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Abstract: To obtain high-quality nanocrystalline scanning electron microscopy (SEM) images, this
paper proposed a Poisson denoising model that combined the fractional-order total variation (TV) and
nuclear norm regularizers. The developed novel model integrated the superiorities of fractional-order
TV and nuclear norm constraints, which contributed to significantly improving the accuracy of image
restoration while preventing the staircase effect and preserving edge details. By combining the variable
separation method and singular value thresholding method, an improved alternating direction method
of multipliers was developed for numerical computation. Compared with some existing popular
solvers, numerical experiments demonstrated the superiority of the new method in visual effects and
quality evaluation.
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1. Introduction

In materials science, nanomaterials have been widely used in the fields of catalysis, biomedicine,
fine chemical industry, and defense technology for their good chemical and thermal stability.
However, due to the factors such as imaging equipment and human operation, the nanocrystalline
images obtained by SEM are inevitably contaminated by Poisson noise, which brings serious
obstacles to the further study of the properties, morphology, and microstructure of nanomaterials.
Therefore, it is very important to choose a reasonable image restoration method to obtain high quality
nanocrystalline SEM image quickly.

To remove Poisson noise, one of the most classical models is based on the TV regularization and
Kullback-Leibler (KL) divergence fidelity [1, 2]. This model classifies images into a bounded
variation function space, which can effectively preserve edge details of the images while denoising.
Unfortunately, the introduction of the TV regularization term results in obvious staircase artifacts in
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smooth regions of the images.
In view of this defect, a series of improved regularization models have been proposed recently. For

example, there exist the higher-order derivative-based higher-order TV (HOTV) model [3, 4], total
generalized variation model [5, 6], nonconvex HOTV with overlapping group sparsity [7] (NOGS for
short), and so on. This kind of strategy can significantly reduce the staircase artifacts in smooth
regions. However, because these schemes are established based on high-order derivatives, it is
inevitable to produce some edge blurring when they are used in image restoration. The other
improved model is the variationa model based on fractional-order TV (FOTV, [8–10]), which contains
the fractional-order derivatives, can be seen as a compromise between TV and higher-order TV.
Therefore, when used in image restoration, it can achieve the ability of maintaining edge details while
alleviating the staircase effect. Besides, there exist other improved methods for noise reduction, such
as the sparse and nonlocal regularization approach [11] and the spectral unmixing method [12] in the
case of hyperspectral images. However, when the intensity of noise is large, some of the above
methods cannot effectively remove noise or lose important detail features, which have some
application limitations.

Note that the intensity of noise can influence the singular values of an image, and penalizing the
singular values helps to improve the quality of image restoration. Nuclear norm (the sum of all
singular values of a matrix), which is the best convex approximation of the rank function, can
characterize the sparsity of data. Thus, nuclear norm minimization has been applied to the problems
such as data recovery and feature extraction, and has achieved good reconstruction results. In the
meanwhile, according to [13], it follows that the hybrid regularizers technique is beneficial for
achieving accurate image reconstruction. Based on this, the authors in [14] proposed the TV and
nuclear norm-based method for image restoration, and the work [15] investigates a new variational
model that contains the higher-order TV and nuclear norm constraints. Compared to the single
regularizer models, these hybrid regularizers models have achieved certain improvements in image
quality. However, due to the inclusion of TV and higher-order TV frameworks, the phenomenon of
the staircase effect and blurred edges is inevitable.

Based on the above analysis, this paper will add the nuclear norm constraint to the fractional-order
TV regularization, and propose a hybrid of the fractional-order TV and nuclear norm regularizers
model for image restoration. The constructed new model takes into account the sparsity of data and
combines the advantage of the fractional-order derivative penalty. Therefore, when applied for
Poissonian image restoration, it can not only overcome the staircase effect in smooth regions, but also
maintain small edge features in the images, thereby achieving high-precision image restoration.

The main innovations of this article can be generalized as follows. First of all, by integrating the
advantages of fractional-order TV and nuclear norm constraints, this paper proposes a novel model
for Poissonian image restoration. Second, to quickly deal with the established optimization model, an
improved alternating direction method of multipliers is proposed by combining the variable separation
technique and singular value thresholding algorithm. Finally, compared with several existing numerical
methods, the provided numerical experiments demonstrate the superiority of our new method in visual
quality and quantitative evaluation.
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2. Proposed model

Following the works [1, 2], the image restoration model based on the TV regularization and KL
divergence fidelity can be represented as

min
u
∥∇u∥1 + λ⟨1,Ku − f log Ku⟩, (1)

where ∥∇u∥1 denotes the TV regularization, and λ > 0 is a weighting parameter, which is used to
balance the regularization term and the data fidelity term. In addition, K stands for a linear blurring
operator, and u, f are the original clean image and the observed degraded image, respectively.

As an improvement of model (1), a related variational model is established by replacing TV with
fractional-order TV as the regularization term, namely,

min
u
∥∇αu∥1 + λ⟨1,Ku − f log Ku⟩, (2)

where α > 0, and ∇α represents the Grünwald-Letnikov fractional-order gradient operator. For the
convenience of numerical calculations, some definitions and properties of fractional-order operators
are presented below. For more details, please refer to [16, 17]. Consequently, the discrete fractional-
order gradient can be written as

∇αu = [Dα1u,Dα2u]T.

Here, Dα1u,Dα2u denote the discrete gradients along the x, y axes respectively, and their calculation
formulas are given by

(Dα1u)i, j =

S−1∑
s=0

(−1)sCαs ui−s, j, (Dα2u)i, j =

S−1∑
s=0

(−1)sCαs ui, j−s.

Note that the symbol S represents the number of adjacent pixels, Cαs = Γ(α+1)/(Γ(s+1)Γ(α+1−s)),
and Γ denotes the classical Gamma function. Based on these preliminaries, the discrete fractional-order
TV can be represented as

∥∇αu∥1 =
∑

i, j

|(Dα1u)i, j| + |(Dα2u)i, j|.

As far as the relationship between fractional-order gradient and divergence is concerned, we derive
that (∇α)T = (−1)αdivα, with (∇α)T being the adjoint operator of ∇α. Specifically, the fractional-order
divergence is determined by the following expression:

(divαv)i, j = (−1)α
S−1∑
s=0

(−1)sCαs (v1
i+s, j + v2

i, j+s).

Meanwhile, considering that the nuclear norm can serve as a loose approximation of the rank
constraint, it can effectively characterize the sparsity of data. Based on the above discussions, to
improve the quality of image reconstruction, this paper adds the nuclear norm constraint to the
fractional-order TV regularization and proposes a Poisson denoising model that contains a hybrid of
fractional-order TV and nuclear norm regularizers. Formally speaking, the established mathematical
model is

min
u
∥∇αu∥1 + β∥u∥∗ + λ⟨1,Ku − f log Ku⟩, (3)

where β > 0 denotes a weighting parameter, and the nuclear norm is defined as ∥u∥∗ =
∑

i σi(u), with
σi(u) being the i-th singular value of the matrix u.
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3. Optimization algorithm

To solve the optimization problem (3), we use the variable separation method and introduce three
auxiliary variables d, v, and z, such that d = ∇αu, v = u, and z = Ku. So, the aforementioned model
can be equivalently transformed into

min
u,d,v,z
∥d∥1 + β∥v∥∗ + λ⟨1, z − f log z⟩ s.t. d = ∇αu, v = u, z = Ku. (4)

As for the above constrained optimization problem, we first establish its corresponding augmented
Lagrangian equation as

L(u, d, v, z, η1, η2, η3) = ∥d∥1 + β∥v∥∗ + λ⟨1, z − f log z⟩ +
γ1

2
∥d − ∇αu∥22 − ⟨η1, d − ∇αu⟩

+
γ2

2
∥v − u∥22 − ⟨η2, v − u⟩ +

γ3

2
∥z − Ku∥22 − ⟨η3, z − Ku⟩,

(5)

where γ1, γ2, γ3 > 0 are three penalty parameters, and η1, η2, η3 denote the Lagrange multipliers.
Generally speaking, obtaining the optimal solution of the convex optimization problem (4) amounts

to finding a saddle point (u∗, d∗, v∗, z∗; η∗1, η
∗
2, η
∗
3) such that

L(u∗, d∗, v∗, z∗; η1, η2, η3) ≤ L(u∗, d∗, v∗, z∗; η∗1, η
∗
2, η
∗
3) ≤ L(u, d, v, z; η∗1, η

∗
2, η
∗
3). (6)

To solve the saddle point problem (6), using the augmented Lagrangian method [18] leads to the
following iterative algorithm:

(uk+1, dk+1, vk+1, zk+1) = arg min
u,d,v,z
∥d∥1 + β∥v∥∗ + λ⟨1, z − f log z⟩ +

γ1

2

∥∥∥∥d − ∇αu − ηk
1

γ1

∥∥∥∥2
2

+
γ2

2

∥∥∥∥v − u −
ηk

2

γ2

∥∥∥∥2
2
+
γ3

2

∥∥∥∥z − Ku −
ηk

3

γ3

∥∥∥∥2
2
,

(7)

which is implemented by maximizing η1, η2, and η3 via the gradient ascent method, namely, the update
formulas for the above mentioned Lagrange multipliers are

ηk+1
1 = ηk

1 − γ1(dk+1 − ∇αuk+1),
ηk+1

2 = ηk
2 − γ2(vk+1 − uk+1),

ηk+1
3 = ηk

3 − γ3(zk+1 − Kuk+1).
(8)

Note that it is a challenging task to obtain the solutions of four variables in (7) simultaneously. Using
the idea of alternating minimization, the above algorithm can be decomposed into four subproblems
with respect to the variables u, d, v, and z. This leads to the following iterative framework:

uk+1 = arg min
u

γ1

2

∥∥∥∥∇αu − dk +
ηk

1

γ1

∥∥∥∥2
2
+
γ2

2

∥∥∥∥u − vk +
ηk

2

γ2

∥∥∥∥2
2
+
γ3

2

∥∥∥∥Ku − zk +
ηk

3

γ3

∥∥∥∥2
2
,

dk+1 = arg min
d
∥d∥1 +

γ1

2

∥∥∥∥d − ∇αuk+1 −
ηk

1

γ1

∥∥∥∥2
2
,

vk+1 = arg min
v
β∥v∥∗ +

γ2

2

∥∥∥∥v − uk+1 −
ηk

2

γ2

∥∥∥∥2
2
,

zk+1 = arg min
z
λ⟨1, z − f log z⟩ +

γ3

2

∥∥∥∥z − Kuk+1 −
ηk

3

γ3

∥∥∥∥2
2
.

(9)
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In what follows, our purpose is to solve each subproblem in detail one by one. First, regarding the
subproblem of u, its first-order optimization condition can be written as(

γ1(∇α)T∇α + γ2 + γ3KT K
)
uk+1 = (∇α)T

(
γ1dk − ηk

1

)
+
(
γ2vk − ηk

2

)
+ KT

(
γ3zk − ηk

3

)
. (10)

Under the assumption of the periodic boundary condition, the operators (∇α)T∇α and KT K are both
block circulant. Therefore, by using fast Fourier transform (FFT) and its inverse transform, the solution
to the u-subproblem is characterized by

uk+1 = F−1
(F(∇α)∗ ⊙ F(γ1dk − ηk

1) + F(γ2vk − ηk
2) + F(K)∗ ⊙ F(γ3zk − ηk

3)
γ1F(∇α)∗ ⊙ F(∇α) + γ2 + γ3F(K)∗ ⊙ F(K)

)
, (11)

where F, F−1 represent the FFT and its inverse transform, respectively, ∗ denotes complex conjugation,
and ⊙ is componentwise multiplication.

Second, using the generalized soft thresholding formula, the solution to the d-subproblem can be
obtained as

dk+1 = shrink
(
∇αuk+1 +

ηk
1

γ1
,

1
γ1

)
, (12)

where shrink means the shrinkage operator, and shrink(t, τ) = sgn(t). ∗max(∥t∥2 − τ, 0), with sgn being
the signum function.

For the v-subproblem, it is very difficult to solve directly due to its inclusion of nuclear norm. Here,
we use the singular value thresholding (SVT) algorithm to solve it. Referring to [19], given an n1 × n2

matrix X, the singular value decomposition (SVD) of this matrix is

X = UΣVT , Σ = diag(σi), i = 1, ...,min{n1, n2}. (13)

Therefore, for a fixed parameter δ > 0, the SVT operator satisfies the following equation:

SVT(X, δ) = arg min
L
δ∥L∥∗ +

1
2
∥L − X∥22. (14)

More specifically, the formula is SVT(X, δ) = Udiag(max{σi − δ, 0})VT . Applying this formula, the
solution to the v-subproblem is

vk+1 = SVT
(
uk+1 +

ηk
2

γ2
,
β

γ2

)
. (15)

Finally, for the z-subproblem, by combining the first-order optimization condition and the root
finding formula, it can be concluded that

zk+1 =

(
Kuk+1 +

ηk
3
γ3

)
− λ
γ3

I

2
+

√√( (Kuk+1 +
ηk

3
γ3

) − η
k
3
γ3

I

2

)2
+
λ

γ3
f . (16)

In summary, the solving processes of the joint subproblems lead to a modified alternating direction
method of multipliers (ADMM), which is summarized as follows.
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Algorithm 1. ADMM for the optimization problem (3)

Step 0. Input f ,K, β, λ, γ1, γ2, γ3; Initialize u0, d0, v0, z0, η0
1, η

0
2, η

0
3;

Step 1. Compute uk+1 according to (11);
Step 2. Compute dk+1 according to (12);
Step 3. Compute vk+1 according to (15);
Step 4. Compute zk+1 according to (16);
Step 5. Update ηk+1

1 , η
k+1
2 and ηk+1

3 by (8);
Step 6. If the stopping criterion is not met, go to Step 1.

It is noteworthy that in the developed algorithm, the calculation of u-subproblem includes FFT and
inverse FFT operations. Therefore, the complexity of computing the u-subproblem is O(n1n2log(n1n2))
for an n1 × n2 image. Moreover, from the calculations of the d, z subproblems, it yields that their
computation costs are both linear with n1n2. As far as the subproblem with respect to v is concerned,
its calculation contains the SVD operation [20], which is most time-consuming. This means that the
computational complexity of the v-subproblem arrives at O(min(n2

1n2, n1n2
2)).

In what follows, we briefly discuss the convergence of the designed algorithm. The resulting
optimization problem is convex and four variables can be divided into two blocks {u} and {d, v, z}. For
a given u, the updates of auxiliary variables d, v, z are independent of each other. Based on this
observation, our algorithm framework can be regarded as an application of the original ADMM [21].
Therefore, the sequence {uk, dk, vk, zk} obtained by Algorithm 1 is convergent. Moreover, as a visual
display, Figures 4 and 7 show the numerical convergence of our proposed algorithm.

4. Numerical experiments

In this section, our main purpose is to provide several numerical experiments to validate the
effectiveness of the developed scheme. To demonstrate its superiority, the newly proposed method
will be compared with the TV, FOTV, HOTV, and NOGS models. All experiments are conducted on
Matlab R2023b software under Windows 10 system, with 32 GB RAM and an Intel(R) Core(TM)
i9-10900 CPU at 2.81 GHz. It is noteworthy that in the simulation experiments, the addition of
Poisson noise is achieved using the Matlab library function Poissrnd.

(a) (b) (c) (d)

Figure 1. Four test images used in the simulation experiments.
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Throughout the numerical experiments, all algorithms are terminated when the relative error is
less than 10−4. Several parameters used in the proposed algorithm are fixed as follows: α = 1.8, β =
0.1, γ1 = 0.2, γ2 = 0.2, γ3 = 0.2. Meanwhile, two commonly adopted peak signal-to-noise ratio
(PSNR), and universal image quality index (UIQI, [22]) criteria are adopted to evaluate the quality of
image reconstruction. The calculation formula for PSNR is

PSNR = 10log10

(P2 ∗ n1n2

∥u − ũ∥22

)
, (17)

where u and ũ are the clean original image and the restored image respectively, n1n2 represents the size
of an image, and P denotes the maximum peak value. In general, the higher the values of PSNR and
UIQI, the better the quality of the restored image.

Table 1. Comparison of denoising results using five different methods.

Figure Model
P = 80 P = 130

Iter Time (s) PSNR UIQI Iter Time (s) PSNR UIQI

1(a)

TV 42 3.16 29.0298 0.7446 48 3.48 30.2064 0.7895
FOTV 43 3.20 29.1255 0.7906 49 3.59 29.9767 0.8159
HOTV 85 3.83 29.1116 0.7911 98 4.52 30.0225 0.8167
NOGS 33 4.03 29.2363 0.7553 29 3.41 30.2498 0.7873
Ours 30 4.02 29.8175 0.7958 29 3.90 31.0120 0.8283

1(b)

TV 55 4.22 31.9733 0.5295 55 4.19 32.8189 0.5612
FOTV 40 2.95 31.8934 0.5580 42 3.06 32.7265 0.5895
HOTV 76 3.57 31.7844 0.5556 86 4.02 32.7232 0.5883
NOGS 37 4.43 31.9886 0.5330 33 4.06 32.8558 0.5576
Ours 36 4.90 32.2075 0.5600 30 4.06 33.1121 0.5921

Table 2. Comparison of restoration results using five different methods.

Figure Model
P = 180 P = 220

Iter Time (s) PSNR UIQI Iter Time (s) PSNR UIQI

1(c)

TV 79 13.36 28.1880 0.6109 81 13.75 28.5416 0.6241
FOTV 57 9.90 28.3325 0.6543 59 10.27 28.6357 0.6665
HOTV 95 11.42 28.1047 0.6539 98 11.75 28.2304 0.6662
NOGS 36 10.70 28.2203 0.6399 35 10.41 28.4412 0.6481
Ours 54 20.01 28.8018 0.6605 56 20.72 29.1328 0.6691

1(d)

TV 69 7.20 28.1016 0.4225 69 7.15 28.2974 0.4371
FOTV 36 3.83 27.9729 0.4969 37 4.02 28.1214 0.5078
HOTV 89 6.70 28.0187 0.4936 93 6.95 28.1099 0.5001
NOGS 36 6.87 28.0423 0.4446 34 6.52 28.2506 0.4605
Ours 49 10.70 28.2681 0.5051 50 10.93 28.4854 0.5148
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(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2)

(e1) (e2) (f1) (f2)

Figure 2. Comparison of denoising results of five methods. (a1),(a2) Noisy images, (b1),(b2)
TV, (c1),(c2) FOTV, (d1),(d2) HOTV, (e1),(e2) NOGS, (f1),(f2) new method.

First, let us verify the Poisson denoising ability of our newly proposed model. In the experiment, the
original images (Figure 1(a), (b)) are two SEM grayscale images both sized by 620×620 pixels. Figures
2(a1),(a2) and 3(a1),(a2) show the degraded images contaminated by Poisson noise with P = 80, 130,
respectively. Subsequently, by using the TV, FOTV, HOTV, NOGS methods and our proposed scheme,
the recovered visual results are detailed in Figures 2 and 3. As shown in Figure 4, it illustrates the
numerical convergence of our designed algorithm on the image of Figure 1(a) by characterizing the
changing trends of relative error, PSNR, and UIQI versus the number of iterations separately. In
addition, the quantitative comparison results of different methods are listed in Table 1, where the best
and the second-best results of restoration quality are highlighted in bold and underlined, respectively. It
should be noted that corresponding to different noise intensities, our restoration results on two images
are achieved by setting the parameter λ ∈ {8, 10} and {6.5, 8.5}.
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(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2)

(e1) (e2) (f1) (f2)

Figure 3. Comparison of denoising results of five methods. (a1),(a2) Noisy images, (b1),(b2)
TV, (c1),(c2) FOTV, (d1),(d2) HOTV, (e1),(e2) NOGS, (f1),(f2) new method.
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Figure 4. Quantitative assessments versus iteration number for the designed method. (a)
Relative error, (b) PSNR, (c) UIQI.
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(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2)

(e1) (e2) (f1) (f2)

Figure 5. Comparison of restoration results of five methods. (a1),(a2) Degraded images,
(b1),(b2) TV, (c1),(c2) FOTV, (d1),(d2) HOTV, (e1),(e2) NOGS, (f1),(f2) new method.

The second experiment is used to evaluate the denoising and deblurring ability of the proposed
model. In this case, two test nanocrystal SEM images have dimensions of 1000 × 1000 and 800 ×
800 pixels, which are separately listed in Figure 1(c),(d). The degraded images obtained by adding
motion blur with “len = 13” and “theta = 60”, and polluted by Poisson noise with the intensity of
P = 180, 220, are exhibited in Figures 5(a1),(a2) and 6(a1),(a2). For these four degraded images, the
restoration results and quality comparisons obtained using five different strategies are listed in Figures
5 and 6 and Table 2. Note that the recovered images by our scheme are obtained when the parameter
λ is set to 33 and 43. Moreover, by taking Figure 1(c) as an example, Figure 7 also indicates the
numerical convergence behaviors of the proposed new method.

From Figures 2, 3, 5, and 6, it can be observed that the TV-based scheme produces obvious
staircase artifacts in smooth regions of the images, such as Figure 2(b1),(b2). Although the FOTV,
HOTV, and NOGS models have alleviated the staircase effect to a certain extent, they have also
resulted in residual noise or blurred edges, so the restoration results are not very satisfactory. Our
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hybrid regularization technique overcomes the above shortcomings, and the restored results not only
achieve smooth transitions in smooth regions, but also maintain the detailed features of the image,
such as Figure 6(f1),(f2). The main reasons of such phenomenon are that the test image has a low
rank and the sparsity induced by the nuclear norm regularization is helpful in solving the
ill-conditioned inverse problem such as image deblurring. In addition, observed from Tables 1 and 2,
it follows that the restoration results of the proposed scheme have higher PSNR and UIQI values,
which further prove the superior performance of our novel method for image restoration.

Finally, we select a real nanocrystalline SEM image to further validate the effectiveness of our
designed method. The tested image, which has the size of 500 × 500, contains low intensity Poisson
noise. The restoration results obtained using five different methods are presented in Figure 8. After
careful observation and comparison, it can be seen that our new approach can effectively remove noise
while better preserving fine details of the image, thereby possessing the unparalleled superiority and
application value.

(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2)

(e1) (e2) (f1) (f2)

Figure 6. Comparison of restoration results of five methods. (a1),(a2) Degraded images,
(b1),(b2) TV, (c1),(c2) FOTV, (d1),(d2) HOTV, (e1),(e2) NOGS, (f1),(f2) new method.
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Figure 7. Quantitative assessments versus iteration number for the designed method. (a)
Relative error, (b) PSNR, (c) UIQI.

(a) (b) (c)

(d) (e) (f)

Figure 8. Comparison of denoising results for real electron microscopy image. (a) Noisy
image, (b) TV, (c) FOTV, (d) HOTV, (e) NOGS, (f) new method.

5. Conclusions

With the aim of removing Poisson noise in nanocrystalline SEM images effectively, this paper
proposed a novel image restoration model based on the fractional-order TV and nuclear norm
constraints. More precisely, fractional-order TV was used to overcome the staircase artifacts and
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maintain edge details, while nuclear norm constraint helped with feature extraction and improved the
accuracy of image restoration. Methodologically, this paper combined the variable separation method
and singular value thresholding algorithm to design an improved alternating direction method of
multipliers. Finally, numerical experiments on simulated and real data illustrated the superiority of the
newly developed method both visually and quantitatively. As a future prospect, motivated by the
patch-based low rank approximation [23], our next work will focus on researching the low rank
constraint models for image restoration, which helps to reduce the computational cost and improve
the quality of image reconstruction.
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