Research article

Finite element method for an eigenvalue optimization problem of the Schrödinger operator

  • Received: 26 August 2021 Revised: 11 December 2021 Accepted: 19 December 2021 Published: 29 December 2021
  • MSC : 35J10, 35P15, 49Q10, 65N25, 65N30

  • In this paper, we study the optimization algorithm to compute the smallest eigenvalue of the Schrödinger operator with volume constraint. A finite element discretization of this problem is established. We provide the error estimate for the numerical solution. The optimal solution can be approximated by a fixed point iteration scheme. Then a monotonic decreasing algorithm is presented to solve the eigenvalue optimization problem. Numerical simulations demonstrate the efficiency of the method.

    Citation: Shuangbing Guo, Xiliang Lu, Zhiyue Zhang. Finite element method for an eigenvalue optimization problem of the Schrödinger operator[J]. AIMS Mathematics, 2022, 7(4): 5049-5071. doi: 10.3934/math.2022281

    Related Papers:

  • In this paper, we study the optimization algorithm to compute the smallest eigenvalue of the Schrödinger operator with volume constraint. A finite element discretization of this problem is established. We provide the error estimate for the numerical solution. The optimal solution can be approximated by a fixed point iteration scheme. Then a monotonic decreasing algorithm is presented to solve the eigenvalue optimization problem. Numerical simulations demonstrate the efficiency of the method.



    加载中


    [1] A. Henrot, Extremum problems for eigenvalues of elliptic operators, Basel: Springer, 2006.
    [2] G. Allaire, Shape optimization by the homogenization method, Basel: Springer, 2012.
    [3] C. Anedda, G. Porru, Symmetry breaking and other features for eigenvalue problems, Dynamical Systems and Differential Equations, AIMS Proceedings 2011 Proceedings of the 8th AIMS International Conference (Dresden, Germany), 2011, 61–70. https://doi.org/10.3934/proc.2011.2011.61
    [4] P. R. S. Antunes, S. A. Mohammadi, H. Voss, A nonlinear eigenvalue optimization problem: Optimal potential functions, Nonlinear Anal.-Real, 40 (2018), 307–327, https://doi.org/10.1016/j.nonrwa.2017.09.003 doi: 10.1016/j.nonrwa.2017.09.003
    [5] X. L. Bai, F. Li, Optimization of species survival for logistic models with non-local dispersal, Nonlinear Anal.-Real, 21 (2015), 53–62. https://doi.org/10.1016/j.nonrwa.2014.06.006 doi: 10.1016/j.nonrwa.2014.06.006
    [6] B. Emamizadeh, R. Fernandes, Optimization of the principal eigenvalue of the one-dimensional Schrödinger operator, Electron. J. Differ. Eq., 65 (2008), 1–11.
    [7] W. T. Chen, C. S. Chou, C. Y. Kao, Minimizing eigenvalues for inhomogeneous rods and plates, J. Sci. Comput., 69 (2016), 983–1013. https://doi.org/10.1007/s10915-016-0222-9 doi: 10.1007/s10915-016-0222-9
    [8] M. Chugunova, B. Jadamba, C. Y. Kao, C. Klymko, E. Thomas, B. Y. Zhao, Study of a mixed dispersal population dynamics model, In: Topics in numerical partial differential equations and scientific computing, New York: Springer, 2016, 51–77. https://doi.org/10.1007/978-1-4939-6399-7_3
    [9] F. Cuccu, B. Emamizadeh, G. Porru, Design of a composite membrane with patches, Appl. Math. Optim., 62 (2010), 169–184. https://doi.org/10.1007/s00245-010-9098-5 doi: 10.1007/s00245-010-9098-5
    [10] E. M. Harrell, Hamiltonian operators with maximal eigenvalues, J. Math, Phys., 25 (1984), 48–51. https://doi.org/10.1063/1.525996 doi: 10.1063/1.525996
    [11] B. Emamizadeh, A. Farjudian, Monotonicity of the principal eigenvalue related to a non-isotropic vibrating string, Nonautonomous Dyn. Syst., 1 (2014), 123–136.
    [12] S. B. Guo, D. F. Li, H. Feng, X. L. Lu, Extremal eigenvalues of the Sturm-Liouville problems with discontinuous coefficients, Numer. Math.-Theory Me., 6 (2013), 657–684. https://doi.org/10.1017/S1004897900000362 doi: 10.1017/S1004897900000362
    [13] E. M. Harrell, Commutators, eigenvalue gaps, and mean curvature in the theory of Schrödinger operators, Commun. Part. Differ. Equ., 32 (2007), 401–413. https://doi.org/10.1080/03605300500532889 doi: 10.1080/03605300500532889
    [14] H. Egnell, Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 14 (1987), 1–48.
    [15] A. Henrot, Shape optimization and spectral theory, De Gruyter Open Poland, 2017.
    [16] A. Henrot, H. Maillot, Optimization of the shape and the location of the actuators in an internal control problem, Bollettino della Unione Matematica Italiana-B, 3 (2001), 737–758.
    [17] M. Hintermüller, C. Y. Kao, A. Laurain, Principal eigenvalue minimization for an elliptic problem with indefinite weight and Robin boundary conditions, Appl. Math. Optim., 65 (2012), 111–146. https://doi.org/10.1007/s00245-011-9153-x doi: 10.1007/s00245-011-9153-x
    [18] D. Kang, C. Y. Kao, Minimization of inhomogeneous biharmonic eigenvalue problems, Appl. Math. Model., 51 (2017), 587–604. https://doi.org/10.1016/j.apm.2017.07.015 doi: 10.1016/j.apm.2017.07.015
    [19] C. Y. Kao, S. A. Mohammadi, Tuning the total displacement of membranes, Commun. Nonlinear Sci., 2 (2021), 105706. https://doi.org/10.1016/j.cnsns.2021.105706 doi: 10.1016/j.cnsns.2021.105706
    [20] C. Y. Kao, S. A. Mohammadi, Extremal rearrangement problems involving Poisson's equation with Robin boundary conditions, J. Sci. Comput., 86 (2021), 40. https://doi.org/10.1007/s10915-021-01413-2 doi: 10.1007/s10915-021-01413-2
    [21] C. Y. Kao, B. Osting, Extremal spectral gaps for periodic Schrödinger operators, ESAIM: COCV, 25 (2019), 40. https://doi.org/10.1051/cocv/2018029 doi: 10.1051/cocv/2018029
    [22] C. Y. Kao, F. Santosa, Maximization of the quality factor of an optical resonator, Wave Motion, 45 (2008), 412–427. https://doi.org/10.1016/j.wavemoti.2007.07.012 doi: 10.1016/j.wavemoti.2007.07.012
    [23] C. Y. Kao, S. Su, Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems, J. Sci. Comput., 54 (2013), 492–512. https://doi.org/10.1007/s10915-012-9629-0 doi: 10.1007/s10915-012-9629-0
    [24] K. W. Liang, X. L. Lu, Z. J. Yang, Finite element approximation to the extremal eigenvalue problem for inhomogenous materials, Numer. Math., 130 (2015), 741–762. https://doi.org/10.1007/s00211-014-0678-1 doi: 10.1007/s00211-014-0678-1
    [25] Y. Masumoto, T. Takagahara, Semiconductor quantum dots: Physics, spectroscopy and applications, Springer Science, 2013.
    [26] I. Mazari, G. Nadin, Y. Privat, Optimal location of resources maximizing the total population size in logistic models, J. Math. Pure. Appl., 134 (2020), 1–35. https://doi.org/10.1016/j.matpur.2019.10.008 doi: 10.1016/j.matpur.2019.10.008
    [27] A. Mohammadi, F. Bahrami, A nonlinear eigenvalue problem arising in a nanostructured quantum dot, Commun. Nonlinear Sci., 19 (2014), 3053–3062. https://doi.org/10.1016/j.cnsns.2013.11.017 doi: 10.1016/j.cnsns.2013.11.017
    [28] A. Mohammadi, F. Bahrami, H. Mohammadpour, Shape dependent energy optimization in quantum dots, Appl. Math. Lett., 25 (2012), 1240–1244. https://doi.org/10.1016/j.aml.2012.02.068 doi: 10.1016/j.aml.2012.02.068
    [29] S. A. Mohammadi, Extremal energies of laplacian operator: Different configurations for steady vortices, J. Math. Anal. Appl., 448 (2017), 140–155. https://doi.org/10.1016/j.jmaa.2016.09.011 doi: 10.1016/j.jmaa.2016.09.011
    [30] S. A. Mohammadi, H. Voss, A minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameter, Nonlinear Anal.-Real, 31 (2016), 119–131. https://doi.org/10.1016/j.nonrwa.2016.01.015 doi: 10.1016/j.nonrwa.2016.01.015
    [31] M. S. Ashbaugh, E. M. Harrell, Maximal and minimal eigenvalues and their associated nonlinear equations, J. Math. Phys., 28 (1987), 1770–1786. https://doi.org/10.1063/1.527488 doi: 10.1063/1.527488
    [32] S. J. Osher, F. Santosa, Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum, J. Comput. Phys., 171 (2001), 272–288. https://doi.org/10.1006/jcph.2001.6789 doi: 10.1006/jcph.2001.6789
    [33] R. B. G. De Paz, On the design of membranes with increasing fundamental frequency, Revista de Matemática Teoría y Aplicaciones, 21 (2014), 55–72.
    [34] P. Freitas, On minimal eigenvalues of Schrödinger operators on manifolds, Commun. Math. Phys., 217 (2001), 375–382. https://doi.org/10.1007/s002200100365 doi: 10.1007/s002200100365
    [35] P. G. Ciarlet, The finite element method for elliptic problems, Paris: Université Pierre et Marie Curie, 2002. https://doi.org/10.1137/1.9780898719208
    [36] P. G. Ciarlet, J. L. Lions, Handbook of numerical analysis. Volume II: Finite Element Methods (Part 1), North-Holland, 1991.
    [37] R. H. L. Pedrosa, Some recent results regarding symmetry and symmetry-breaking properties of optimal composite membranes, In: Contributions to nonlinear analysis, Birkhäuser Basel: Springer, 2006,429–442. https://doi.org/10.1007/3-7643-7401-2_29
    [38] A. Sabeur, J. L. Jiang, A. Imran, Numerical modeling of shape and size dependent intermediate band quantum dot solar cell, 2015 International conference on optical instruments and technology: Micro/nano photonics and fabrication, International Society for Optics and Photonics, SPIE, 2015. https://doi.org/10.1117/12.2192947
    [39] S. Chanillo, D. Grieser, M. Imai, K. Kurata, I. Ohnishi, Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes, Commun. Math. Phys., 214 (2000), 315–337. https://doi.org/10.1007/PL00005534 doi: 10.1007/PL00005534
    [40] S. J. Cox, J. Mclaughlin, Extremal eigenvalue problems for composite membranes, I. Appl. Math. Optim., 22 (1990), 153–167. https://doi.org/10.1007/BF01447325 doi: 10.1007/BF01447325
    [41] T. Kato, Perturbation theory for linear operators, Springer, 1995. https://doi.org/10.1007/978-3-642-66282-9
    [42] S. F. Zhu, X. L. Hu, Q. B. Wu, A level set method for shape optimization in semilinear elliptic problems, J. Comput. Phys., 335 (2018), 104–120. https://doi.org/10.1016/j.jcp.2017.09.066 doi: 10.1016/j.jcp.2017.09.066
    [43] S. F. Zhu, Q. B. Wu, C. X. Liu, Variational piecewise constant level set methods for shape optimization of a two-density drum, J. Comput. Phys., 229 (2010), 5062–5089. https://doi.org/10.1016/j.jcp.2010.03.026 doi: 10.1016/j.jcp.2010.03.026
    [44] L. Liu, H. Zhang, Y. Chen, The generalized inverse eigenvalue problem of Hamiltonian matrices and its approximation, AIMS Mathematics, 6 (2021) 9886–9898. https://doi.org/10.3934/math.2021574 doi: 10.3934/math.2021574
    [45] W. Alan, Inequalities and inversions of order, Scripta Math., 12 (1946), 164–169.
    [46] D. Liberzon, Calculus of variations and optimal control theory, Princeton University Press, 2011.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1947) PDF downloads(104) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog