The split Bregman algorithm for L1 regularized problems, SIAM J. Imaging Sci., 2 (2009), 323–343. https://doi.org/10.1007/s11760-022-02364-3 doi: 10.1007/s11760-022-02364-3
    [14] Z. Zhu, J. Yao, Z. Xu, J. Huang, B. Zhang, A simple primal-dual algorithm for nuclear norm and total variation regularization, Neurocomputing, 289 (2018), 1–12. https://doi.org/10.1016/j.neucom.2017.12.056 doi: 10.1016/j.neucom.2017.12.056
    [15] B. Shi, F. Gu, Z. F. Pang, Y. Zeng, Remove the salt and pepper noise based on the high order total variation and the nuclear norm regularization, Appl. Math. Comput., 421 (2022), 126925. https://doi.org/10.1016/j.amc.2022.126925 doi: 10.1016/j.amc.2022.126925
    [16] J. Zhang, Z. Wei, L. Xiao, Adaptive fractional-order multi-scale method for image denoising, J. Math. Imaging Vision, 43 (2012), 39–49. https://doi.org/10.1007/s10851-011-0285-z doi: 10.1007/s10851-011-0285-z
    [17] C. Chen, H. Kong, B. Wu, Edge detection of remote sensing image based on Grünwald-Letnikov fractional difference and Otsu threshold, Electron. Res. Arch., 31 (2023), 1287–1302. https://doi.org/10.3934/era.2023066 doi: 10.3934/era.2023066
    [18] J. Nocedal, S. J. Wright, Numerical Optimization, Springer-Verlag, 2006.
    [19] J. F. Cai, E. J. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20 (2010), 1956–1982. https://doi.org/10.1137/080738970 doi: 10.1137/080738970
    [20] J. Yang, L. Luo, J. Qian, Y. Tai, F. Zhang, Y. Xu, Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), 156–171. https://doi.org/10.1109/TPAMI.2016.2535218 doi: 10.1109/TPAMI.2016.2535218
    [21] D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Comput. Math. Appl., 2 (1976), 17–40. https://doi.org/10.1016/0898-1221(76)90003-1 doi: 10.1016/0898-1221(76)90003-1
    [22] Z. Wang, A. C. Bovik, A universal image quality index, IEEE Signal Process. Lett., 9 (2002), 81–84. https://doi.org/10.1109/97.995823 doi: 10.1109/97.995823
    [23] Q. Guo, S. Gao, X. Zhang, Y. Yin, C. Zhang, Patch-based image inpainting via two-stage low rank approximation, IEEE Trans. Vis. Comput. Graphics, 24 (2018), 2023–2036. https://doi.org/10.1109/TVCG.2017.2702738 doi: 10.1109/TVCG.2017.2702738
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(447) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog