In this paper, we study the optimization algorithm to compute the smallest eigenvalue of the Schrödinger operator with volume constraint. A finite element discretization of this problem is established. We provide the error estimate for the numerical solution. The optimal solution can be approximated by a fixed point iteration scheme. Then a monotonic decreasing algorithm is presented to solve the eigenvalue optimization problem. Numerical simulations demonstrate the efficiency of the method.
Citation: Shuangbing Guo, Xiliang Lu, Zhiyue Zhang. Finite element method for an eigenvalue optimization problem of the Schrödinger operator[J]. AIMS Mathematics, 2022, 7(4): 5049-5071. doi: 10.3934/math.2022281
[1] | Zhonghua Wang, Xiuhai Fei . Maps on C∗-algebras are skew Lie triple derivations or homomorphisms at one point. AIMS Mathematics, 2023, 8(11): 25564-25571. doi: 10.3934/math.20231305 |
[2] | Guangyu An, Xueli Zhang, Jun He, Wenhua Qian . Characterizations of local Lie derivations on von Neumann algebras. AIMS Mathematics, 2022, 7(5): 7519-7527. doi: 10.3934/math.2022422 |
[3] | Mohd Arif Raza, Aisha Jabeen, Abdul Nadim Khan, Husain Alhazmi . Linear maps on von Neumann algebras acting as Lie type derivation via local actions. AIMS Mathematics, 2021, 6(8): 8453-8465. doi: 10.3934/math.2021490 |
[4] | Shan Li, Kaijia Luo, Jiankui Li . Generalized Lie n-derivations on generalized matrix algebras. AIMS Mathematics, 2024, 9(10): 29386-29403. doi: 10.3934/math.20241424 |
[5] | Junaid Nisar, Turki Alsuraiheed, Nadeem ur Rehman . Nonlinear mixed type product [K,F]∗⊙D on ∗-algebras. AIMS Mathematics, 2024, 9(8): 21596-21608. doi: 10.3934/math.20241049 |
[6] | Wenbo Huang, Jiankui Li, Shaoze Pan . Some zero product preserving additive mappings of operator algebras. AIMS Mathematics, 2024, 9(8): 22213-22224. doi: 10.3934/math.20241080 |
[7] | Xinfeng Liang, Mengya Zhang . Triangular algebras with nonlinear higher Lie n-derivation by local actions. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126 |
[8] | He Yuan, Qian Zhang, Zhendi Gu . Characterizations of generalized Lie n-higher derivations on certain triangular algebras. AIMS Mathematics, 2024, 9(11): 29916-29941. doi: 10.3934/math.20241446 |
[9] | Xiuhai Fei, Zhonghua Wang, Cuixian Lu, Haifang Zhang . Higher Jordan triple derivations on ∗-type trivial extension algebras. AIMS Mathematics, 2024, 9(3): 6933-6950. doi: 10.3934/math.2024338 |
[10] | Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327 |
In this paper, we study the optimization algorithm to compute the smallest eigenvalue of the Schrödinger operator with volume constraint. A finite element discretization of this problem is established. We provide the error estimate for the numerical solution. The optimal solution can be approximated by a fixed point iteration scheme. Then a monotonic decreasing algorithm is presented to solve the eigenvalue optimization problem. Numerical simulations demonstrate the efficiency of the method.
Let A be an associative algebra. For A,B∈A, denote by [A,B]=AB−BA the Lie product of A and B. An additive (a linear) map δ:A→A is called a global Lie triple derivation if δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)] for all A,B,C∈A. The study of global Lie triple derivations on various algebras has attracted several authors' attention, see for example [2,11,16,17,20]. Next, let δ:A→A be a map (without the additivity (linearity) assumption). δ is called a global nonlinear Lie triple derivation if δ satisfies δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)] for all A,B,C∈A. Ji, Liu and Zhao [4] gave the concrete form of global nonlinear Lie triple derivations on triangular algebras. Chen and Xiao [3] investigated global nonlinear Lie triple derivations on parabolic subalgebras of finite-dimensional simple Lie algebras. Very recently, Zhao and Hao [21] paid attention to non-global nonlinear Lie triple derivations. Let F:A×A×A→A be a map and Q be a proper subset of A. δ is called a non-global nonlinear Lie triple derivation if δ satisfies δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)] for any A,B,C∈A with F(A,B,C)∈Q. Let M be a finite von Neumann algebra with no central summands of type I1. Zhao and Hao [21] proved that if δ:M→M satisfies δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)] for any A,B,C∈M with ABC=0, then δ=d+τ, where d is a derivation from M into itself and τ is a nonlinear map from M into its center such that τ([[A,B],C])=0 with ABC=0.
Let A be an associative ∗-algebra. For A,B∈A, denote by [A,B]∗=AB−BA∗ the skew Lie product of A and B. The skew Lie product arose in representability of quadratic functionals by sesquilinear functionals [12,13]. In recent years, the study related to skew Lie product has attracted some authors' attention, see for example [1,5,6,7,8,9,10,14,15,18,19,22] and references therein. A map δ:A→A (without the additivity (linearity) assumption) is called a global nonlinear skew Lie triple derivation if δ([[A,B]∗,C]∗)=[[δ(A),B]∗,C]∗+[[A,δ(B)]∗,C]∗+[[A,B]∗,δ(C)]∗ for all A,B,C∈A. A map δ:A→A is called an additive ∗-derivation if it is an additive derivation and satisfies δ(A∗)=δ(A)∗ for all A∈A. Li, Zhao and Chen [5] proved that every global nonlinear skew Lie triple derivation on factor von Neumann algebras is an additive ∗-derivation. Taghavi, Nouri and Darvish [15] proved that every global nonlinear skew Lie triple derivation on prime ∗-algebras is additive. Similarly, let F:A×A×A→A be a map and Q be a proper subset of A. If δ satisfies δ([[A,B]∗,C]∗)=[[δ(A),B]∗,C]∗+[[A,δ(B)]∗,C]∗+[[A,B]∗,δ(C)]∗ for any A,B,C∈A with F(A,B,C)∈Q, then δ is called a non-global nonlinear skew Lie triple derivation.
Motivated by the mentioned works, we will concentrate on characterizing a kind of non-global nonlinear skew Lie triple derivations δ on factor von Neumann algebras satisfying δ([[A,B]∗,C]∗)=[[δ(A),B]∗,C]∗+[[A,δ(B)]∗,C]∗+[[A,B]∗,δ(C)]∗ for any A,B,C∈A with A∗B∗C=0.
As usual, C denotes the complex number field. Let H be a complex Hilbert space and B(H) be the algebra of all bounded linear operators on H. Let A⊆B(H) be a factor von Neumann algebra (i.e., the center of A is CI, where I is the identity of A). Recall that A is prime (i.e., for any A,B∈A, AAB={0} implies A=0 or B=0).
The main result is the following theorem.
Theorem 2.1. Let A be a factor von Neumann algebra acting on a complex Hilbert space H with dimA>1. If a map δ:A→A satisfies
δ([[A,B]∗,C]∗)=[[δ(A),B]∗,C]∗+[[A,δ(B)]∗,C]∗+[[A,B]∗,δ(C)]∗ |
for any A,B,C∈A with A∗B∗C=0, then δ is an additive ∗-derivation.
Let P1∈A be a nontrivial projection. Write P2=I−P1, Aij=PiAPj (i,j=1,2). Then A=A11+A12+A21+A22. For any A∈A, A=A11+A12+A21+A22, Aij∈ Aij (i,j=1,2).
Lemma 2.1. (a) δ(Pi)∗=δ(Pi) (i=1,2);
(b) Piδ(Pi)Pj=−Piδ(Pj)Pj (1≤i≠j≤2).
Proof. (a) It is clear that δ(0)=0. For any X21∈A21, it follows from P∗1P∗1X21=0 and [[P1,P1]∗,X21]∗=0 that
0=δ([[P1,P1]∗,X21]∗)=[[δ(P1),P1]∗,X21]∗+[[P1,δ(P1)]∗,X21]∗+[[P1,P1]∗,δ(X21)]∗=−P1δ(P1)∗X21−X21δ(P1)∗+X21δ(P1)P1+P1δ(P1)X21−X21δ(P1)∗P1+X21δ(P1)∗. | (2.1) |
Multiplying (2.1) by P2 from the left and by P1 from the right, we have X21(δ(P1)P1−δ(P1)∗P1)=0. Then by the primeness of A, we get
P1δ(P1)∗P1=P1δ(P1)P1. | (2.2) |
By P∗1P∗2P2=0 and [[P1,P2]∗,P2]∗=0, we have
0=δ([[P1,P2]∗,P2]∗)=[[δ(P1),P2]∗,P2]∗+[[P1,δ(P2)]∗,P2]∗+[[P1,P2]∗,δ(P2)]∗=δ(P1)P2−P2δ(P1)∗P2−P2δ(P1)∗+P2δ(P1)P2+P1δ(P2)P2−P2δ(P2)∗P1. | (2.3) |
Multiplying (2.3) by P2 from both sides, we see that
P2δ(P1)∗P2=P2δ(P1)P2. | (2.4) |
From P∗1P∗1P2=0 and [[P1,P1]∗,P2]∗=0, we have
0=δ([[P1,P1]∗,P2]∗)=[[δ(P1),P1]∗,P2]∗+[[P1,δ(P1)]∗,P2]∗+[[P1,P1]∗,δ(P2)]∗=−P1δ(P1)∗P2+P2δ(P1)P1+P1δ(P1)P2−P2δ(P1)∗P1. | (2.5) |
Multiplying (2.5) by P1 from the left and by P2 from the right, then
P1δ(P1)∗P2=P1δ(P1)P2. | (2.6) |
Multiplying (2.5) by P2 from the left and by P1 from the right, then
P2δ(P1)∗P1=P2δ(P1)P1. | (2.7) |
It follows from (2.2), (2.4), (2.6) and (2.7) that δ(P1)∗=δ(P1). Similarly, we can obtain that δ(P2)∗=δ(P2).
(b) From P∗2P∗1P2=0 and [[P2,P1]∗,P2]∗=0, we have
0=δ([[P2,P1]∗,P2]∗)=[[δ(P2),P1]∗,P2]∗+[[P2,δ(P1)]∗,P2]∗+[[P2,P1]∗,δ(P2)]∗=−P1δ(P2)∗P2+P2δ(P2)P1+P2δ(P1)P2−δ(P1)P2−P2δ(P1)∗P2+P2δ(P1)∗. | (2.8) |
Multiplying (2.8) by P1 from the left and by P2 from the right, we have P1δ(P1)P2=−P1δ(P2)∗P2. Then P1δ(P1)P2=−P1δ(P2)P2 by (a). Similarly, we can obtain that P2δ(P2)P1=−P2δ(P1)P1.
Lemma 2.2. For any Aij∈Aij (1≤i≠j≤2), we have
Pjδ(Aij)Pi=0. |
Proof. Let A12∈A12. For any X12∈A12, since A∗12X∗12P2=0 and [[A12,X12]∗,P2]∗=0, we have
0=δ([[A12,X12]∗,P2]∗)=[[δ(A12),X12]∗,P2]∗+[[A12,δ(X12)]∗,P2]∗+[[A12,X12]∗,δ(P2)]∗=δ(A12)X12−X12δ(A12)∗P2−X∗12δ(A12)∗+P2δ(A12)X∗12+A12δ(X12)P2−P2δ(X12)∗A∗12−X12A∗12δ(P2)+δ(P2)A12X∗12. | (2.9) |
Multiplying (2.9) by P2 from both sides, we have
0=P2δ(A12)X12−X∗12δ(A12)∗P2. | (2.10) |
Replacing X12 with iX12 in (2.10) yields that
0=P2δ(A12)X12+X∗12δ(A12)∗P2. | (2.11) |
Combining (2.10) and (2.11), we see that P2δ(A12)X12=0. Then P2δ(A12)P1=0 by the primeness of A. Similarly, we can obtain that P1δ(A21)P2=0.
Lemma 2.3. For any A12∈A12,B21∈A21, there exist GA12,B21∈A11,KA12,B21∈A22 such that
δ(A12+B21)=δ(A12)+δ(B21)+GA12,B21+KA12,B21. |
Proof. Let T=δ(A12+B21)−δ(A12)−δ(B21). From P∗2(A12+B21)∗P2=P∗2A∗12P2=P∗2B∗21P2=0 and [[P2,B21]∗,P2]∗=0, we have
[[δ(P2),A12+B21]∗,P2]∗+[[P2,δ(A12+B21)]∗,P2]∗+[[P2,A12+B21]∗,δ(P2)]∗=δ([[P2,A12+B21]∗,P2]∗)=δ([[P2,A12]∗,P2]∗)+δ([[P2,B21]∗,P2]∗)=[[δ(P2),A12+B21]∗,P2]∗+[[P2,δ(A12)+δ(B21)]∗,P2]∗+[[P2,A12+B21]∗,δ(P2)]∗, |
which implies
[[P2,T]∗,P2]∗=0. | (2.12) |
Multiplying (2.12) by P1 from the left, we get T12=0. Similarly, T21=0. Let
GA12,B21=T11,KA12,B21=T22. |
Then GA12,B21∈A11,KA12,B21∈A22, and so δ(A12+B21)=δ(A12)+δ(B21)+GA12,B21+KA12,B21.
Lemma 2.4. (a) Pjδ(Pi)Pj=0 (1≤i≠j≤2);
(b) Piδ(Pi)Pi=0 (i=1,2).
Proof. (a) For any X12∈A12, since P∗1X∗12P1=0 and [[P1,X12]∗,P1]∗=0, we have
0=δ([[P1,X12]∗,P1]∗)=[[δ(P1),X12]∗,P1]∗+[[P1,δ(X12)]∗,P1]∗+[[P1,X12]∗,δ(P1)]∗=−X12δ(P1)P1+P1δ(P1)X∗12+P1δ(X12)P1−δ(X12)P1−P1δ(X12)∗P1+P1δ(X12)∗+X12δ(P1)−δ(P1)X∗12. | (2.13) |
Multiplying (2.13) by P1 from the left and by P2 from the right, we have
P1δ(X12)∗P2+X12δ(P1)P2=0. |
It follows from Lemma 2.2 that X12δ(P1)P2=−(P2δ(X12)P1)∗=0. Then P2δ(P1)P2=0. Similarly, P1δ(P2)P1=0.
(b) For any X21∈A21, from (iX21)∗P∗1P1=0, [[iX21,P1]∗,P1]∗=iX∗21+iX21, Lemma 2.1(a) and Lemma 2.3, there exist GiX∗21,iX21∈A11,KiX∗21,iX21∈A22 such that
δ(iX∗21)+δ(iX21)+GiX∗21,iX21+KiX∗21,iX21=δ([[iX21,P1]∗,P1]∗)=[[δ(iX21),P1]∗,P1]∗+[[iX21,δ(P1)]∗,P1]∗+[[iX21,P1]∗,δ(P1)]∗=δ(iX21)P1−P1δ(iX21)∗P1−P1δ(iX21)∗+P1δ(iX21)P1+iX21δ(P1)P1+iP1δ(P1)X∗21+iX21δ(P1)+iX∗21δ(P1)+iδ(P1)X∗21+iδ(P1)X21. | (2.14) |
Multiplying (2.14) by P2 from the left and by P1 from the right, we have
P2δ(iX∗21)P1=2iX21δ(P1)P1+iP2δ(P1)X21. | (2.15) |
By (2.15), Lemma 2.2 and the fact that P2δ(P1)P2=0, we obtain X21δ(P1)P1=0. Then P1δ(P1)P1=0. Similarly, P2δ(P2)P2=0.
Remark 2.1. Let S=P1δ(P1)P2−P2δ(P1)P1. Then S∗=−S by Lemma 2.1. We define a map Δ:A→A by
Δ(X)=δ(X)−[X,S] |
for any X∈A. It is easy to verify that Δ is a map satisfying
Δ([[A,B]∗,C]∗)=[[Δ(A),B]∗,C]∗+[[A,Δ(B)]∗,C]∗+[[A,B]∗,Δ(C)]∗ |
for any A,B,C∈A with A∗B∗C=0. By Lemmas 2.1–2.4, it follows that
(a) Δ(Pi)=0 (i=1,2);
(b) For any Aij∈Aij (1≤i≠j≤2), we have PjΔ(Aij)Pi=0;
(c) For any A12∈A12,B21∈A21, there exist UA12,B21∈A11,VA12,B21∈A22 such that
Δ(A12+B21)=Δ(A12)+Δ(B21)+UA12,B21+VA12,B21. |
Lemma 2.5. Δ(Aii)⊆Aii (i=1,2).
Proof. Let A11∈A11. From A∗11P∗2P2=0, [[A11,P2]∗,P2]∗=0 and Δ(P2)=0, we have
0=Δ([[A11,P2]∗,P2]∗)=[[Δ(A11),P2]∗,P2]∗=Δ(A11)P2−P2Δ(A11)∗P2−P2Δ(A11)∗+P2Δ(A11)P2. | (2.16) |
Multiplying (2.16) by P1 from the left, we get P1Δ(A11)P2=0. Since P∗2A∗11P1=0, [[P2,A11]∗,P1]∗=0 and Δ(P1)=Δ(P2)=0, we have
0=Δ([[P2,A11]∗,P1]∗)=[[P2,Δ(A11)]∗,P1]∗=P2Δ(A11)P1−P1Δ(A11)∗P2. | (2.17) |
Multiplying (2.17) by P2 from the left, we get P2Δ(A11)P1=0. For any X12∈A12, from X∗12A∗11P2=0, [[X12,A11]∗,P2]∗=0 and Δ(P2)=0, we have
0=Δ([[X12,A11]∗,P2]∗)=[[Δ(X12),A11]∗,P2]∗+[[X12,Δ(A11)]∗,P2]∗=−A11Δ(X12)∗P2+P2Δ(X12)A∗11+X12Δ(A11)P2−P2Δ(A11)∗X∗12. | (2.18) |
Multiplying (2.18) by P1 from the left, we get −A11Δ(X12)∗P2+X12Δ(A11)P2=0. It follows from Remark 2.1(b) that X12Δ(A11)P2=A11(P2Δ(X12)P1)∗=0. Then P2Δ(A11)P2=0. Hence Δ(A11)⊆A11. Similarly, Δ(A22)⊆A22.
Lemma 2.6. Δ(Aij)⊆Aij (1≤i≠j≤2).
Proof. Let A12∈A12. Then P2Δ(A12)P1=0 by Remark 2.1(b). For any X12∈A12, from X∗12A∗12P1=0 and Δ(P1)=0, we have
Δ(−A12X∗12+X12A∗12)=Δ([[X12,A12]∗,P1]∗)=[[Δ(X12),A12]∗,P1]∗+[[X12,Δ(A12)]∗,P1]∗=−A12Δ(X12)∗P1+P1Δ(X12)A∗12+X12Δ(A12)P1−Δ(A12)X∗12−P1Δ(A12)∗X∗12+X12Δ(A12)∗. | (2.19) |
Multiplying (2.19) by P2 from the left and by P1 from the right, then by Lemma 2.5, we get P2Δ(A12)X∗12=0. Hence P2Δ(A12)P2=0. Since A∗12X∗12P2=0, [[A12,X12]∗,P2]∗=0 and Δ(P2)=0, we have
0=Δ([[A12,X12]∗,P2]∗)=[[Δ(A12),X12]∗,P2]∗+[[A12,Δ(X12)]∗,P2]∗=Δ(A12)X12−X12Δ(A12)∗P2−X∗12Δ(A12)∗+P2Δ(A12)X∗12+A12Δ(X12)P2−P2Δ(X12)∗A∗12. | (2.20) |
Multiplying (2.20) by P1 from the left and by P2 from the right, then by P2Δ(A12)P2=P2Δ(X12)P2=0, we have P1Δ(A12)X12=0. It follows that P1Δ(A12)P1=0. Therefore Δ(A12)⊆A12. Similarly, Δ(A21)⊆A21.
Lemma 2.7. For any Aii∈Aii,Bij∈Aij,Bji∈Aji (1≤i≠j≤2), we have
(a) Δ(Aii+Bij)=Δ(Aii)+Δ(Bij);
(b) Δ(Aii+Bji)=Δ(Aii)+Δ(Bji).
Proof. (a) Let T=Δ(Aii+Bij)−Δ(Aii)−Δ(Bij). Since (iPj)∗I∗(Aii+Bij)=(iPj)∗I∗Aii=(iPj)∗I∗Bij=0 and [[iPj,I]∗,Aii]∗=0, we have
[[Δ(iPj),I]∗,Aii+Bij]∗+[[iPj,Δ(I)]∗,Aii+Bij]∗+[[iPj,I]∗,Δ(Aii+Bij)]∗=Δ([[iPj,I]∗,Aii+Bij]∗)=Δ([[iPj,I]∗,Aii]∗)+Δ([[iPj,I]∗,Bij]∗)=[[Δ(iPj),I]∗,Aii+Bij]∗+[[iPj,Δ(I)]∗,Aii+Bij]∗+[[iPj,I]∗,Δ(Aii)+Δ(Bij)]∗, |
which implies
[[iPj,I]∗,T]∗=0. | (2.21) |
Multiplying (2.21) by Pi from the left, by Pi from the right, by Pj from both sides, respectively, we get Tij=Tji=Tjj=0. Hence
Δ(Aii+Bij)=Δ(Aii)+Δ(Bij)+Tii. | (2.22) |
For any Xij∈Aij, from (Aii+Bij)∗X∗ijPj=A∗iiX∗ijPj=B∗ijX∗ijPj=0, [[Bij,Xij]∗,Pj]∗=0 and (2.22), we have
[[Δ(Aii)+Δ(Bij)+Tii,Xij]∗,Pj]∗+[[Aii+Bij,Δ(Xij)]∗,Pj]∗+[[Aii+Bij,Xij]∗,Δ(Pj)]∗=[[Δ(Aii+Bij),Xij]∗,Pj]∗+[[Aii+Bij,Δ(Xij)]∗,Pj]∗+[[Aii+Bij,Xij]∗,Δ(Pj)]∗=Δ([[Aii+Bij,Xij]∗,Pj]∗)=Δ([[Aii,Xij]∗,Pj]∗)+Δ([[Bij,Xij]∗,Pj]∗)=[[Δ(Aii)+Δ(Bij),Xij]∗,Pj]∗+[[Aii+Bij,Δ(Xij)]∗,Pj]∗+[[Aii+Bij,Xij]∗,Δ(Pj)]∗. |
This implies
[[Tii,Xij]∗,Pj]∗=0. | (2.23) |
Multiplying (2.23) by Pj from the right, we see that TiiXij=0. Hence Tii=0, and so we obtain (a).
Similarly, we can show that (b) holds.
Lemma 2.8. For any Aij,Bij∈Aij (1≤i≠j≤2), we have
Δ(Aij+Bij)=Δ(Aij)+Δ(Bij). |
Proof. For any A12,B12∈A12, it follows that
[[P1+A12,P2+B12]∗,P2]∗=A12+B12−A∗12−B∗12. | (2.24) |
Then by (2.24) and Remark 2.1(c), there exist UA12+B12,−A∗12−B∗12∈A11, VA12+B12,−A∗12−B∗12 ∈A22 such that
Δ([[P1+A12,P2+B12]∗,P2]∗)=Δ(A12+B12)+Δ(−A∗12−B∗12)+UA12+B12,−A∗12−B∗12+VA12+B12,−A∗12−B∗12. | (2.25) |
From (P1+A12)∗(P2+B12)∗P2=0, Δ(P1)=Δ(P2)=0, (2.25), Lemmas 2.6 and 2.7, we have
Δ(A12+B12)+Δ(−A∗12−B∗12)+UA12+B12,−A∗12−B∗12+VA12+B12,−A∗12−B∗12=Δ([[P1+A12,P2+B12]∗,P2]∗)=[[Δ(A12),P2+B12]∗,P2]∗+[[P1+A12,Δ(B12)]∗,P2]∗=Δ(A12)+Δ(B12)−Δ(A12)∗−Δ(B12)∗. | (2.26) |
Multiplying (2.26) by P1 from the left and by P2 from the right, then by Lemma 2.6 and the fact that UA12+B12,−A∗12−B∗12∈A11,VA12+B12,−A∗12−B∗12∈A22, we see that Δ(A12+B12)=Δ(A12)+Δ(B12). Similarly, we can show that Δ(A21+B21)=Δ(A21)+Δ(B21).
Lemma 2.9. For any Aii,Bii∈Aii (i=1,2), we have
Δ(Aii+Bii)=Δ(Aii)+Δ(Bii). |
Proof. For any A11,B11∈A11,B12∈A12, from A∗11B∗12P2=0, Δ(P2)=0, [[A11,B12]∗,P2]∗=A11B12−B∗12A∗11, Lemmas 2.5, 2.6 and 2.8, we have
Δ(A11B12)+Δ(−B∗12A∗11)=Δ([[A11,B12]∗,P2]∗)=[[Δ(A11),B12]∗,P2]∗+[[A11,Δ(B12)]∗,P2]∗=Δ(A11)B12+A11Δ(B12)−B∗12Δ(A11)∗−Δ(B12)∗A∗11. | (2.27) |
Multiplying (2.27) by P1 from the left and by P2 from the right, we have
Δ(A11B12)=Δ(A11)B12+A11Δ(B12). | (2.28) |
Similarly, we can show that
Δ(A22B21)=Δ(A22)B21+A22Δ(B21). | (2.29) |
For any X12∈A12, it follows from Lemma 2.8 and (2.28) that
Δ(A11+B11)X12+(A11+B11)Δ(X12)=Δ((A11+B11)X12)=Δ(A11X12)+Δ(B11X12)=Δ(A11)X12+A11Δ(X12)+Δ(B11)X12+B11Δ(X12). |
It follows that (Δ(A11+B11)−Δ(A11)−Δ(B11))X12=0. Then Δ(A11+B11)=Δ(A11)+Δ(B11). Similarly, we can show that Δ(A22+B22)=Δ(A22)+Δ(B22).
Lemma 2.10. For any A12∈A12,B21∈A21, we have
Δ(A12+B21)=Δ(A12)+Δ(B21). |
Proof. For any X12∈A12, by X∗12(A12+B21)∗P1=X∗12A∗12P1=X∗12B∗21P1=0,
[[X12,A12+B21]∗,P1]∗=[[X12,A12]∗,P1]∗+[[X12,B21]∗,P1]∗∈A11, |
Remark 2.1(c) and Lemma 2.9, there exist UA12,B21∈A11,VA12,B21∈A22 such that
[[Δ(X12),A12+B21]∗,P1]∗+[[X12,Δ(A12)+Δ(B21)+UA12,B21+VA12,B21]∗,P1]∗+[[X12,A12+B21]∗,Δ(P1)]∗=Δ([[X12,A12+B21]∗,P1]∗)=Δ([[X12,A12]∗,P1]∗)+Δ([[X12,B21]∗,P1]∗)=[[Δ(X12),A12+B21]∗,P1]∗+[[X12,Δ(A12)+Δ(B21)]∗,P1]∗+[[X12,A12+B21]∗,Δ(P1)]∗. |
Then
0=[[X12,UA12,B21+VA12,B21]∗,P1]∗=−VA12,B21X∗12+X12V∗A12,B21. | (2.30) |
Multiplying (2.30) by P1 from the right, we get VA12,B21X∗12=0. Hence VA12,B21=0. Then by Remark 2.1(c), we get
Δ(A12+B21)=Δ(A12)+Δ(B21)+UA12,B21. | (2.31) |
For any X21∈A21, from X∗21(A12+B21)∗P2=X∗21A∗12P2=X∗21B∗21P2=0,
[[X21,A12+B21]∗,P2]∗=[[X21,A12]∗,P2]∗+[[X21,B21]∗,P2]∗∈A22, |
Lemma 2.9 and (2.31), we have
[[Δ(X21),A12+B21]∗,P2]∗+[[X21,Δ(A12)+Δ(B21)+UA12,B21]∗,P2]∗+[[X21,A12+B21]∗,Δ(P2)]∗=Δ([[X21,A12+B21]∗,P2]∗)=Δ([[X21,A12]∗,P2]∗)+Δ([[X12,B21]∗,P2]∗)=[[Δ(X21),A12+B21]∗,P2]∗+[[X21,Δ(A12)+Δ(B21)]∗,P2]∗+[[X21,A12+B21]∗,Δ(P2)]∗, |
which implies
0=[[X21,UA12,B21]∗,P2]∗=−UA12,B21X∗21+X21U∗A12,B21. | (2.32) |
Multiplying (2.32) by P2 from the right, we obtain UA12,B21X∗21=0. Then UA12,B21=0. Hence we obtain the desired result.
Lemma 2.11. For any A11∈A11,B12∈A12,C21∈A21,D22∈A22, we have
(a) Δ(A11+B12+C21)=Δ(A11)+Δ(B12)+Δ(C21);
(b) Δ(B12+C21+D22)=Δ(B12)+Δ(C21)+Δ(D22).
Proof. (a) Let T=Δ(A11+B12+C21)−Δ(A11)−Δ(B12)−Δ(C21). From P∗2(A11+B12+C21)∗P2=P∗2A∗11P2=P∗2B∗12P2=P∗2C∗21P2=0 and [[P2,A11]∗,P2]∗=[[P2,C21]∗,P2]∗=0, we have
[[Δ(P2),A11+B12+C21]∗,P2]∗+[[P2,Δ(A11+B12+C21)]∗,P2]∗+[[P2,A11+B12+C21]∗,Δ(P2)]∗=Δ([[P2,A11+B12+C21]∗,P2]∗)=Δ([[P2,A11]∗,P2]∗)+Δ([[P2,B12]∗,P2]∗)+Δ([[P2,C21]∗,P2]∗)=[[Δ(P2),A11+B12+C21]∗,P2]∗+[[P2,Δ(A11)+Δ(B12)+Δ(C21)]∗,P2]∗+[[P2,A11+B12+C21]∗,Δ(P2)]∗. |
This implies
[[P2,T]∗,P2]∗=0. | (2.33) |
Multiplying (2.33) by P1 from the left, we have T12=0. For any X12∈A12, from P∗1X∗12(A11+B12+C21)=P∗1X∗12A11=P∗1X∗12B12=P∗1X∗12C21=0, [[P1,X12]∗,A11+B12+C21]∗=X12C21−B12X∗12 and Lemma 2.9, we have
[[Δ(P1),X12]∗,A11+B12+C21]∗+[[P1,Δ(X12)]∗,A11+B12+C21]∗+[[P1,X12]∗,Δ(A11+B12+C21)]∗=Δ([[P1,X12]∗,A11+B12+C21]∗)=Δ(X12C21)+Δ(−B12X∗12)=Δ([[P1,X12]∗,A11]∗)+Δ([[P1,X12]∗,B12]∗)+Δ([[P1,X12]∗,C21]∗)=[[Δ(P1),X12]∗,A11+B12+C21]∗+[[P1,Δ(X12)]∗,A11+B12+C21]∗+[[P1,X12]∗,Δ(A11)+Δ(B12)+Δ(C21)]∗, |
which implies
[[P1,X12]∗,T]∗=0. | (2.34) |
Multiplying (2.34) by P1 from both sides, we obtain X12TP1−P1TX∗12=0. Then X12TP1=0 by T12=0. Hence T21=0. Multiplying (2.34) by P2 from the right, we have X12TP2=0 and so T22=0. Let SA11,B12,C21=T11. Then SA11,B12,C21∈A11 and
Δ(A11+B12+C21)=Δ(A11)+Δ(B12)+Δ(C21)+SA11,B12,C21. |
Similarly, there exists a RB12,C21,D22∈A22 such that
Δ(B12+C21+D22)=Δ(B12)+Δ(C21)+Δ(D22)+RB12,C21,D22. | (2.35) |
For any X21∈A21, by [[P2,X21]∗,A11+B12+C21]∗=−A11X∗21+X21A11+X21B12−C21X∗21 and (2.35), there exist a R−A11X∗21,X21A11,X21B12−C21X∗21∈A22 such that
Δ([[P2,X21]∗,A11+B12+C21]∗)=Δ(−A11X∗21)+Δ(X21A11)+Δ(X21B12−C21X∗21)+R−A11X∗21,X21A11,X21B12−C21X∗21. | (2.36) |
From P∗2X∗21(A11+B12+C21)=P∗2X∗21A11=P∗2X∗21B12=P∗2X∗21C21=0, (2.36), Lemmas 2.9 and 2.10, we have
[[Δ(P2),X21]∗,A11+B12+C21]∗+[[P2,Δ(X21)]∗,A11+B12+C21]∗+[[P2,X21]∗,Δ(A11+B12+C21)]∗=Δ([[P2,X21]∗,A11+B12+C21]∗)=Δ(−A11X∗21)+Δ(X21A11)+Δ(X21B12−C21X∗21)+R−A11X∗21,X21A11,X21B12−C21X∗21=Δ(−A11X∗21+X21A11)+Δ(X21B12)+Δ(−C21X∗21)+R−A11X∗21,X21A11,X21B12−C21X∗21=Δ([[P2,X21]∗,A11]∗)+Δ([[P2,X21]∗,B12]∗)+Δ([[P2,X21]∗,C21]∗)+R−A11X∗21,X21A11,X21B12−C21X∗21=[[Δ(P2),X21]∗,A11+B12+C21]∗+[[P2,Δ(X21)]∗,A11+B12+C21]∗+[[P2,X21]∗,Δ(A11)+Δ(B12)+Δ(C21)]∗+R−A11X∗21,X21A11,X21B12−C21X∗21. |
It follows that
[[P2,X21]∗,T]∗=R−A11X∗21,X21A11,X21B12−C21X∗21. | (2.37) |
Multiplying (2.37) by P1 from the right, then by R−A11X∗21,X21A11,X21B12−C21X∗21∈A22, we obtain X21TP1=0. Hence SA11,B12,C21=T11=0, and so Δ(A11+B12+C21)=Δ(A11)+Δ(B12)+Δ(C21).
Similarly, we can show that (b) holds.
Lemma 2.12. For any A11∈A11,B12∈A12,C21∈A21,D22∈A22, we have
Δ(A11+B12+C21+D22)=Δ(A11)+Δ(B12)+Δ(C21)+Δ(D22). |
Proof. Let T=Δ(A11+B12+C21+D22)−Δ(A11)−Δ(B12)−Δ(C21)−Δ(D22). From (A11+B12+C21+D22)∗P∗1P2=A∗11P∗1P2=B∗12P∗1P2=C∗21P∗1P2=D∗22P∗1P2=0 and [[A11+B12+C21+D22,P1]∗,P2]∗=−C∗21+C21, we have
[[Δ(A11+B12+C21+D22),P1]∗,P2]∗+[[A11+B12+C21+D22,Δ(P1)]∗,P2]∗+[[A11+B12+C21+D22,P1]∗,Δ(P2)]∗=Δ([[A11+B12+C21+D22,P1]∗,P2]∗)=Δ([[A11,P1]∗,P2]∗)+Δ([[B12,P1]∗,P2]∗)+Δ([[C21,P1]∗,P2]∗)+Δ([[D22,P1]∗,P2]∗)=[[Δ(A11)+Δ(B12)+Δ(C21)+Δ(D22),P1]∗,P2]∗+[[A11+B12+C21+D22,Δ(P1)]∗,P2]∗+[[A11+B12+C21+D22,P1]∗,Δ(P2)]∗. |
This implies
[[T,P1]∗,P2]∗=0. | (2.38) |
Multiplying (2.38) by P2 from the left, we have T21=0. Similarly, T12=0. For any X12∈A12, from P∗1X∗12(A11+B12+C21+D22)=P∗1X∗12A11=P∗1X∗12B12=P∗1X∗12C21=P∗1X∗12D22=0, [[P1,X12]∗,A11+B12+C21+D22]∗=X12C21−B12X∗12+X12D22−D22X∗12, Lemmas 2.9 and 2.12, we have
[[Δ(P1),X12]∗,A11+B12+C21+D22]∗+[[P1,Δ(X12)]∗,A11+B12+C21+D22]∗+[[P1,X12]∗,Δ(A11+B12+C21+D22)]∗=Δ([[P1,X12]∗,A11+B12+C21+D22]∗)=Δ(X12C21)+Δ(−B12X∗12)+Δ(X12D22−D22X∗12)=Δ([[P1,X12]∗,A11]∗)+Δ([[P1,X12]∗,B12]∗)+Δ([[P1,X12]∗,C21]∗)+Δ([[P1,X12]∗,D22]∗)=[[Δ(P1),X12]∗,A11+B12+C21+D22]∗+[[P1,Δ(X12)]∗,A11+B12+C21+D22]∗+[[P1,X12]∗,Δ(A11)+Δ(B12)+Δ(C21)+Δ(D22)]∗. |
This implies
[[P1,X12]∗,T]∗=0. | (2.39) |
Multiplying (2.39) by P2 from the right, we obtain X12TP2=0. Then T22=0. Similarly, T11=0. Hence we obtain the desired result.
Lemma 2.13. For any Aii,Bii∈Aii,Aij,Bij∈Aij,Bji∈Aji,Bjj∈Ajj (1≤i≠j≤2), we have
(a) Δ(AiiBij)=Δ(Aii)Bij+AiiΔ(Bij);
(b) Δ(AijBjj)=Δ(Aij)Bjj+AijΔ(Bjj);
(c) Δ(AiiBii)=Δ(Aii)Bii+AiiΔ(Bii);
(d) Δ(AijBji)=Δ(Aij)Bji+AijΔ(Bji).
Proof. (a) It follows from (2.28) and (2.29) that (a) holds.
(b) Let A12∈A12,B22∈A22. From A∗12B∗22P2=0, Δ(P2)=0, [[A12,B22]∗,P2]∗=A12B22−B∗22A∗12, Lemmas 2.5, 2.6 and 2.12, we have
Δ(A12B22)+Δ(−B∗22A∗12)=Δ([[A12,B22]∗,P2]∗)=[[Δ(A12),B22]∗,P2]∗)+[[A12,Δ(B22)]∗,P2]∗=Δ(A12)B22+A12Δ(B22)−B∗22Δ(A12)∗−Δ(B22)∗A∗12. | (2.40) |
Multiplying (2.40) by P1 from the left and by P2 from the right, we have Δ(A12B22)=Δ(A12)B22+A12Δ(B22). Similarly, Δ(A21B11)=Δ(A21)B11+A21Δ(B11).
(c) Let A11,B11∈A11,X12∈A12. It follows from (a) that
Δ(A11B11)X12+A11B11Δ(X12)=Δ(A11B11X12)=Δ(A11)B11X12+A11Δ(B11X12)=Δ(A11)B11X12+A11Δ(B11)X12+A11B11Δ(X12). |
It follows that (Δ(A11B11)−Δ(A11)B11−A11Δ(B11))X12=0. Hence Δ(A11B11)=Δ(A11)B11+A11Δ(B11). Similarly, Δ(A22B22)=Δ(A22)B22+A22Δ(B22).
(d) Let A12∈A12,B21∈A21. From B∗21P∗1A12=0, Δ(P1)=0, [[B21,P1]∗,A12]∗=B21A12+A12B21, Lemmas 2.6 and 2.12, we have
Δ(B21A12)+Δ(A12B21)=Δ([[B21,P1]∗,A12]∗)=[[Δ(B21),P1]∗,A12]∗+[[B21,P1]∗,Δ(A12)]∗=Δ(B21)A12+A12Δ(B21)+B21Δ(A12)+Δ(A12)B21. | (2.41) |
Multiplying (2.41) by P1 from both sides, we have Δ(A12B21)=Δ(A12)B21+A12Δ(B21). Similarly, Δ(A21B12)=Δ(A21)B12+A21Δ(B12).
Now, we give the proof of Theorem 2.1 in the following.
Proof of Theorem 2.1. By Lemmas 2.5, 2.6, 2.8, 2.9, 2.12 and 2.13, it is easy to verify that Δ is an additive derivation on A. Let Aij∈Aij (1≤i≠j≤2). By A∗ijP∗jPj=0, Δ(Pj)=0 and Lemma 2.6, we have
Δ(Aij)−Δ(A∗ij)=Δ([[Aij,Pj]∗,Pj]∗)=[[Δ(Aij),Pj]∗,Pj]∗=Δ(Aij)−Δ(Aij)∗. |
It follows that
Δ(A∗ij)=Δ(Aij)∗. | (2.42) |
Let Aii∈Aii, Xji∈Aji (1≤i≠j≤2). Since A∗iiP∗iXji=0, Δ(Pi)=0, [[Aii,Pi]∗,Xji]∗=XjiAii−XjiA∗ii, Lemmas 2.5, 2.6 and 2.13(b), we have
Δ(Xji)Aii+XjiΔ(Aii)−Δ(Xji)A∗ii−XjiΔ(A∗ii)=Δ(XjiAii)−Δ(XjiA∗ii)=Δ([[Aii,Pi]∗,Xji]∗)=[[Δ(Aii),Pi]∗,Xji]+[[Aii,Pi]∗,Δ(Xji)]=Δ(Xji)Aii+XjiΔ(Aii)−Δ(Xji)A∗ii−XjiΔ(Aii)∗. |
It follows that Xji(Δ(A∗ii)−Δ(Aii)∗)=0. Then
Δ(A∗ii)=Δ(Aii)∗. | (2.43) |
For any A∈A, we have A=∑2i,j=1Aij. By (2.42), (2.43) and the additivity of Δ on A, it follows that
Δ(A∗)=2∑i,j=1Δ(A∗ij)=2∑i,j=1Δ(Aij)∗=Δ(A)∗. |
Hence Δ is an additive ∗-derivation. Therefore, δ is an additive ∗-derivation on A by Remark 2.1.
In this paper, we gave the characterization of a kind of non-global nonlinear skew Lie triple derivations on factor von Neumann algebras.
This research is supported by Scientific Research Project of Shangluo University (21SKY104).
The authors declare that there are no conflicts of interest.
[1] | A. Henrot, Extremum problems for eigenvalues of elliptic operators, Basel: Springer, 2006. |
[2] | G. Allaire, Shape optimization by the homogenization method, Basel: Springer, 2012. |
[3] | C. Anedda, G. Porru, Symmetry breaking and other features for eigenvalue problems, Dynamical Systems and Differential Equations, AIMS Proceedings 2011 Proceedings of the 8th AIMS International Conference (Dresden, Germany), 2011, 61–70. https://doi.org/10.3934/proc.2011.2011.61 |
[4] |
P. R. S. Antunes, S. A. Mohammadi, H. Voss, A nonlinear eigenvalue optimization problem: Optimal potential functions, Nonlinear Anal.-Real, 40 (2018), 307–327, https://doi.org/10.1016/j.nonrwa.2017.09.003 doi: 10.1016/j.nonrwa.2017.09.003
![]() |
[5] |
X. L. Bai, F. Li, Optimization of species survival for logistic models with non-local dispersal, Nonlinear Anal.-Real, 21 (2015), 53–62. https://doi.org/10.1016/j.nonrwa.2014.06.006 doi: 10.1016/j.nonrwa.2014.06.006
![]() |
[6] | B. Emamizadeh, R. Fernandes, Optimization of the principal eigenvalue of the one-dimensional Schrödinger operator, Electron. J. Differ. Eq., 65 (2008), 1–11. |
[7] |
W. T. Chen, C. S. Chou, C. Y. Kao, Minimizing eigenvalues for inhomogeneous rods and plates, J. Sci. Comput., 69 (2016), 983–1013. https://doi.org/10.1007/s10915-016-0222-9 doi: 10.1007/s10915-016-0222-9
![]() |
[8] | M. Chugunova, B. Jadamba, C. Y. Kao, C. Klymko, E. Thomas, B. Y. Zhao, Study of a mixed dispersal population dynamics model, In: Topics in numerical partial differential equations and scientific computing, New York: Springer, 2016, 51–77. https://doi.org/10.1007/978-1-4939-6399-7_3 |
[9] |
F. Cuccu, B. Emamizadeh, G. Porru, Design of a composite membrane with patches, Appl. Math. Optim., 62 (2010), 169–184. https://doi.org/10.1007/s00245-010-9098-5 doi: 10.1007/s00245-010-9098-5
![]() |
[10] |
E. M. Harrell, Hamiltonian operators with maximal eigenvalues, J. Math, Phys., 25 (1984), 48–51. https://doi.org/10.1063/1.525996 doi: 10.1063/1.525996
![]() |
[11] | B. Emamizadeh, A. Farjudian, Monotonicity of the principal eigenvalue related to a non-isotropic vibrating string, Nonautonomous Dyn. Syst., 1 (2014), 123–136. |
[12] |
S. B. Guo, D. F. Li, H. Feng, X. L. Lu, Extremal eigenvalues of the Sturm-Liouville problems with discontinuous coefficients, Numer. Math.-Theory Me., 6 (2013), 657–684. https://doi.org/10.1017/S1004897900000362 doi: 10.1017/S1004897900000362
![]() |
[13] |
E. M. Harrell, Commutators, eigenvalue gaps, and mean curvature in the theory of Schrödinger operators, Commun. Part. Differ. Equ., 32 (2007), 401–413. https://doi.org/10.1080/03605300500532889 doi: 10.1080/03605300500532889
![]() |
[14] | H. Egnell, Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 14 (1987), 1–48. |
[15] | A. Henrot, Shape optimization and spectral theory, De Gruyter Open Poland, 2017. |
[16] | A. Henrot, H. Maillot, Optimization of the shape and the location of the actuators in an internal control problem, Bollettino della Unione Matematica Italiana-B, 3 (2001), 737–758. |
[17] |
M. Hintermüller, C. Y. Kao, A. Laurain, Principal eigenvalue minimization for an elliptic problem with indefinite weight and Robin boundary conditions, Appl. Math. Optim., 65 (2012), 111–146. https://doi.org/10.1007/s00245-011-9153-x doi: 10.1007/s00245-011-9153-x
![]() |
[18] |
D. Kang, C. Y. Kao, Minimization of inhomogeneous biharmonic eigenvalue problems, Appl. Math. Model., 51 (2017), 587–604. https://doi.org/10.1016/j.apm.2017.07.015 doi: 10.1016/j.apm.2017.07.015
![]() |
[19] |
C. Y. Kao, S. A. Mohammadi, Tuning the total displacement of membranes, Commun. Nonlinear Sci., 2 (2021), 105706. https://doi.org/10.1016/j.cnsns.2021.105706 doi: 10.1016/j.cnsns.2021.105706
![]() |
[20] |
C. Y. Kao, S. A. Mohammadi, Extremal rearrangement problems involving Poisson's equation with Robin boundary conditions, J. Sci. Comput., 86 (2021), 40. https://doi.org/10.1007/s10915-021-01413-2 doi: 10.1007/s10915-021-01413-2
![]() |
[21] |
C. Y. Kao, B. Osting, Extremal spectral gaps for periodic Schrödinger operators, ESAIM: COCV, 25 (2019), 40. https://doi.org/10.1051/cocv/2018029 doi: 10.1051/cocv/2018029
![]() |
[22] |
C. Y. Kao, F. Santosa, Maximization of the quality factor of an optical resonator, Wave Motion, 45 (2008), 412–427. https://doi.org/10.1016/j.wavemoti.2007.07.012 doi: 10.1016/j.wavemoti.2007.07.012
![]() |
[23] |
C. Y. Kao, S. Su, Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems, J. Sci. Comput., 54 (2013), 492–512. https://doi.org/10.1007/s10915-012-9629-0 doi: 10.1007/s10915-012-9629-0
![]() |
[24] |
K. W. Liang, X. L. Lu, Z. J. Yang, Finite element approximation to the extremal eigenvalue problem for inhomogenous materials, Numer. Math., 130 (2015), 741–762. https://doi.org/10.1007/s00211-014-0678-1 doi: 10.1007/s00211-014-0678-1
![]() |
[25] | Y. Masumoto, T. Takagahara, Semiconductor quantum dots: Physics, spectroscopy and applications, Springer Science, 2013. |
[26] |
I. Mazari, G. Nadin, Y. Privat, Optimal location of resources maximizing the total population size in logistic models, J. Math. Pure. Appl., 134 (2020), 1–35. https://doi.org/10.1016/j.matpur.2019.10.008 doi: 10.1016/j.matpur.2019.10.008
![]() |
[27] |
A. Mohammadi, F. Bahrami, A nonlinear eigenvalue problem arising in a nanostructured quantum dot, Commun. Nonlinear Sci., 19 (2014), 3053–3062. https://doi.org/10.1016/j.cnsns.2013.11.017 doi: 10.1016/j.cnsns.2013.11.017
![]() |
[28] |
A. Mohammadi, F. Bahrami, H. Mohammadpour, Shape dependent energy optimization in quantum dots, Appl. Math. Lett., 25 (2012), 1240–1244. https://doi.org/10.1016/j.aml.2012.02.068 doi: 10.1016/j.aml.2012.02.068
![]() |
[29] |
S. A. Mohammadi, Extremal energies of laplacian operator: Different configurations for steady vortices, J. Math. Anal. Appl., 448 (2017), 140–155. https://doi.org/10.1016/j.jmaa.2016.09.011 doi: 10.1016/j.jmaa.2016.09.011
![]() |
[30] |
S. A. Mohammadi, H. Voss, A minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameter, Nonlinear Anal.-Real, 31 (2016), 119–131. https://doi.org/10.1016/j.nonrwa.2016.01.015 doi: 10.1016/j.nonrwa.2016.01.015
![]() |
[31] |
M. S. Ashbaugh, E. M. Harrell, Maximal and minimal eigenvalues and their associated nonlinear equations, J. Math. Phys., 28 (1987), 1770–1786. https://doi.org/10.1063/1.527488 doi: 10.1063/1.527488
![]() |
[32] |
S. J. Osher, F. Santosa, Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum, J. Comput. Phys., 171 (2001), 272–288. https://doi.org/10.1006/jcph.2001.6789 doi: 10.1006/jcph.2001.6789
![]() |
[33] | R. B. G. De Paz, On the design of membranes with increasing fundamental frequency, Revista de Matemática Teoría y Aplicaciones, 21 (2014), 55–72. |
[34] |
P. Freitas, On minimal eigenvalues of Schrödinger operators on manifolds, Commun. Math. Phys., 217 (2001), 375–382. https://doi.org/10.1007/s002200100365 doi: 10.1007/s002200100365
![]() |
[35] | P. G. Ciarlet, The finite element method for elliptic problems, Paris: Université Pierre et Marie Curie, 2002. https://doi.org/10.1137/1.9780898719208 |
[36] | P. G. Ciarlet, J. L. Lions, Handbook of numerical analysis. Volume II: Finite Element Methods (Part 1), North-Holland, 1991. |
[37] | R. H. L. Pedrosa, Some recent results regarding symmetry and symmetry-breaking properties of optimal composite membranes, In: Contributions to nonlinear analysis, Birkhäuser Basel: Springer, 2006,429–442. https://doi.org/10.1007/3-7643-7401-2_29 |
[38] | A. Sabeur, J. L. Jiang, A. Imran, Numerical modeling of shape and size dependent intermediate band quantum dot solar cell, 2015 International conference on optical instruments and technology: Micro/nano photonics and fabrication, International Society for Optics and Photonics, SPIE, 2015. https://doi.org/10.1117/12.2192947 |
[39] |
S. Chanillo, D. Grieser, M. Imai, K. Kurata, I. Ohnishi, Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes, Commun. Math. Phys., 214 (2000), 315–337. https://doi.org/10.1007/PL00005534 doi: 10.1007/PL00005534
![]() |
[40] |
S. J. Cox, J. Mclaughlin, Extremal eigenvalue problems for composite membranes, I. Appl. Math. Optim., 22 (1990), 153–167. https://doi.org/10.1007/BF01447325 doi: 10.1007/BF01447325
![]() |
[41] | T. Kato, Perturbation theory for linear operators, Springer, 1995. https://doi.org/10.1007/978-3-642-66282-9 |
[42] |
S. F. Zhu, X. L. Hu, Q. B. Wu, A level set method for shape optimization in semilinear elliptic problems, J. Comput. Phys., 335 (2018), 104–120. https://doi.org/10.1016/j.jcp.2017.09.066 doi: 10.1016/j.jcp.2017.09.066
![]() |
[43] |
S. F. Zhu, Q. B. Wu, C. X. Liu, Variational piecewise constant level set methods for shape optimization of a two-density drum, J. Comput. Phys., 229 (2010), 5062–5089. https://doi.org/10.1016/j.jcp.2010.03.026 doi: 10.1016/j.jcp.2010.03.026
![]() |
[44] |
L. Liu, H. Zhang, Y. Chen, The generalized inverse eigenvalue problem of Hamiltonian matrices and its approximation, AIMS Mathematics, 6 (2021) 9886–9898. https://doi.org/10.3934/math.2021574 doi: 10.3934/math.2021574
![]() |
[45] | W. Alan, Inequalities and inversions of order, Scripta Math., 12 (1946), 164–169. |
[46] | D. Liberzon, Calculus of variations and optimal control theory, Princeton University Press, 2011. |
1. | Mohammad Ashraf, Md Shamim Akhter, Mohammad Afajal Ansari, Non-global nonlinear skew Lie n -derivations on *-algebras , 2024, 52, 0092-7872, 3734, 10.1080/00927872.2024.2328802 |