We consider the reconstruction of the compact support of an acoustic source given multiple frequency far field data. We propose a multi-frequency extended sampling method (MESM). The MESM computes the solutions of some ill-posed integral equations and constructs an indicator function to image the source. The behavior of the indicator function is justified. The method is fast and easy to implement. Various numerical examples are presented to show the effectiveness of the MESM for both frequency-independent and frequency-dependent sources.
Citation: Jiyu Sun, Jitao Zhang. Muti-frequency extended sampling method for the inverse acoustic source problem[J]. Electronic Research Archive, 2023, 31(7): 4216-4231. doi: 10.3934/era.2023214
We consider the reconstruction of the compact support of an acoustic source given multiple frequency far field data. We propose a multi-frequency extended sampling method (MESM). The MESM computes the solutions of some ill-posed integral equations and constructs an indicator function to image the source. The behavior of the indicator function is justified. The method is fast and easy to implement. Various numerical examples are presented to show the effectiveness of the MESM for both frequency-independent and frequency-dependent sources.
[1] | R. Porter, A. Devaney, Generalized holography and computational solutions to inverse source problems, JOSA, 72 (1982), 1707–1713. https://doi.org/10.1364/JOSA.72.001707 doi: 10.1364/JOSA.72.001707 |
[2] | V. Isakov, Inverse Source Problems, American Mathematical Soc., 1990. |
[3] | G. Dassios, Electric and magnetic activity of the brain in spherical and ellipsoidal geometry, in Mathematical Modeling in Biomedical Imaging I: Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging, Springer, (2009), 133–202. https://doi.org/10.1007/978-3-642-03444-2_4 |
[4] | A. J. Devaney, E. A. Marengo, M. Li, Inverse source problem in nonhomogeneous background media, SIAM J. Appl. Math., 67 (2007), 1353–1378. https://doi.org/10.1137/060658618 doi: 10.1137/060658618 |
[5] | A. El Badia, T. Ha-Duong, An inverse source problem in potential analysis, Inverse Probl., 16 (2000), 651. https://doi.org/10.1088/0266-5611/16/3/308 doi: 10.1088/0266-5611/16/3/308 |
[6] | A. Schuhmacher, J. Hald, K. B. Rasmussen, P. C. Hansen, Sound source reconstruction using inverse boundary element calculations, J. Acoust. Soc. Am., 113 (2003), 114–127. https://doi.org/10.1121/1.1529668 doi: 10.1121/1.1529668 |
[7] | N. Bleistein, J. K. Cohen, Nonuniqueness in the inverse source problem in acoustics and electromagnetics, J. Math. Phys., 18 (1977), 194–201. https://doi.org/10.1063/1.523256 doi: 10.1063/1.523256 |
[8] | A. Devaney, G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034–1037. https://doi.org/10.1109/TAP.1982.1142902 doi: 10.1109/TAP.1982.1142902 |
[9] | E. A. Marengo, R. W. Ziolkowski, Nonradiating and minimum energy sources and their fields: Generalized source inversion theory and applications, IEEE Trans. Antennas Propag., 48 (2000), 1553–1562. https://doi.org/10.1109/8.899672 doi: 10.1109/8.899672 |
[10] | M. Eller, N. P. Valdivia, Acoustic source identification using multiple frequency information, Inverse Probl., 25 (2009), 115005. https://doi.org/10.1088/0266-5611/25/11/115005 doi: 10.1088/0266-5611/25/11/115005 |
[11] | G. Bao, J. Lin, F. Triki, Numerical solution of the inverse source problem for the helmholtz equation with multiple frequency data, Contemp. Math, 548 (2011), 45–60. |
[12] | V. Isakov, On increasing stability in an inverse source problem with local boundary data at many wave numbers, Appl. Anal., 101 (2022), 3550–3562. https://doi.org/10.1080/00036811.2020.1770230 doi: 10.1080/00036811.2020.1770230 |
[13] | S. Acosta, S. S. Chow, V. Villamizar, Multifrequency inverse source problem for elastic waves, Recent Adv. Sci. Comput. Appl., 586 (2013), 1–8. https://doi.org/10.1090/conm/586/11671 doi: 10.1090/conm/586/11671 |
[14] | D. Zhang, Y. Guo, Fourier method for solving the multi-frequency inverse source problem for the helmholtz equation, Inverse Probl., 31 (2015), 035007. https://doi.org/10.1088/0266-5611/31/3/035007 doi: 10.1088/0266-5611/31/3/035007 |
[15] | R. Griesmaier, C. Schmiedecke, A factorization method for multifrequency inverse source problems with sparse far field measurements, SIAM J. Imag. Sci., 10 (2017), 2119–2139. https://doi.org/10.1137/17M111290X doi: 10.1137/17M111290X |
[16] | L. H. Nguyen, Q. Li, M. V. Klibanov, A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media, preprint, arXiv: 1901.10047. https://doi.org/10.48550/arXiv.1901.10047 |
[17] | M. Entekhabi, V. Isakov, Increasing stability in acoustic and elastic inverse source problems, SIAM J. Math. Anal., 52 (2020), 5232–5256. https://doi.org/10.1137/19M1279885 doi: 10.1137/19M1279885 |
[18] | E. L. Blåsten, H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions, and inverse scattering problems, SIAM J. Math. Anal., 53 (2021), 3801–3837. https://doi.org/10.1137/20M1384002 doi: 10.1137/20M1384002 |
[19] | Z. Zhao, Boundary condition limitation in an inverse source problem and its overcoming, Comput. Math. Appl., 111 (2022), 124–133. https://doi.org/10.1016/j.camwa.2022.02.012 doi: 10.1016/j.camwa.2022.02.012 |
[20] | Y. Liu, Z. Wu, J. Sun, Z. Zhang, Deterministic-statistical approach for an inverse acoustic source problem using multiple frequency limited aperture data, preprint, arXiv: 2209.08222. https://doi.org/10.48550/arXiv.2209.08222 |
[21] | J. Liu, J. Sun, Extended sampling method in inverse scattering, Inverse Probl., 34 (2018), 085007. https://doi.org/10.1088/1361-6420/aaca90 doi: 10.1088/1361-6420/aaca90 |
[22] | D. Colton, A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse probl., 12 (1996), 383. https://doi.org/10.1088/0266-5611/12/4/003 doi: 10.1088/0266-5611/12/4/003 |
[23] | D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer, Berlin, 1998. |
[24] | J. Sun, Y. Han, Two-step extended sampling method for the inverse acoustic source problem, Math. Probl. Eng., 2020 (2020), 1–8. https://doi.org/10.1155/2020/6434607 doi: 10.1155/2020/6434607 |