
 ERA, 31 (7): 4185–4215.

 DOI: 10.3934/era.2023213

Received: 03 October 2022

Revised: 04 March 2023

 Accepted: 28 March 2023

 Published: 31 May 2023

http://www.aimspress.com/journal/ERA

Review

A comprehensive review of graph convolutional networks: approaches

and applications

Xinzheng Xu*, Xiaoyang Zhao, Meng Wei and Zhongnian Li

School of Computer Science and Technology, China University of Mining and Technology, Xuzhou

221116, China

* Correspondence: Email: xxzheng@cumt.edu.cn; Tel: +15952151616.

Abstract: Convolutional neural networks (CNNs) utilize local translation invariance in the Euclidean

domain and have remarkable achievements in computer vision tasks. However, there are many data

types with non-Euclidean structures, such as social networks, chemical molecules, knowledge graphs,

etc., which are crucial to real-world applications. The graph convolutional neural network (GCN), as

a derivative of CNNs for non-Euclidean data, was established for non-Euclidean graph data. In this

paper, we mainly survey the progress of GCNs and introduce in detail several basic models based on

GCNs. First, we review the challenges in building GCNs, including large-scale graph data, directed

graphs and multi-scale graph tasks. Also, we briefly discuss some applications of GCNs, including

computer vision, transportation networks and other fields. Furthermore, we point out some open issues

and highlight some future research trends for GCNs.

Keywords: graph convolutional neural network; non-Euclidean structure data; graph convolution;

graph pooling

1. Introduction

In our lives, non-Euclidean structured data exist in various forms, such as molecular structures in

chemical analysis, sensor networks in communication networks and social networks in social sciences.

Traditional convolutional neural networks (CNNs) cannot perform local feature extraction on graph

data, mainly because these data have unstructured features, and the surrounding structure of each node

may be unique. Researchers still hope to extend deep learning models in non-Euclidean domains,

4186

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

because deep learning is a proven powerful tool for solving a series of problems in acoustics, computer

vision and natural language processing.

In recent years, more and more researchers have paid attention to using deep learning methods to

analyze graph data. These methods are mainly divided into two categories. One is to embed nodes in

a low-dimensional vector space to constrain proximity to learn a uniform length expression for each

node, and the representative work is network embedding. The other is to apply different deep-learning

models to the graph. Representative work can be divided into five categories according to the model

structure and training strategy. These categories are graph recurrent neural networks, graph convolu-

tional networks (GCNs), graph autoencoders, graph reinforcement learning and graph adversarial

methods [1]. Among them, the GCN is the most outstanding branch of the graph deep learning model.

GCNs play the same role as a CNN, which is a feature extractor. GCNs can process non-Euclidean

structured data that traditional deep learning models such as CNN and recurrent neural networks can-

not process. The core part of the GCN is introduced in Section 2.1.1 of this paper. The main contents

of this paper are as follows. Section 1 introduces the development history, spectral domain methods

and spatial domain methods of GCNs. Section 2 introduces some basic models of GCN and graph

pooling methods. Section 3 introduces the research progress of graph convolutional networks in the

face of multiple challenges. Section 4 introduces applications of GCNs in various fields. Section 5

discusses the future trends and draws the conclusion.

1.1. Development history of GCNs

The original idea of the definition of graph convolutional operation comes from the domain of

graph signal processing [2–4]. Bruna et al. proposed the first CNNs formula for the graph, which is

defined as using convolution in the spectral domain based on the Laplacian of the graph [5]. Duvenaud

et al. [6], Kipf and Welling [7] and Atwood and Towsley [8] proposed various GCN models, in which

the traditional graph filter was replaced by an adjacency matrix with self-loops. When updating net-

work weights, propagation rules were used to calculate the output of each neural network layer. Def-

ferrard et al. [9] extended this type of GCN model by using fast local spectral filters and effective

merging operations. In recent years, there has been a surge in the application of convolution for graphs,

and GCN related models have appeared in various forms. Graph convolution can be further divided

into two branches: spectral convolution and spatial convolution. When a polynomial spectral kernel is

used, these two methods can be overlapped.

1.2. Spectral convolution of GCNs

Spectral convolution uses the graph Fourier transform or its extension to transform the node represen-

tation into the spectral domain. The convolution theorem was used to perform convolution operations.

For the first time, the graph Laplacian matrix L was used in the spectral CNN, which has a convolutional

layer like the classic Euclidean CNN proposed by Bruna et al. [5], to introduce the graph data convolution

from the spectral domain. The graph convolutional operation ∗𝐺 is defined as follows:

𝑢1 ∗𝐺 𝑢2 = 𝑄((𝑄𝑇𝑢1)⨀(𝑄𝑇𝑢2)) (1)

The Laplacian matrix L is defined as L=D-A, where D is the degree matrix, and A is the adjacency

matrix of the graph, and the definition applies to all Laplacian matrices in this paper. 𝑢1, 𝑢2 ∈ 𝑅𝑁 are

4187

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

two signals defined on the node, and 𝑁 is the number of nodes. Q is the eigenvectors of L. Multiplying

𝑄𝑇 can transform the graph signals 𝑢1 and 𝑢2 into the spectral domain, that is, the graph Fourier transform.

Then, multiply by Q for inverse transformation; ⨀ represents element multiplication.

Applying different filters to different input-output signal pairs, the definition of the spectral con-

volutional layer is as follows:

𝑢𝑗
𝑙+1 = 𝜌(∑ 𝑄Θ𝑖,𝑗

𝑙𝑓𝑙
𝑖=1 𝑄𝑇𝑢𝑖

𝑙) 𝑗 = 1,⋯ , 𝑓𝑙+1 (2)

where 𝑙 is the layer, 𝑢𝑗
𝑙𝜖𝑅𝑁 is the jth signal of the node in the 𝑙th layer, and 𝑓𝑙 is the dimensionality of

the hidden representation in the 𝑙th layer. Θ𝑖,𝑗
𝑙 is a learnable filter, and 𝜌(∙) is the activation function.

Equation (2) indicates that the input signal passes through a set of learnable filters to gather information

and then performs some nonlinear transformations to obtain the output signal.

Since the eigenvector Q needs to explicitly calculate the eigendecomposition of the graph Lapla-

cian matrix, the time complexity is 𝑂(𝑁3). Even if the feature value can be calculated in advance, it

requires 𝑂(𝑁2) time complexity, which means that it is unrealistic to extend this method to large graphs.

On the other hand, because the filter depends on the eigenbasis Q, for graphs of different structures

and sizes, the convolutional layer cannot be unified due to the change of dimensionality, and the pa-

rameters cannot be shared, so the spectral method cannot be applied to graphs of different structures

and sizes.

To solve the problem of a spectral CNN’s high computational complexity and the filter not being

local, Defferrard et al. [9] proposed ChebNet, which uses a polynomial filter of the form

Θ(Λ) = ∑ 𝜃𝑘Λ
𝑘𝑘

𝑘=0 (3)

where 𝜃0, ⋯ , 𝜃𝑘 are learnable parameters, and k is the order of the polynomial. Λ is the eigenvalue of

the graph Laplacian matrix L. The K-polynomial filter realizes strictly local localization by integrating

the node features in the k-hop neighborhood [5] so that the number of learnable parameters decreases

to 𝑂(𝐾) = 𝑂(1).

In order to further reduce the computational complexity, Chebyshev polynomials are used to ap-

proximate the calculation of the spectral convolution. By using the recursive relationship of Chebyshev

polynomials 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥) and 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, (3) is rewritten as follows:

Θ(Λ) = ∑ 𝜃𝑘𝑇𝑘(Λ̃)𝑘
𝑘=0 (4)

where Λ̃ =
2Λ

𝜆𝑚𝑎𝑥
− 𝐼 is the rescaled eigenvalue, which is in the range of [-1, 1]. 𝜆𝑚𝑎𝑥 is the largest eigen-

value, 𝐼𝜖𝑅𝑁×𝑁 is the identity matrix, and 𝑇𝑘(𝑥) is a Chebyshev polynomial of order k. Equation (4) is

essentially a K-order polynomial of the graph Laplacian, so it is K-range, that is, it is only affected by

the K-order neighborhood of the node, so the computational complexity of (4) becomes 𝑂(|𝜀|), where

|𝜀| is the number of edges. Combining (4) and (2), the convolutional layer of the ChebNet can be

expressed as

𝑢𝑗
𝑙+1 = 𝜌(∑ ∑ Θ𝑖,𝑗

𝑙 (𝑘 + 1)𝑇𝑘(Λ̃)𝐾−1
𝑘=0 𝑢𝑖

𝑙𝑓𝑙
𝑖=1) 𝑗 = 1,⋯ , 𝑓𝑙+1 (5)

where Θ𝑖,𝑗
𝑙 is the k-dimensional parameter vector of the ith column of the input feature map and the jth

column of the output feature map, which can be learned filters.

ChebNet and its extension combine spectral convolution with spatial structure; spectral

4188

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

convolution is equivalent to spatial convolution when the spectral convolution function is polynomial

or first order. For example, the GCN proposed by Kipf and Welling [7] further simplifies the filter by

only intercepting the first-order Chebyshev polynomial, which is not only spectral convolution but

also spatial convolution.

There are also some spectrum methods that do not use Chebyshev polynomial expansion. For

example, CayleyNet [10] defines graph convolution with a complex coefficient Cayley polynomial

and Cayley transform:

Θ(Λ) = 𝜃0 + 2𝑅𝑒{∑ 𝜃𝑘(𝜃ℎΛ − 𝑖𝐼)𝑘(𝜃ℎΛ + 𝑖𝐼)𝑘𝐾
𝑘=1 } (6)

where 𝑖 = √−1 is the imaginary unit, and 𝜃ℎ is another spectrum scaling parameter. 𝑅𝑒(∙) denotes a

real-valued function with a complex coefficient. Because of the nonlinear characteristic of the Cayley

transform, we can adjust 𝜃ℎ to achieve the detection of the concerned frequency bands to obtain better

results.

In addition, Levie et al. [11] conducted research on the transferability of spectral GCNs, proving

that spectral GCNs always generalize to unseen signals on graphs. They overturned a misconception

that using a spectral GCN is inappropriate when the data consist of many different graphs and many

different signals on these graphs.

1.3. Spatial convolution of GCNs

Spatial convolution determines graph convolution by aggregating neighbor feature information

in the vertex domain.

MoNet, proposed by Monti et al. [12], is a general GCN framework that was created by designing

a universal patch operator to integrate signals about nodes. For the neighborhood nodes 𝑦𝜖𝑁(𝑥) of node

x on a graph, a d-dimensional pseudo coordinate 𝑢(𝑥, 𝑦) is defined to associate with it and fed into J

learnable kernel functions (𝜔1(𝑢),⋯ ,𝜔𝐽(𝑢)). Therefore, the patch operator can be expressed as follows:

𝐷𝑗(𝑥)𝑓 = ∑ 𝜔𝑗(𝑢(𝑥, 𝑦))𝑓(𝑦), 𝑗 = 1,⋯ , 𝐽𝑦∈𝑁(𝑥) (7)

where 𝐷𝑗(𝑥)𝑓 denotes a patch on the manifold, and 𝑓(𝑦) is the signal value at node y. The graph con-

volution of the spatial domain based on the patch operator is defined as follows:

(𝑓 ∗𝐺 𝑔)(𝑥) = ∑ 𝑔𝑗𝐷𝑗(𝑥)𝑓𝐽
𝑙=1 . (8)

Among them, ∗𝐺 is graph convolution operation, and 𝑔𝑗 is the convolution kernel. By properly select-

ing 𝑢(𝑥, 𝑦) and kernel function 𝜔𝐽(𝑢), many existing graph convolution models can be regarded as a

special case of MoNet.

SplineCNN [13] also designs a universe patch operator to integrate local information but uses

different convolution kernels based on the B-spline function.

GraphSAGE [14] is a representation learning method based on aggregate functions proposed by

Hamilton et al. A fixed number of neighbors are uniformly sampled to provide minibatch variants.

Multiple aggregate functions are used. The selection of aggregate functions includes average aggrega-

tor, LSTM aggregator and pooling aggregator. The GraphSAGE using the average aggregator is similar

to the GCN model [7].

WGCN [15] distinguishes the in-neighbor and out-neighbor weights of nodes according to the

local topology of nodes, which captures the structural information of nodes. Nodes are embedded into

the latent space, and higher-order dependencies and latent geometric relationships of nodes are

4189

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

obtained to learn nodes’ representations.

Some studies [16–19] have shown that spatial graph convolutional networks are vulnerable to

adversarial attacks, but it is unclear why the attacks succeed. Liang et al. [20] confirmed that it is non-

robust aggregation functions that lead to the structural vulnerability of GCNs. The spatial graph

convolution aggregation scheme, i.e., weighted mean, has a low breakdown point, and its output can

be changed significantly by injecting a single edge. Then, Liang et al. [20] proposed trimmed mean

and median aggregation functions with high breakdown points to improve GCNs’ robustness against

structural attacks.

2. Graph convolutional neural network models

2.1. Basic models based on graph convolutional neural networks

2.1.1. Graph convolutional neural network

The graph convolutional neural network (GCN) proposed by Kipf et al. [7] was applied to the

semi-supervised classification problem of graphs. For a given undirected graph 𝐺 = (𝑉, 𝜉, 𝑋), where V

is the vertex set, the number of vertices is |𝑉| = 𝑛. 𝜉 is the edge set. 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}
𝑇 ∈ 𝑅𝑛×𝑐 is the

feature matrix, and 𝑥𝑖 ∈ 𝑅𝑐 represents the c-dimensional feature vector of node i. The goal of the GCN

model is to use a small part of the marked nodes, combined with the graph structure, to predict the

marked scores of the remaining unmarked nodes for marking.

This model uses a first-order Chebyshev polynomial in each GCN layer and only uses the first

two terms of the Chebyshev polynomial to approximate the convolution on the graph to construct the

transfer rule of the graph convolutional network:

𝐻(𝑙+1) = 𝜎 (𝐷̀
−1

2 𝐴̀𝐷̀
−1

2 𝐻(𝑙)𝑊(𝑙)) (9)

where 𝐴̀ = 𝐴 + 𝐼𝑁 is the adjacency matrix of the undirected graph G with a self-loop, 𝐷̀𝑖𝑖 = ∑ 𝐴̀𝑖𝑗𝑗 is the

diagonal degree matrix, 𝐻(𝑙) refers to the hidden representation in the 𝑙th layer, 𝐻(0) = 𝑋, 𝑊(𝑙) is the

trainable weight matrix of a specific layer, and 𝜎 = (∙) is the activation function. The multilayer GCN

structure will have multilayer propagation, which can realize feature propagation between multilevel

adjacent nodes.

The GCN model uses a two-layer GCN structure and applies a softmax classifier on the output

features. According to the transfer rule of the network, the specific form of forwarding calculation for

semi-supervised node classification on a graph with a symmetric adjacency matrix A is

𝑍 = 𝑓(𝑋, 𝐴) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴̀𝑅𝑒𝐿𝑈(𝐴̀𝑋𝑊(0))𝑊(1)) (10)

where 𝐴̀ = 𝐷̀
−1

2 𝐴̀𝐷̀
−1

2 , and 𝑊(0) ∈ 𝑅𝐶×𝐻 and 𝑊(1) ∈ 𝑅𝐻×𝐹 represent the weight matrices from the input

layer to the hidden layer and the hidden layer to the output layer, respectively. The hidden layer has H

features. C is the number of input channels, and F is the number of feature maps of the output layer.

The first layer of the activation function is the linear rectification function, and the second layer is the

softmax function. The softmax function form is 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
1

𝑍
𝑒𝑥𝑝(𝑥𝑖), 𝑍 = ∑ 𝑒𝑥𝑝(𝑥𝑖)𝑖 , and softmax is

suitable for every row. X is the input signal, a sample with C-dimensional features. Each sample output

has a corresponding F-dimensional vector, where component f represents the probability of the sample

4190

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

being classified into class f.

The graph convolutional layer of the GCN model is a special Laplacian smoothing, mixing nodes

and their domain characteristics. The smoothing operation makes the features of neighboring nodes

similar, which greatly simplifies the classification task, but the multilayer graph convolution will make

the output feature excessively smooth, and the nodes of different clusters cannot be effectively

distinguished. The shallow GCN model also has limitations: Many additional labeled nodes are

required for verification, and it is affected by the localized characteristics of the convolution filter.

In addition, the GCN model has disadvantages such as poor scalability, inability to handle large-

scale graphs and inability to handle directed graphs. The specific improvement measures will be

explained in the Research Progress part of Section 3. Table 1 summarizes the advantages and

disadvantages of several classic GCN models.

Table 1. An overview of the advantages and disadvantages of the classic GCN models.

Type of model Description Advantages Disadvantages

GCN

For the first time, the

convolution operation in

image processing is applied

to graph-structured data

processing

·Non-Euclidean structured data

·Capture global information of graphs

·Well characterized node features and

edge features

·Poor flexibility, poor scalability, limited

to undirected graphs and shallow layers

·GCN training needs to know the

structural information of the entire graph

GraphSAGE
Improve GCN scalability

and training methods

·Overcome the limitations of memory and

video memory during GCNs training

·Able to handle large scale graphs

·The parameters of the aggregator and

weight matrix are shared for all nodes

·Unable to process weighted graph

·Neighbor sampling will lead to large

gradient variance during backpropagation

·The limited number of samples will lead

to the loss of important local information

of some nodes

GAT(Graph

attention

network)

Add attention mechanism to

give importance to edges

between nodes

·Prone to oversmoothing

·Poor training mode

·Large number of parameters

·High computational efficiency

·Attention mechanism

·No need to know the whole graph

structure

·Can be used for transductive learning

and inductive learning

2.1.2. Graph sampling and aggregation

GraphSAGE [14] is an inductive learning framework. In the specific implementation, it only retains

edges from training samples to training samples during training and includes two steps: Sample and

Aggregate. Sample refers to how to sample the number of neighbors, and Aggregate refers to aggregating

the embeddings of neighboring nodes to update their own embedding information. Figure 1 shows the

process of GraphSAGE generating a target node (red) embedding and predicting for downstream tasks.

The first step is to sample the neighbors. In the second step, the sampled neighbor embedding is passed

to the node, and an aggregation function is used to aggregate the neighbor information to update the node’s

embedding. The third step is to predict the label of the node according to the updated embedding.

2.1.3. Graph attention network

Velickovic et al. [21] were inspired by the attention mechanism and proposed an attention-based

GAT model for node classification tasks on graph-structured data, following the self-attention

mechanism [22]. When each node updates the hidden representation, the attention of its neighbors

must be calculated.

4191

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

Figure 1. GraphSAGE [14] sampling and aggregation approach.

The model input is the set of node features ℎ = {ℎ⃗ 1, ℎ⃗ 2, ⋯ , ℎ⃗ 𝑁}, ℎ⃗ 𝑖 ∈ 𝑅𝐹, where N is the number of

nodes, and F is the number of features for each node, that is, the length of the feature vector. The output

set is ℎ′ = {ℎ⃗ ′1, ℎ⃗
′
2, ⋯ , ℎ⃗ ′𝑁}, ℎ⃗ ′𝑖 ∈ 𝑅𝐹′

 . The number of features of each node becomes 𝐹′ . The input

feature undergoes at least one linear transformation to obtain the output feature, so a weight matrix

𝑊 ∈ 𝑅𝐹′×𝐹 is defined to be applied to the feature of each node. The function a for calculating the

attention coefficient 𝑒𝑖𝑗 is a single-layer feedforward network, 𝑎 ∈ 𝑅2𝐹′
 is determined by a weight

vector, and LeakyReLU is used for processing, so the specific form of the attention mechanism is

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗) =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⃗ 𝑇[𝑊ℎ⃗⃗ 𝑖||𝑊ℎ⃗⃗ 𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⃗ 𝑇[𝑊ℎ⃗⃗ 𝑖||𝑊ℎ⃗⃗ 𝑘]))𝑘∈𝑁𝑖

 (11)

where 𝑒𝑖𝑗 = 𝑎(𝑊ℎ⃗ 𝑖 ,𝑊ℎ⃗ 𝑗) is the attention coefficient, and || is the concatenation operation. The

normalized attention coefficients 𝛼𝑖𝑗 are used to calculate the linear combination of their corresponding

features and used as the final output feature of each node. In addition to the weighted summation, a

nonlinear function is also needed, namely,

ℎ⃗ ′𝑖 = 𝜎(∑ 𝛼𝑖𝑗𝑊ℎ⃗ 𝑗𝑗∈𝑁𝑖
). (12)

To make the model more stable, a multi-head attention mechanism is also proposed, that is, not

only using a function a to calculate the attention coefficient but also using a set of k functions, and

each function calculates a set of attention coefficients and a set of weighted summations of the

coefficient 𝛼𝑖𝑗. In each convolution layer, k attention mechanisms work independently, calculate their

results separately and connect them to obtain the convolution result:

ℎ⃗ ′𝑖 =
𝐾
||

𝑘 = 1
𝜎(∑ 𝑎𝑖𝑗

𝑘 𝑊𝑘ℎ⃗ 𝑗𝑗∈𝑁𝑖
) (13)

where 𝑎𝑖𝑗
𝑘 is calculated using the attention coefficient calculated by the kth function 𝑎𝑘. The whole

process is shown in Figure 2.

4192

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

Figure 2. An illustration of multi-head attention (with K=3 heads) by node 1 in its

neighborhood. Different arrow styles and colors denote independent attention

computations. The aggregated features from each head are concatenated or averaged to

obtain ℎ⃗ ′1.

The characteristics and advantages of the GAT model are as follows: (1) The calculation is

efficient, with parallel computing of the attention of each node and its neighbor nodes on all edges,

and the output features on all nodes can be calculated in parallel. (2) It can be applied to graph nodes

of different degrees by assigning different weights to nodes of the same neighborhood. The attention

mechanism is shared for all edges, without matrix operations and without prior knowledge of the graph

structure. This solves the problem that the GCN model must be based on the corresponding graph

structure to learn the Laplacian matrix. (3) It can be directly applied to the inductive learning problem.

There is no problem that there is always an order in the neighborhood node of each node [14]. The model

can be applied to completely unknown graph tasks. This is to make up for the shortcoming of the GCN

model that a model trained on one graph structure cannot be applied to other graph structures. (4) GAT

can be redefined as a special case of MoNet, that is, select the pseudo coordinate function 𝑢(𝑥, 𝑦) =

𝑓(𝑥)||𝑓(𝑦) , where 𝑓(𝑥) represents the feature (potentially MLP-transformed) of node x, || is

concatenation, and set the kernel function 𝜔𝐽(𝑢) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑀𝐿𝑃(𝑢)) (softmax is executed on the entire

neighborhood of the node). MoNet’s patch operator will be similar to GAT. Here, the GAT model uses

node features for similarity calculation, not the structural attributes of nodes.

2.1.4. Other models

Zhuang et al. [23] proposed a dual graph convolutional network (DGCN) for graph-based

semisupervised learning that not only considers local consistency but also encodes global consistency

using PPMI. Hu et al. [24] proposed a deep hierarchical graph convolutional network model (H-GCN)

to address the problem that traditional models based on neighborhood aggregation are limited to shallow

layers and have difficulty obtaining global information. Bayesian GCN [25] and Self-Ensembling GCN

(SEGCN) [26] can make full use of unlabeled nodes. The neighborhood adaptive graph convolutional

network (NAGCN) [27] can effectively learn the representation of each node. Hyperbolic graph

convolutional networks (HGCNs) [28] can learn the inductive node representation of hierarchical or

scale-free graph structure data and demonstrate powerful representation ability to model graphs with

hierarchical structures. HGCNs work on hyperbolic manifolds with tangent spaces, which are just local

approximations of a manifold. Dai et al. [29] proposed a hyperbolic-to-hyperbolic graph convolutional

network (H2H-GCN) that directly works on hyperbolic manifolds. H2H-GCN [29] avoids the

distortion caused by the tangent space approximation and keeps the global hyperbolic structure.

4193

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

Figure 3 summarizes the performances of different GCN models on different graph datasets.

CiteSeer, Cora and PubMed are citation network datasets, where each sample point is a scientific paper,

and each paper cites at least one other paper or is cited by another paper, treating citation links between

papers as (undirected) edges. NELL is a knowledge graph dataset with 55,864 relational nodes and

9891 entity nodes.

Figure 3. The performance of different GCN models on different graph datasets.

The results in Figure 3 show that for the same graph data, there are some differences in the node

classification accuracy of different GCN models, but the differences are not significant. These results

confirm the power of GCN models for graph data processing tasks.

2.2. Graph pooling method

The tasks on the graph can be roughly divided into two categories: node-level tasks and graph-

level tasks. Node-level tasks, including node classification, link prediction and node recommendation,

are related to nodes in the graph; and graph-level tasks, including graph classification and graph

generation, are related to the entire graph. Graph convolutional neural networks generally add pooling

operations in graph-level tasks and use pooling operators to reflect the hierarchical structure of the

network.

There are few existing graph pooling methods, which are mainly divided into three types: topology-

based pooling, global pooling and hierarchical pooling. The topology-based pooling method only

considers the topological structure of the graph, and representative works include ChebNet [9] and the

hybrid model proposed by Rhee et al. [30]. The global pooling method only considers the characteristics

of the graph, including representative works such as a general framework for graph classification (taking

graph neural networks (GNNs) as a message passing scheme, using the Set2Set method to obtain the

representation of the entire graph) proposed by Gilmer et al. [31] and SortPool (according to the structure

of the graph, sorting the embeddings of the nodes) proposed by Zhang et al. [32]. The main motivation

of the hierarchical pooling method is to build a model that can learn the feature-based or topology-

4194

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

based node assignment in each layer and allow the neural network to end-to-end learn the assignment

matrix to obtain a scaled-down graph. Typical hierarchical pooling methods include DIFFPOOL [33],

EigenPooling [34] and SAGPool [35]. The three of these common and typical hierarchical pooling

methods and their connections are described below.

DIFFPOOL [33] is a differentiable graph pool module proposed by combining GNN and the

pooling operation, similar to CNN, which can capture the hierarchical information of the graph. The

main mechanism of hierarchical pooling DIFFPOOL is to learn differentiable cluster assignments 𝑆(𝑙)

for nodes based on features or topology in each layer of the deep GNN, map the nodes to a set of

clusters and use these clusters as coarse input to the next layer GNN. Figure 4 shows the working

mechanism of DIFFPOOL.

Figure 4. The working mechanism of DIFFPOOL [33]. Run a GNN model at each layer

to obtain the embedding of the node. Then, these learned embeddings are used to cluster

the nodes together to form a coarsened graph, and another GNN layer is run on the

coarsened graph. The whole process is repeated for the L layer, and the final output

representation is used to classify the graph.

A GNN model is run in each layer, and the adjacency matrix and features (𝐴(𝑙), 𝑋(𝑙)) are input to

obtain the node embedding 𝑍(𝑙) = 𝐺𝑁𝑁𝑙,𝑒𝑚𝑏𝑒𝑑(𝐴
(𝑙), 𝑋(𝑙)) and cluster assignment matrix 𝑆(𝑙) =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐺𝑁𝑁𝑙,𝑝𝑜𝑜𝑙(𝐴
(𝑙), 𝑋(𝑙))). After the DIFFPOOL differentiable pooling layer, the input of the next

layer coarsening graph is obtained, (𝐴(𝑙+1), 𝑋(𝑙+1)) = 𝐷𝐼𝐹𝐹𝑃𝑂𝑂𝐿(𝐴(𝑙), 𝑍(𝑙)) , where 𝑋(𝑙+1) = 𝑆(𝑙)𝑇𝑍(𝑙) ∈

𝑅𝑛𝑙+1×𝑑，𝐴(𝑙+1) = 𝑆(𝑙)𝑇𝐴(𝑙)𝑆(𝑙) ∈ 𝑅𝑛𝑙+1×𝑛𝑙+1.

EigenPooling [34] is based on the idea of DIFFPOOL [33] and combines the pooling layer of the

pooling operator based on the graph Fourier transform with the traditional GCN convolutional layer

to form a graph neural network framework for graph classification. The pooling operator and the graph

coarsening method based on the subgraph jointly constitute the pooling layer, and the features of the

entire graph are extracted hierarchically. EigenPooling uses the clustering method to cut the large graph

into subgraphs 𝐺(𝑘) that have no intersection with each other. The assignment matrix S is determined

by spectral clustering, and the feature matrix 𝑋𝑐𝑜𝑎𝑟 of the coarsened graph is determined by the graph

Fourier transform. Different from the coarsening graph feature matrix and the assignment matrix in

DIFFPOOL, both are obtained through a single graph network. Figure 5 shows an example of

EigenPooling for graph classification.

4195

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

Figure 5. An example of graph classification by EigenPooling [34]. In this example, the

graph is coarsened three times to form a single supernode.

The assignment matrix of EigenPooling represents the relationship between node 𝑣𝑖 and all

subgraphs in graph G and is defined as

𝑆[𝑖, 𝑘] = 1𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓𝑣𝑖 ∈ 𝛤(𝑘) (14)

where 𝛤(𝑘) represents a list of all nodes in graph 𝐺(𝑘) . After graph G is coarsened, the subgraph

becomes a supernode. The adjacency matrix of the coarsened graph 𝐺𝑐𝑜𝑎𝑟 is expressed as 𝐴𝑐𝑜𝑎𝑟 =

𝑆𝑇𝐴𝑒𝑥𝑡𝑆, that is, the adjacency matrix representing the edge relationship between super nodes. 𝐴𝑒𝑥𝑡 =

𝐴 − 𝐴𝑖𝑛𝑡 represents the adjacency matrix that only contains the edges between the subgraph and the

subgraph. 𝐴(𝑘) represents the adjacency matrix of the node connection in subgraph 𝐺(𝑘) , and 𝐴𝑖𝑛𝑡

represents the adjacency matrix that does not contain the edge between the subgraphs.

The feature matrix X of graph G after being downsampled by 𝛩𝑙
𝑇 is represented as 𝑋𝑙 ∈ 𝑅𝐾×𝑑, and

the kth row represents the downsampled information of the kth subgraph 𝐺(𝑘). 𝛩𝑙 represents a matrix

composed of the eigenvectors of all subgraphs (the eigenvectors of the Laplacian matrix). Concatenate

all the downsampled 𝑋𝑙 to obtain the final downsampled result 𝑋𝑝𝑜𝑜𝑙𝑒𝑑 ∈ 𝑅𝐾×𝑑∙𝑁𝑚𝑎𝑥 . To simplify the

operation, take 𝐻 ≪ 𝑁𝑚𝑎𝑥; then, the feature matrix of the coarsening graph is 𝑋𝑐𝑜𝑎𝑟 = [𝑋0, ⋯ , 𝑋𝐻].

The number of parameters of DIFFPOOL depends on the number of nodes, and it has quadratic

space complexity. Subsequently, Cangea et al. [36] introduced the hierarchical pooling gPool [37] to

solve the complexity problem but did not consider the topology of the graph.

To further improve the graph pooling method, a Self-Attention Graph Pooling method

(SAGPool) [35] was proposed based on gPool which considers the characteristics and topological

structure of the graph at the same time and uses an End2End method to generate hierarchical

representation with reasonable time and space complexity. Figure 6 shows the workflow of the

SAGPool layer, which analyzes the importance of nodes through self-attention and selects some

important nodes to replace the original graph, such as the operation of node classification.

SAGPool uses the graph convolution method to obtain the self-attention score. If the convolution

formula of Kipf & Welling [7] is used, the self-attention score 𝑍 ∈ 𝑅𝑁×1 is calculated as

𝑍 = 𝜎 (𝐷̀
−1

2 𝐴̀𝐷̀
−1

2 𝑋𝛩𝑎𝑡𝑡). (15)

𝛩𝑎𝑡𝑡 ∈ 𝑅𝐹×1 is the only parameter of the SAGPool layer. The parameters of SAGPool are the same,

not considering the size of the input graph.

4196

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

Figure 6. SAGPool layer structure [35].

SAGPool uses the node selection method of gPool; even if the graph is small (few nodes), it still

retains part of the nodes in the input graph. The pooling ratio 𝑘 ∈ is a hyperparameter that maintains

the number of nodes. The first ⌈kN⌉ nodes are selected according to the value of Z:

𝑖𝑑𝑥 = 𝑡𝑜𝑝 − 𝑟𝑎𝑛𝑘(𝑍, ⌈𝑘𝑁⌉), 𝑍𝑚𝑎𝑠𝑘 = 𝑍𝑖𝑑𝑥. (16)

𝑡𝑜𝑝 − 𝑟𝑎𝑛𝑘(𝑍, ⌈𝑘𝑁⌉) indicates that the Z index is used for sorting, and the first kN nodes are selected.

𝑖𝑑𝑥 represents the get index operation, and 𝑍𝑚𝑎𝑠𝑘 is the feature attention mask.

The input graph is processed by the masking operation, as shown in Eq 17:

𝑋′ = 𝑋𝑖𝑑𝑥, 𝑋𝑜𝑢𝑡 = 𝑋′⨀𝑍𝑚𝑎𝑠𝑘 , 𝐴𝑜𝑢𝑡 = 𝐴𝑖𝑑𝑥,𝑖𝑑𝑥 (17)

where 𝑋𝑖𝑑𝑥 is the feature matrix of the index arranged in rows (each row represents the feature vector

of a node), and ⨀ is the broadcast elementwise product. 𝑋𝑜𝑢𝑡 is the new feature matrix, and 𝐴𝑜𝑢𝑡 is the

new adjacency matrix. 𝐴𝑖𝑑𝑥,𝑖𝑑𝑥 is the rowwise and columnwise indexed adjacency matrix.

3. Research progress of graph convolutional neural networks

Spectral domain GCNs are very powerful, but they still have some shortcomings: 1) Their

scalability is poor. The training of GCNs needs to know the adjacency matrix of all training nodes and

test nodes, so it is transductive and cannot handle large-scale graphs. 2) They are confined to undirected

graphs because the Laplacian matrix used by GCNs requires that eigendecomposition must meet the

condition of matrix symmetry, and the premise of spectral convolution is that the graph must be an

undirected graph. 3) They are confined to shallow layers, because each layer of GCNs is a special

Laplace smoothing, and adding a multilayer GCN structure will make the node attributes of the same

connected component too similar, thus making the output features too smooth. At present, there are

many works devoted to addressing these shortcomings. The spatial domain graph convolution method

can compensate for these shortcomings of spectral domain GCNs, but because it saves memory at the

expense of time efficiency, the complexity is high. This chapter separately introduces the latest

research progress in solving large-scale graph data, directed graphs, multiscale graph tasks, dynamic

graphs and relational graphs. Table 2 summarizes GCN-related methods and applications for complex

graph tasks.

4197

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

Table 2. An overview of complex graph task methods.

Complex graph task Methods Applications

Large-Scale graph LGCNs [38], Cluster-GCN [39], LADIES [40],

Bi-GCN [41]
Node Classification

Directed graph MotifNet [42], TAGCN [43], RCNN [44],

FDGCN [45]

Node Classification

Multiscale graph N-GCN [46], MDGCN [47], Liao et al. [48],

Luan et al. [49]

Node Classification, Hyperspectral Image

Classification

Dynamic graph Manessi et al. [50], EvolveGCN [51], DGCM

[52], DPG [53]

link prediction, edge classification, node

classification, Multi-Person Pose

Estimation

Relational graph R-GCN [54], MR-GCN [55], mRGCN [56] Link Prediction, Entity Classification, Node

Classification, Ingredient Recognition

3.1. Large-scale graph data

Gao et al. proposed large-scale learnable graph convolutional networks (LGCNs) [38], which

convert graph structure data into one-dimensional grid data and use traditional convolution operations

on the graph. A learnable graph convolutional layer (LGCL) was proposed, which automatically selects

a fixed number of neighbor nodes for each feature, that is, it sorts the neighbor nodes and takes the top

k number of the feature as the k values of such features of the target node. The neighbor nodes are not

enough, and 0 is used as a filler so that a matrix of the neighbor information of the node can be obtained.

Figure 7 shows the process of LGCL constructing grid data. For each feature, the top k values (the

features of neighboring nodes are sorted in descending order) are selected from the neighboring nodes;

for example, the selection result of the first feature of the center node (orange) {9, 6, 5, 3} is obtained

by taking the top 4 values of {9, 6, 5, 3, 0, 0}. For the (k+1) three-component feature vector obtained

from the center node, connect to obtain one-dimensional grid data with k+1 positions and 3 channels.

Finally, a 1-D convolutional neural network is used to generate the final feature vector, and a new

vector with five features is used as the new feature representation of the central node. To allow the

LGCN model to be trained on large-scale graphs, a subgraph training strategy is proposed to reduce

the overhead of memory and computing resources.

Figure 7. LGCL’s process of constructing grid data [38]. The left part represents the

process of selecting the top k (k = 4) values for each feature from the neighboring nodes.

The right part represents a one-dimensional convolutional neural network.

The subgraph training strategy of large-scale graph data draws on the idea of random sampling

and cropping patches. Given a graph, first, random sampling is performed for some initial nodes, and

then breadth first search (BFS) is used to iteratively expand adjacent nodes into subgraphs. Through

4198

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

multiple iterations, the higher-order neighbor nodes of the initial node will be added. Figure 8 shows

a process of subgraph selection. First, we randomly sample, take three (𝑁𝑖𝑛𝑖𝑡 = 3) initial nodes (orange)

and aim to obtain a subgraph with 15 (𝑁𝑠 = 15) nodes. Use breadth-first search (BFS) to iteratively

expand neighboring nodes for the subgraph. In the first iteration, 5 blue nodes (not including

themselves) among all first-order neighbor nodes of the 3 initial nodes are randomly selected. In the

second iteration, 7 green nodes among the second-order neighbor nodes are randomly selected. Thus,

a subgraph of 3 + 5 + 7 = 15 nodes is obtained, together with the corresponding adjacency matrix, as

the input of LGCNs in the training iteration. With such an operation of randomly cropping subgraphs,

large-scale graph data can be solved effectively.

Figure 8. The process of subgraph selection [38].

Chiang et al. proposed a GCN algorithm called Cluster-GCN [39], which is based on a graph

clustering structure and SGD training that can train a deep GCN on large-scale graph data. The graph

clustering algorithm aims to construct partitions of nodes so that there are more graph links between

nodes in the same partition than between nodes in different partitions to better capture the clustering

and partition structure. Figure 9 shows the neighborhood spread difference between the traditional

graph convolution and the clustering method used by Cluster-GCN. Cluster-GCN can avoid heavy

neighborhood search and concentrate on neighbors in each same cluster.

Figure 9. The difference in neighborhood expansion between traditional graph

convolution and the clustering method used by Cluster-GCN [39]. The left side is the

traditional graph convolution, and the right side is the Cluster-GCN.

4199

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

The scheme of training a deep GCN on large-scale graph data and having another layer-dependent

importance sampling (LADIES) [40] was proposed by Zou et al. LADIES selects its neighbor nodes

according to the sampling nodes in the previous layer, constructs a bipartite graph between the two

layers and calculates the importance probability. Then, a fixed number of nodes are sampled according

to the calculated probability, and the process is performed recursively layer by layer to construct the

entire calculation graph. As a new layer correlation sampling scheme, LADIES not only avoids the

exponential expansion of the receptive field but also ensures the connectivity of the sampling

adjacency matrix. LADIES can also solve the redundant calculation problem of Cluster-GCN.

Wang et al. [41] proposed a binary graph convolutional network (Bi-GCN), which binarizes both

the network parameters and input node features. They modified the original matrix multiplication to a

binary operation for acceleration. The Bi-GCN’s network parameters and memory consumption of

input node attributes can be significantly reduced by ~30 times, which can efficiently handle large-

scale attributed graphs.

3.2. Directed graph

For directed graph processing, MotifNet [42] utilizes local graph motifs and uses motif-induced

adjacencies in deep learning of graphs. Topology adaptive graph convolutional networks (TAGCN) [43],

based on graph signal processing theory [3,4], process graph signals defined in the vertex domain and

classify the entire graph signal. RCNNs [44] that deal with complex networks can also be used for directed

networks.

In addition, in 2020, Li et al. proposed a fast directed graph convolutional network (FDGCN) [45],

constructing a spectrum-based GCN of directed graphs. The spectrum-based GCN can make good use of

the structural information of the graph. FDGCN is a scalable graph convolutional network based on the

Laplacian of the directed graph. The convolution operator (fast local filter) has a linear relationship with

the edges of the graph, so the directed graph can be directly calculated.

FDGCN combines the first-order Chebyshev polynomial approximation of the directed graph

Laplacian spectral filter and the approximation of the fixed Perron vector to export the directed graph

convolution operator. Based on the exported fast local convolution operator, a two-layer FDGCN model

for semi-supervised classification was designed, as shown in Figure 10. FDGCN can take GCN as a special

case. Combined with the graph generation model MMSBM [57] to improve FDGCN.

Figure 10. Fast directed graph convolutional network [45]. FDGCN consists of two layers:

the hidden layer and the output layer. The hidden layer has h units, and each unit has an n-

dimensional vector, which is calculated from the input features 𝑋 ∈ 𝑅𝑛×𝑐. The output layer

has l units, and l represents the number of categories.

4200

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

3.3. Multiscale graph task

For multiscale graphs with different step lengths, Sami et al. proposed a GCN network model, N-

GCN [47], which combines graph convolutional networks (GCNs) [7] with a random walk strategy.

Figure 11 shows the structure of the N-GCN model. Multiple instantiations are performed for the GCN

model on the node pairs found at different distances of the random walk, and the power of the

adjacency matrix is provided for each instantiation. Each instantiation runs on a different scale of the

graph, performs end-to-end training, directly learns near or far neighbor information and then connects

the output of instances of all optimized classification targets to a classification subnetwork. Figure 11

shows the process: Calculate the K power of 𝐴̀, send each power and X together into r GCNs, the output

of all 𝐾 × 𝑟 GCNs are connected in series according to the column and fed into the fully connected

layer, and finally output the row prediction 𝑁 × 𝐶 of the known label. Calculate the cross-entropy error

between row predictions to update the parameters of the classification subnetwork and all GCNs.

Figure 11. N-GCN model structure [47]. 𝐴̀ is the normalized adjacency matrix, I is the

identity matrix, X is the node feature matrix, ⊗ is the matrix multiplication operator, and

C is each node output channel, that is, the size of the label space.

Later, Wan et al. proposed a multiscale dynamic GCN (MDGCN) [47] for the hyperspectral image

classification problem, as shown in Figure 12. Using the multiscale information of the hyperspectral

image, the dynamic map gradually refined in the convolution process is used to establish the multi-

input map of different neighborhood scales, which can make full use of the spectral-spatial feature

information of multiscale.

4201

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

Figure 12. MDGCN model architecture [47]. (a) represents the original hyperspectral

image. (b) represents the use of the SLIC algorithm [58] to segment superpixels. (c)

represents the multiscale dynamic graph convolutional network layers. Circles represent

nodes, and different colors represent different land-cover types. The green line represents

the edge, and the edge weight is gradually updated with the convolution operation on the

node, thereby dynamically refining the graph. There are three scales in the graph, and

𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(∙) represents the activation function. (d) The classification result of the multiscale

output, using cross-entropy loss to compensate for the labeling error between the output

and the seed superpixels.

In addition, LanczosNet was proposed by Liao et al. [48] and Luan et al. [49], offering two GCN

architectures that use different scale information. LanczosNet uses the Lanczos algorithm to construct

the low-rank approximation of the graph Laplacian using the tridiagonal decomposition of the Lanczos

algorithm, effectively collecting multiscale information through the fast approximate calculation of

the matrix power. A learnable spectral filter was designed to effectively improve model capacity. Luan

et al. [49] stated that any convolution with a well-defined analytical spectrogram can be written as a

block Krylov matrix and a special form of learnable parameter matrix. Therefore, spectrogram

convolution and deep GCN are extended to the block Krylov subspace form, and two architectures are

proposed: Snowball and truncated Krylov, both of which connect multiscale information in different

ways. Both can be extended to deeper structures. Under certain conditions, the equivalence of the two

architectures can be achieved.

3.4. Dynamic graph

For dynamic graphs, Manessi et al. [50] combined long short-term memory networks (LSTMs)

and graph convolutional networks (GCNs) [7] to learn long short-term dependencies and graph

structures, which can capture time information and properly manage structured data. LSTM is a special

recurrent neural network that can improve long short-term dependent learning. GCN can effectively

process graph structure information. Aldo et al. [51] combined GCN and a recurrent neural network to

4202

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

propose EvolveGCN, which uses GCN to learn node representation and GRU or LSTM to learn GCN

parameters to capture the dynamics of dynamic graphs. EvolveGCN can cope with frequently changing

graphs and does not need to know all the changes of the nodes in the graph in advance. When the

amount of node feature information in the dataset is not rich enough, the graph data structure plays a

more important role, and the effect of using LSTM will be better; otherwise, the effect of using GRU

will be better. In addition, Qiu et al. [52] proposed a dynamic graph convolutional module (DGCM)

for 2D multiperson pose estimation to solve large changes in human pose, and Song et al. [53] proposed

a dynamic probabilistic graph convolution (DPG) model for facial action unit intensity estimation.

3.5. Relational graph

Michael et al. [54] used GCNs to model relational data (graph data with plenty of relations) and

proposed the relational graph convolutional network (R-GCN), which was mainly used to solve two

completion tasks of the knowledge base: link prediction and entity classification. Huang et al. [55]

proposed a multirelational graph convolutional network (MR-GCN) to solve the semi-supervised node

classification task of multirelational graphs using the eigendecomposition of Laplacian tensors instead

of the discrete Fourier transform to perform graph convolution in the spectral domain. The spectral

domain can be any unitary transform. Chen et al. [56] proposed a relational graph convolutional

network (mRGCN) to study the problem of zero-shot food ingredient recognition. mRGCN encodes a

multirelationship graph (including various relations between ingredient hierarchy, ingredient

cooccurrence and ingredient attribute), which is convenient for better transfer of knowledge learned

from familiar classes to unfamiliar classes in zero-training sample learning to recognize unseen

ingredients.

4. Applications of graph convolutional neural networks

4.1. Computer vision

Graph convolutional neural networks for action recognition are a research hotspot in the computer

vision field, mainly by using skeletons as edges and joints as vertices so that the human skeleton can

be operated as a graph. Figure 13 shows the spatial temporal graph of the skeleton sequence. Zheng et

al. used the OpenPose method to extract human skeleton information from video and construct a

skeleton spatial temporal graph, and they proposed a spatial and temporal graph convolutional network

(ST-GCN) [59] to extract skeleton features from continuous video frames for video classification. Tian

et al. [60] introduced an attention mechanism and cooccurrence feature learning to improve ST-GCN,

forming a multitask framework that includes the attention branch, cooccurrence feature learning

branch and ST-GCN. To capture the high-level interactive features between the five parts of the human

body and distinguish the subtle differences between some confusing actions, Chen et al. proposed a

graph convolutional network [61] with a structure-based graph pooling (SGP) scheme and a joint-wise

channel attention (JCA) module. SGP integrates the human skeleton graph based on prior knowledge

of the human body type. The JCA module selectively focuses on distinctive joints and assigns different

degrees of attention to different channels to improve the network’s classification performance for

confusing behavior. Dong et al. proposed action recognition based on the fusion of graph convolutional

networks with high-order features [62], using high-order spatial features of skeletal data, the relative

distances between 3D joints, and high-order temporal features, velocity features and acceleration

4203

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

features. They used deep learning to extract the relative distances between 3D joints, learning velocity

and acceleration from deep networks. Chen et al. [63] proposed a multiscale spatiotemporal graph

convolutional network (MST-GCN) for action recognition by learning effective action representations.

MST-GCN is composed of a stack of basic blocks that combine a multiscale spatial graph convolution

(MS-GC) module and a multiscale temporal graph convolution (MT-GC) module. The MS-GC module

captures local joint connections and nonlocal joint relationships for spatial modeling, and the MT-GC

module effectively expands the temporal receptive field of long-term temporal dynamics. Table 3

presents the results of the above five methods on the NTU RGB+D dataset. The NTU RGB+D dataset

includes two evaluation metrics: cross-subject (CS) and cross-view (CV). In the cross-subject

evaluation, there are 40,320 and 16,560 clips for training and evaluation, respectively. In the cross-

view evaluation, there are 37,920 and 18,960 clips for training and evaluation, respectively. Table 3

summarizes the top-1 classification accuracy on two evaluation metrics.

Figure 13. Multi-frame skeleton graph [59]. The blue nodes represent the human joints,

the green lines represent the human bones (the edges where the joints are connected), and

the pink lines represent the connections of the same joint between successive frames.

Table 3. Comparison of the top-1 accuracy values with five action recognition methods on

the NTU RGB+D dataset.

Method Cross-subject (%) Cross-view (%)

ST-GCN [59] 81.5 88.3

Tian et al. [60] 86.8 92.1

Chen et al. [61] 86.1 93.1

Dong et al. [62] 90.5 95.8

MSF-GCN [63] 91.5 96.6

Human pose estimation, as a basic task in many computer vision applications, involves locating

key points of the human body in still images. The pose graph convolutional network (PGCN) [64]

establishes a directed graph between key points of the human body according to the structure of the

human body, using an attention mechanism to focus on the structured relationship between the key

points. PGCN is trained to map the graph into a set of key point representations of structural perception,

which can encode both the body structure and the appearance information of specific key points. The

global reasoning graph convolutional network (GRR-GCN) [65] projects features of the original space

to non-Euclidean space to form a fully connected graph composed of vertices, uses a graph

convolutional network to perform global relational reasoning on the fully connected graph and globally

learns the relationships between still image regions. Table 4 presents the results of PGCN and GRR-

4204

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

GCN on the MPII dataset. The MPII Human Pose datasets use the percentage of correct keypoints

(PCK) metric for evaluation. PCK reports the percentage of keypoints that fall into a normalized

distance of the ground truth. A space-time separable graph convolutional network (STS-GCN) for pose

forecasting was proposed by Theodoros et al. [66]. STS-GCN is the first network to model human pose

dynamics with only one graph convolutional network, which is the first to factorize the graph

adjacency matrix, rather than depthwise. Zou et al. [67] proposed a new modulated GCN for 3D human

pose estimation. Modulated GCN can disentangle the feature transformations of different nodes while

keeping the model size small. In addition, this method can model edges other than the human skeleton,

which significantly reduces the estimation error. Table 5 presents the results of STS-GCN and

modulated GCN on the Human3.6M dataset. The MPJPE error metric was adopted, which measures

the average Euclidean distance (in millimeters) between the ground truth and the prediction after

aligning the root joint (the hip joint). In Table 5, STS-GCN_short-term (400) and STS-GCN_long-

term (880) represent the MPJPE errors (in millimeters) of short-term (10 frames, 400 ms) and long-

term (22 frames, 880 ms) predictions of 3D joint positions on the Human3.6M dataset, respectively.

Table 4. Comparisons of PCKh@0.5 scores of PGCN and GRR-GCN on the MPII test set.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

PGCN [64] 98.0 96.9 92.7 89.0 91.8 89.4 86.1 92.4

GRR-GCN [65] 97.7 96.3 92.0 87.7 90.3 88.1 84.1 91.3

Table 5. Quantitative comparisons of STS-GCN and modulated GCN on Human3.6M

under MPJPE.

Methods Dire. Disc. Eat Greet Phone Photo Pose

STS-GCN_short-term (400) [66] 34.7 40.2 25.4 49.2 30.9 33.6 45.6

STS-GCN_long-term (880) [66] 64.5 72.3 46.2 85.5 59.3 67.2 94.5

Modulated GCN [67] 45.4 49.2 45.7 49.4 50.4 58.2 47.9

Methods Purch. Sit SitD. Smoke Wait WalkD. Walk

STS-GCN_short-term (400) [66] 48.7 35.0 47.9 25.8 35.2 59.6 32.9

STS-GCN_long-term (880) [66] 86.2 67.4 86.2 45.4 66.1 96.2 48.0

Modulated GCN [67] 46.0 57.5 63.0 49.7 46.6 52.2 38.9

4.2. Transportation network

Traffic flow prediction is of great significance to traffic management and public safety. Traditional

traffic flow prediction methods often ignore the temporal and spatial dependencies of traffic flow. For

this reason, a spatiotemporal graph convolutional network [68] was proposed for the time series

prediction problem in traffic networks. The spatiotemporal graph convolutional network metro

(STGCNmetro) [69] was developed by constructing a deep structure composed of GCNs to obtain the

spatiotemporal dependencies of the city-wide metro network and integrating it into three temporal

modes (recent, daily and weekly), forming the final predicted value. In contrast to a model that only

uses data directly related to traffic flow for GCN training, Zhao et al. proposed a spatiotemporal data

fusion (STDF) architecture [70]. Data indirectly related to traffic flow is input into spatial embedding

by temporal convolution (SETON), and each feature of time and space dimensions is encoded. The

data directly related to the traffic flow are used as the input of the graph convolutional network.

Through the fusion module, all features are combined for the final prediction.

Traffic speed prediction is a crucial component of intelligent transportation systems. Ge et al.

4205

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

proposed a temporal graph convolutional network (GTCN) [71] composed of a spatiotemporal component

and an external component to solve the problem of traffic speed prediction. The spatiotemporal component

combines k-order spectrogram convolution and extended random convolution to obtain spatiotemporal

dependencies, and the external component is used to consider influencing factors such as road structure

characteristics and social factors such as the day of the week. The global spatial-temporal graph

convolutional network (CSTGCN) [72] consists of three spatiotemporal components with the same

structure and one external component. The spatiotemporal component models the recent, daily and weekly

spatiotemporal correlations of traffic data in the time dimension and combines the local graph convolution

and the global correlation mechanism to realize the local and global spatial correlation in the space

dimension. The external component is used to extract factors that affect traffic speed, such as holidays and

weather conditions. Table 6 presents the results of GTCN and CSTGCN on the PeMSD4 and PeMSD7

datasets. PeMSD4 and PeMSD7 were collected by the California Department of Transportation’s

Performance Measurement System (CalTrans PeMS) every 30 seconds. The traffic speed data were

aggregated from the raw data into 5-min windows. Three widely used metrics were used to evaluate the

performance of GTCN and CSTGCN: mean absolute error (MAE), root mean square error (RMSE) and

mean absolute percentage error (MAPE).

Table 6. Comparison of GTCN and CSTGCN for traffic prediction on PeMSD7 and

PeMSD4 datasets.

Data Method
15 min 30 min

MAE RMSE MAPE (%) MAE RMSE MAPE (%)

PeMSD7
GTCN [71] 1.47 4.18 3.99 2.65 5.76 7.61

GSTGCN [72] 1.20 2.16 2.66 1.81 3.03 4.58

PeMSD4
GTCN [71] 1.41 2.89 3.18 2.16 3.96 4.70

GSTGCN [72] 0.73 1.65 1.78 1.31 3.17 2.94

4.3. Biomedicine

In biomedicine, graph convolutional networks can be used in multiple tasks, such as disease-gene

association identification, disease prediction, protein interface prediction and drug discovery. GCN-

MF [73] is a framework for discovering disease-gene associations by combining graph convolutional

networks and matrix factorization. Using GCN extracts the nonlinear relationship between diseases and

genes and exploits measured similarities. In addition, the fully connected graph convolutional network

FCGCNMDA [74] has been used to predict potential miRNA-disease associations, and GCNDA [75],

which is based on the deep learning method fast learning with graph convolutional networks, has been used

to predict circRNA-disease associations. GCGCN [76] is a cancer survival prediction method based on

graph convolutional networks that combine multigenome data and clinical data. It considers the

heterogeneity between different types of data and makes full use of abstract high-level representations of

different data sources. Chen et al. [77] proposed a graph convolutional network structure based on a

multilayer aggregation mechanism, which can suppress oversmoothness while obtaining deep structural

information and increasing the similarities between nodes of the same type. This method achieves better

performance in brain analysis and breast cancer prediction. Karthik et al. [78] proposed a fully learning

brain surface analysis approach for processing multiple surface-valued data to output topic-based

information. This method has the most advanced performance for ADNI stage classification and brain age

prediction using cortical surface data.

4206

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

4.4. Recommender systems

Different from traditional deep learning models, GCNs can simultaneously make use of content

information and graph structure, so GCN-based methods can be better applied to recommender

systems, where the main difficulty is how to extend GCN-based node embedding into graphs with

billions of nodes and tens of billions of edges. Ying et al. proposed a GCN framework PinSage [79]

based on a random walk. The scalability of GCNs was improved by adopting dynamic convolution, a

producer-consumer architecture was developed, and an efficient MapReduce pipeline was designed.

The use of importance pooling and curriculum training was also introduced to greatly improve

embedding performance.

Regarding how to improve the recommendation system’s ability to mine and analyze user

preferences and behaviors, Xia et al. [80] proposed a two-channel hypergraph convolutional network

(DHCN) for session recommendation, which innovatively integrates self-supervision into network

training and improves the recommendation task by maximizing the information between sessions of

network learning. Chen et al. [81] proposed the SGCN method, which explicitly deleted irrelevant

neighbors in the message-passing stage of GCNs and reduced the negative impact of noise on the

recommendation system to a large extent.

Figure 14. A multisocial graph with multisocial relationships [82], where the friend

relationship is a directed graph, and the others are undirected graphs. Chat and team

relationships reflect the relationship between friends to a certain extent, increase

recommendation interference, meet the diversification of people’s needs and avoid the

oneness of the recommendation system.

The Multi-Social Graph Convolutional Network (MSGCN) [82] is a friend recommendation

model based on multisocial networks that learns the latent characteristics of users, solving the friend

recommendation problem with sparse data. Figure 14 shows a multisocial graph. By integrating

topology information from multiple social networks to enrich the target user representation, the friend

recommendation problem is converted into a personalized recommendation sorting problem using

Bayesian theory. The hybrid graph convolutional neural network with multi-head attention for POI

recommendation (HGMAP) [83] is a location recommendation framework that recommends points of

interest (POIs) that users are interested in but have not yet visited. Two independent GCNs are used to

learn social influence and geographical constraints and introduce the multi-head attention encoder to

adaptively calculate the calculation score for each check-in to obtain the user’s latent preference for

nonvisited POIs. The user preference representation and social representation were used to simulate

the user influence on POI recommendation.

4207

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

4.5. Natural language processing

The information extraction tasks of natural language processing include event detection,

relationship extraction and entity linking. Event detection aims to identify specific types of instances

in text. Thien et al. proposed a neural network model based on graph convolutional network

dependency trees and entity mention-guide pooling [84] for event detection. Relation extraction aims

to detect the relationship between entities in the text. Attention Guided Graph Convolutional Networks

(AGGCNs) [85] use a “soft pruning” strategy, which runs on a full dependency tree; and through the

self-attention mechanism, structural information useful for relation extraction is learned in an end-to-

end manner. Hong et al. proposed an end-to-end model based on GCN [86] for joint extraction of

entities and relations. MSBD [87], based on a character graph convolutional network (CGCN) and

multi-head self-attention mechanism (MS), is an improved end-to-end model that realizes the joint

extraction of entities and relations. The entity and relation extraction problem is transformed into a

text tagging problem, which simplifies the complexity of entity and relationship extraction and

improves time efficiency.

In addition, text classification and sentiment analysis are also crucial issues in natural language

processing. Text classification using a graph convolutional network is Text GCN [88], which builds a

heterogeneous word document graph for a corpus based on word co-occurrence and document word

relations and transforms the text classification problem into a node classification problem. Manish et

al. [89] proposed NIP-GCN, which introduces the node interaction patterns (NIPs) derived from the

linked structure of the graph into the GCN framework and provides prior information for the graph

convolutional layers. Combining prior information with an additional pairwise document similarity

objective yields superior results compared to Text GCN.

Graph convolutional neural networks have been applied to sentiment analysis. Xiao et al. [90]

considered that semantic information, syntactic information and interactive information are crucial to

target semantic analysis and proposed an attentional-encoding-based graph convolutional network

(AEGCN). AEGCN combines semantic information and syntactic information to predict the emotional

polarity of the target. Zhao et al. [91] proposed an aspect-level sentiment classification model (SDGCN)

based on a graph convolutional network which can effectively capture the sentiment dependencies

between multiple aspects in one sentence. Jiang et al. [92] proposed HDGCN, which enhances

multihop graph inference by aggregating the information of direct dependence and long-term

dependence into a convolution layer and connecting the premise and hypothesis sentences together to

form a long sentence. The DualGCN [93] model of aspect-based sentiment analysis integrates syntactic

knowledge and semantic information through SynGCN and SemGCN modules and accurately captures

semantic relevance between words by constraining attention scores in the SemGCN module to

determine the polarity of emotions of a given aspect in a sentence. Table 7 presents the results of the

above four methods on two datasets of SemEval 2014 Task4, which contains reviews in the laptop

domain and restaurant domain. Each review (one sentence) contains one or more aspects and their

corresponding sentiment polarities, i.e., positive, neutral and negative. In Table 7, BERT represents the

BERT model by feeding the sentence-aspect pair and using the representation of [CLS] for prediction.

The accuracy and macro average F1 were selected for the evaluation.

4208

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

Table 7. Test accuracy (%) and macro-F1 score with four sentiment analysis methods on

aspect-based sentiment classification.

Methods
Restaurant Laptop

Acc Macro-F1 Acc Macro-F1

AEGCN-BERT [90] 82.58 73.40 78.73 74.22

SDGCN-BERT [91] 83.57 76.47 81.35 78.34

HDGCN-BERT [92] 85.89 79.33 79.15 75.48

DualGCN-BERT [93] 87.13 81.16 81.80 78.10

4.6. Social networks

Graph convolutional neural networks are also widely used in social networks. For example, a

graph convolutional network based on an autoencoder is used for online financial anti-fraud [94]. By

using an autoencoder module to replace the graph convolution matrix, the depth of the graph

convolutional network is increased without causing oversmoothing. A graph convolutional network

was used to encode social information for the political perspective detection of news media [95], and

a graph convolutional network was used to capture social information spread in social networks. A

spatially aware graph convolutional network (SAGCN) [96] is used for multipedestrian trajectory

prediction in autonomous driving, building an attention graph, where the nodes represent the time

information of pedestrians, and the edges represent the pairwise correspondence between pedestrians.

Additionally, used for position prediction is a graph convolutional network based on the seq2seq

framework [97], which uses the seq2seq framework to generate the hidden state and cell state of the

historical trajectories. The graph convolutional network is used to capture spatial correlation and

temporal dynamics. Graph convolutional neural networks can also be used to measure the privacy

metrics of online social networks [98].

5. Conclusions

This paper presents an overview of graph convolutional networks and their related approaches.

First, the advantages and disadvantages of basic models of graph convolutional networks are analyzed.

Graph convolutional networks (GCNs) have poor scalability, are limited to shallow networks and

undirected graphs and cannot handle complex graph data well. In view of these drawbacks, this paper

introduces recent works of graph convolutional networks in complex graph tasks (such as large-scale

graphs, directed graphs, multiscale graphs, etc.) and introduces the research progress of graph

convolutional networks. In addition, the achievements of graph convolutional networks in some

application domains are summarized.

Graph convolutional networks can be applied to many domains, and the effect is remarkable.

However, for the processing of complex graph data such as large-scale deep graphs, directed graphs

and multiscale dynamic graphs, there is still room for improvement in related work of graph

convolutional networks. Therefore, extending graph convolutional networks to complex graph tasks

such as large-scale graphs, directed graphs, multiscale graphs and dynamic graphs is the key research

direction for graph convolutional networks in the future.

Acknowledgments

This work was supported by the Fundamental Research Funds of Central Universities (No.

4209

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

2019XKQYMS87).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. Z. Zhang, P. Cui, W. Zhu, Deep Learning on Graphs: A Survey, IEEE Trans. Knowl. Data Eng.,

34 (2022), 249–270. https://doi.org/10.1109/TKDE.2020.2981333

2. D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of

signal processing on graphs: Extending high dimensional data analysis to networks and other

irregular domains, IEEE Signal Process. Mag., 30 (2013), 83–98.

https://doi.org/10.1109/MSP.2012.2235192

3. A. Sandryhaila, J. M. F. Moura, Big data analysis with signal processing on graphs:

Representation and processing of massive data sets with irregular structure, IEEE Signal Process.

Mag., 31 (2014), 80–90. https://doi.org/10.1109/MSP.2014.2329213

4. A. Sandryhaila, J. M. F. Moura, Discrete signal processing on graphs, IEEE Trans. Signal Process.,

61 (2013), 1644–1656. https:// doi.org/10.1109/TSP.2013.2238935

5. J. Bruna, W. Zaremba, A. Szlam, Y. Lecun, Spectral networks and locally connected networks on

graphs, arXiv preprint, (2013), arXiv: 1312.6203. https://doi.org/10.48550/arXiv.1312.6203

6. D. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, eet al.,

Convolutional networks on graphs for learning molecular fingerprints, Adv. Neural Inf. Process.

Syst., 28 (2015), 2224–2232.

7. T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv

preprint, (2016), arXiv: 1609.02907.

8. J. Atwood, D. Towsley, Diffusion-convolutional neural networks, Adv. Neural Inf. Process. Syst.,

29 (2016), 1993–2001.

9. M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast

localized spectral filtering, Adv. Neural Inf. Process. Syst., 29 (2016), 3837–3845.

10. R. Levie, F. Monti, X. Bresson, M. M. Bronstein, CayleyNets: Graph convolutional neural

networks with complex rational spectral filters, IEEE Trans. Signal Process., 67 (2019), 97–109.

https://doi.org/10.1109/TSP.2018.2879624

11. R. Levie, W. Huang, L. Bucci, M. Bronstein, G. Kutyniok, Transferability of Spectral Graph

Convolutional Neural Networks, J. Mach. Learn. Res., 22 (2021), 12462–112520.

12. F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, M. M. Bronstein, Geometric deep learning

on graphs and manifolds using mixture model CNNs,. IEEE Conf. Comput. Vis. Pattern Recognit.,

Honolulu, HI, USA, 2017, 5425–5434. https://doi.org/10.1109/CVPR.2017.576

13. M. Fey, J. E. Lenssen, F. Weichert, H. Müller, SplineCNN: fast geometric deep learning with

continuous b-spline kernels, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., (2018), 869–877.

https://doi.org/10.1109/CVPR.2018.00097

14. W. L. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, Adv.

Neural Inf. Process. Syst., 30 (2017), 1024–1034.

15. Y. Zhao, J. Qi, Q. Liu, R. Zhang, WGCN: Graph Convolutional Networks with Weighted

Structural Features, in 2021 SIGIR, (2021), 624–633. https://doi.org/10.1145/3404835.3462834

https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/MSP.2014.2329213
https://doi.org/10.48550/arXiv.1312.6203
https://doi.org/10.1109/TSP.2018.2879624
https://doi.org/10.1109/CVPR.2017.576
https://doi.org/10.1109/CVPR.2018.00097
https://doi.org/10.1145/3404835.3462834

4210

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

16. H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, L. Zhu, Adversarial examples for graph data:

Deep insights into attack and defense, arXiv preprint, (2019), arXiv: 1903.01610.

https://doi.org/10.48550/arXiv.1903.01610

17. D. Zügner, S. Günnemann, Adversarial attacks on graph neural networks via meta learning, arXiv

preprint, (2019), arXiv: 1902.08412. https://doi.org/10.48550/arXiv.1902.08412

18. K. Xu, H. Chen, S. Liu, P. Chen, T. Weng, M. Hong, et al., Topology attack and defense for graph

neural networks: An optimization perspective, in Proc. Int. Joint Conf. Artif. Intell., (2019), 3961–

3967. https://doi.org/10.24963/ijcai.2019/550

19. L. Chen, J. Li, J. Peng, A survey of adversarial learning on graph, arXiv preprint, (2003),

arXiv:2003.05730. https://doi.org/10.48550/arXiv.2003.05730

20. L. Chen, J. Li, J. Peng, Y. Liu, Z. Zheng, C. Yang, Understanding Structural Vulnerability in Graph

Convolutional Networks, in Proc. Int. Joint Conf. Artif. Intell., (2021), 2249–2255.

https://doi.org/10.24963/ijcai.2021/310

21. P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks,

arXiv preprint, (2017), arXiv:1710.10903. https://doi.org/10.48550/arXiv.1710.10903

22. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit. L. Jones, A. N. Gomez, et al., Attention is all

you need, Adv. Neural Inf. Process. Syst., 30 (2017), 5998–6008.

23. C. Zhuang, Q. Ma, Dual Graph Convolutional Networks for Graph-Based Semi-Supervised

Classification, in Proc. Int. Conf. World Wide Web, (2018), 499–508.

https://doi.org/10.1145/3178876.3186116

24. F. Hu, Y. Zhu, S. Wu, L. Wang, T. Tan, Hierarchical Graph Convolutional Networks for Semi-

supervised Node Classification, in Proc. Int. Joint Conf. Artif. Intell., (2019), 4532–4539.

https://doi.org/10.24963/ijcai.2019/630

25. Y. Zhang, S. Pal, M. Coates, D. Üstebay, Bayesian graph convolutional neural networks for semi-

supervised classification, in Proc. Int. Joint Conf. Artif. Intell., 33 (2019), 5829–5836.

https://doi.org/10.1609/aaai.v33i01.33015829

26. Y. Luo, R. Ji, T. Guan, J. Yu, P. Liu, Y. Yang, Every node counts: Self-ensembling graph

convolutional networks for semi-supervised learning, Pattern Recognit., 106 (2020), 107451.

https://doi.org/10.1016/j.patcog.2020.107451

27. P. Gong, L. Ai, Neighborhood Adaptive Graph Convolutional Network for Node Classification,

IEEE Access, 7 (2019), 170578–170588. https://doi.org/10.1109/ACCESS.2019.2955487

28. I. Chami, Z. Ying, C. Ré, J. Leskovec, Hyperbolic graph convolutional neural networks, in Proc.

Adv. Neural Inf. Process. Syst., (2019), 4868–4879.

29. J. Dai, Y. Wu, Z. Gao, Y. Jia, A Hyperbolic-to-Hyperbolic Graph Convolutional Network, in 2021

IEEE/CVF Conf. Computer Vision Pattern Recogn. (CVPR), (2021), 154–163.

https://doi.org/10.1109/CVPR46437.2021.00022

30. S. Rhee, S. Seo, S. Kim, Hybrid Approach of Relation Network and Localized Graph

Convolutional Filtering for Breast Cancer Subtype Classification, in 2018 Int. Joint Conf. Artif.

Intell., (2018), 3527–3534. https://doi.org/10.24963/ijcai.2018/490

31. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural Message Passing for

Quantum Chemistry, in 2017 Int. Conf. Machine Learn., (2017), 1263–1272.

32. M. Zhang, Z. Cui, M. Neumann, Y. Chen, An End-to-End Deep Learning Architecture for Graph

Classification, in Proc. Artif. Intell., (2018), 4438–4445.

https://doi.org/10.1609/aaai.v32i1.11782

https://doi.org/10.24963/ijcai.2021/310
https://doi.org/10.1609/aaai.v32i1.11782

4211

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

33. R. Ying, J. You, C. Morris, Hierarchical graph representation learning with differentiable pooling ,

in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., (2018), 4805–4815.

34. Y. Ma, S. Wang, C. C Aggarwal, J. Tang, Graph convolutional networks with eigenpooling, in

Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., (2019), 723–731.

https://doi.org/10.1145/3292500.3330982

35. J. Lee, I. Lee, J. Kang, Self-attention graph pooling, in Proc. 36th Int. Conf. Machine Learn.,

(2019), 3734–3743. Available from: http://proceedings.mlr.press/v97/lee19c/lee19c.pdf

36. C. Cangea, P. Velickovic, N. Jovanovic, T. Kipf, P. Lio, Towards sparse hierarchical graph

classifiers, in Proc. Adv. Neural Inf. Process. Syst., (2018).

https://doi.org/10.48550/arXiv.1811.01287

37. H. Gao, S. Ji, Graph U-Nets, in Proc. 36th Int. Conf. Machine Learn., (2019), 2083–2092.

https://doi.org/10.1109/TPAMI.2021.3081010

38. H. Gao, Z. Wang, S. Ji, Large-Scale Learnable Graph Convolutional Networks, in Proc. Knowl.

Disc. Data Min., (2018), 1416–1424. https://doi.org/10.1145/3219819.3219947

39. W. Chiang, X. Liu, S. Si, Cluster-GCN: An Efficient Algorithm for Training Deep and Large

Graph Convolutional Networks, in Proc. Knowl. Disc. Data Min., (2019), 257–266.

https://doi.org/10.1145/3292500.3330925

40. D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, Q. Gu, Layer-Dependent Importance Sampling for

Training Deep and Large Graph Convolutional Networks, in Proc. Adv. Neural Inf. Process. Syst.,

(2019), 11249–11259.

41. J. Wang, Y. Wang, Z. Yang, Bi-GCN: Binary Graph Convolutional Network, in 2021 IEEE/CVF

Conf. Comput. Vision Pattern Recogn. (CVPR), (2021), 1561–1570.

https://doi.org/10.1109/CVPR46437.2021.00161

42. F. Monti, K. Otness, M. M. Bronstein, MOTIFNET: A Motif-Based Graph Convolutional

Network for Directed Graphs, in Proc. IEEE Data Sci. Workshop, (2018), 225–228.

https://doi.org/10.1109/DSW.2018.8439897

43. J. Du, S. Zhang, G. Wu, J. M. F. Moura, S. Kar, Topology adaptive graph convolutional networks,

arXiv preprint, (2017), arXiv:1710.10370.

44. E. Yu, Y. Wang, Y. Fu, D. B. Chen, M. Xie, Identifying critical nodes in complex networks via

graph convolutional networks, Knowl.-Based Syst., 198 (2020), 105893.

https://doi.org/10.1016/j.knosys.2020.105893

45. C. Li, X. Qin, X. Xu, D. Yang, G. Wei, Scalable Graph Convolutional Networks with Fast

Localized Spectral Filter for Directed Graphs, IEEE Access, 8 (2020), 105634–105644.

https://doi.org/10.1109/ACCESS.2020.2999520

46. S. Abu-El-Haija, A. Kapoor, B. Perozzi, J. Lee, N-GCN: Multi-scale Graph Convolution for

Semi-supervised Node Classification, in Proc. Conf. Uncertainty in Artif. Intell., (2019), 841–

851.

47. S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale Dynamic Graph Convolutional

Network for Hyperspectral Image Classification, IEEE Trans. Geosci. Remote. Sens., 58 (2020),

3162–3177. https://doi.org/10.1109/TGRS.2019.2949180

48. R. Liao, Z. Zhao, R. Urtasun, R. S. Zemel, LanczosNet: Multi-Scale Deep Graph Convolutional

Networks, arXiv preprint., (2019), arXiv:1901.01484. Available from:

https://openreview.net/pdf?id=BkedznAqKQ

https://doi.org/10.1016/j.knosys.2020.105893

4212

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

49. S. Luan, M. Zhao, X. Chang, D. Precup, Break the Ceiling: Stronger Multi-scale Deep Graph

Convolutional Networks, in Proc. Conf. Workshop on Neural Inform. Process. Syst., 32 (2019),

10943–10953. Available from:

https://proceedings.neurips.cc/paper_files/paper/2019/file/ccdf3864e2fa9089f9eca4fc7a48ea0a-

Paper.pdf

50. F. Manessi, A. Rozza, M. Manzo, Dynamic Graph Convolutional Networks, Pattern Recogn., 97

(2020), 107000. https://doi.org/10.1016/j.patcog.2019.107000

51. A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, EvolveGCN: Evolving Graph

Convolutional Networks for Dynamic Graphs, in Proc. Int. Joint Conf. Artif. Intell., (2020), 5363–

5370. https://doi.org/10.1609/aaai.v34i04.5984

52. Z. Qiu, K. Qiu, J. Fu, D. Fu, DGCN: Dynamic Graph Convolutional Network for Efficient Multi-

Person Pose Estimation, in Proc. Int. Joint Conf. Artif. Intell., (2020), 11924–11931.

https://doi.org/10.1609/aaai.v34i07.6867

53. T. Song, Z. Cui, Y. Wang, W. Zheng, Q. Ji, Dynamic Probabilistic Graph Convolution for Facial

Action Unit Intensity Estimation, in Proc. IEEE Conf. Comput. Vision Pattern Recogn., (2021),

4845–4854. https://doi.org/10.1109/CVPR46437.2021.00481

54. M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. Berg, I. Titov, M. Welling, Modeling Relational Data

with Graph Convolutional Networks, In The Semantic Web: 15th Int. Conf., ESWC 2018,

Heraklion, Crete, Greece, June 3–7, 2018, 593–607. https://doi.org/10.1007/978-3-319-93417-

4_38

55. Z. Huang, X. Li, Y. Ye, M. K. Ng, MR-GCN: Multi-Relational Graph Convolutional Networks

based on Generalized Tensor Product, in Proc. Int. Joint Conf. Artif. Intell., (2020), 1258–1264.

https://doi.org/10.24963/ijcai.2020/175

56. J. Chen, L. Pan, Z. Wei, X. Wang, C. W. Ngo, T. S. Chua, Zero-Shot Ingredient Recognition by

Multi-Relational Graph Convolutional Network, in Proc. Int. Joint Conf. Artif. Intell., 34 (2020),

10542–10550. https://doi.org/10.1609/aaai.v34i07.6626

57. P. Gopalan, S. Gerrish, M. Freedman, D. Blei, D. Mimno, Scalable inference of overlapping

communities, in Proc. Conf. Workshop on Neural Inform. Process. Syst., (2012), 2249–2257.

58. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC superpixels compared to

state-of-the-art superpixel methods, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012), 2274–

2282. https://doi.org/10.1109/TPAMI.2012.120

59. W. Zheng, P. Jing, Q. Xu, Action Recognition Based on Spatial Temporal Graph Convolutional

Networks, in Proc. 3rd Int. Conf. Comput. Sci. Appl. Eng., 118 (2019), 1–5.

https://doi.org/10.1145/3331453.3361651

60. D. Tian, Z. Lu, X. Chen, L. Ma, An attentional spatial temporal graph convolutional network with

co-occurrence feature learning for action recognition, Multimed. Tools Appl., 79 (2020), 12679–

12697. https://doi.org/10.1007/s11042-020-08611-4

61. Y. Chen, G. Ma, C. Yuan, B. Li, H. Zhang, F. Wang, et al., Graph convolutional network with

structure pooling and joint-wise channel attention for action recognition, Pattern Recogn., 103

(2020), 107321. https://doi.org/10.1016/j.patcog.2020.107321

62. J. Dong, Y. Gao, H. J. Lee, H. Zhou, Y. Yao, Z. Fang, et al., Action Recognition Based on the

Fusion of Graph Convolutional Networks with High Order Features, Appl. Sci., 10 (2020), 1482.

https://doi.org/10.3390/app10041482

https://doi.org/10.1609/aaai.v34i04.5984
https://doi.org/10.1609/aaai.v34i07.6867
https://doi.org/10.24963/ijcai.2020/175
https://doi.org/10.1609/aaai.v34i07.6626
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1145/3331453.3361651
https://doi.org/10.1007/s11042-020-08611-4
https://doi.org/10.3390/app10041482

4213

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

63. Z. Chen, S. Li, B. Yang, Q. Li, H. Liu, Multi-Scale Spatial Temporal Graph Convolutional

Network for Skeleton-Based Action Recognition, in Proc. Int. Joint Conf. Artif. Intell., 35 (2021),

1113–1122. https://doi.org/10.1609/aaai.v35i2.16197

64. Y. Bin, Z. Chen, X. Wei, X. Chen, C. Gao, N. Sang, Structure-aware human pose estimation with

graph convolutional networks, Pattern Recogn., 106 (2020), 107410.

https://doi.org/10.1016/j.patcog.2020.107410

65. R. Wang, C. Huang, X. Wang, Global Relation Reasoning Graph Convolutional Networks for

Human Pose Estimation, IEEE Access, 8 (2020), 38472–38480.

https://doi.org/10.1109/ACCESS.2020.2973039

66. T. Sofianos, A. Sampieri, L. Franco, F. Galasso, Space-Time-Separable Graph Convolutional

Network for Pose Forecasting, in Proc. IEEE/ICCV Int. Conf. Comput. Vision, (2021), 11209–

11218. https://doi.org/10.48550/arXiv.2110.04573

67. Z. Zou, W. Tang, Modulated Graph Convolutional Network for 3D Human Pose Estimation, in

Proc. ICCV, (2021), 11457–11467. https://doi.org/10.1109/ICCV48922.2021.01128

68. B. Yu, H. Yin, Z. Zhu, Spatio-Temporal Graph Convolutional Networks: A Deep Learning

Framework for Traffic Forecasting, in Proc. Int. Joint Conf. Artif. Intell., (2018), 3634–3640.

https://doi.org/10.24963/ijcai.2018/505

69. Y. Han, S. Wang, Y. Ren, C. Wang, P. Gao, G. Chen, Predicting Station-Level Short-Term

Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural

Networks, ISPRS Int. J. Geo-Inform., 8 (2019), 243. https://doi.org/10.3390/ijgi8060243

70. B. Zhao, X. Gao, J. Liu, J. Zhao, C. Xu, Spatiotemporal Data Fusion in Graph Convolutional

Networks for Traffic Prediction, IEEE Access, 8 (2020), 76632–76641.

https://doi.org/10.1109/ACCESS.2020.2989443

71. L. Ge, H. Li, J. Liu, A. Zhou, Temporal Graph Convolutional Networks for Traffic Speed

Prediction Considering External Factors, in Proc. Int. Conf. Mobile Data Manag., (2019), 234–

242. https://doi.org/10.1109/MDM.2019.00-52

72. L. Ge, S. Li, Y. Wang, F. Chang, K. Wu, Global Spatial-Temporal Graph Convolutional Network

for Urban Traffic Speed Prediction, Appl. Sci.-basel, 10 (2020), 1509.

https://doi.org/10.3390/app10041509

73. P. Han, P. Yang, P. Zhao, S. Shang, Y. Liu, J. Zhou, et al., GCN-MF: Disease-Gene Association

Identification by Graph Convolutional Networks and Matrix Factorization, Knowl. Disc. Data

Min., (2019), 705–713. https://doi.org/10.1145/3292500.3330912

74. J. Li, Z. Li, R. Nie, Z. You, W. Bao, FCGCNMDA: predicting miRNA-disease associations by

applying fully connected graph convolutional networks, Mol. Genet. Genom., 295 (2020), 1197–

1209. https://doi.org/10.1007/s00438-020-01693-7

75. L. Wang, Z. You, Y. Li, K. Zhang, Y. Huang, GCNCDA: A new method for predicting circRNA-

disease associations based on Graph Convolutional Network Algorithm, PLoS Comput. Biol., 16

(2020), e1007568. https://doi.org/10.1371/journal.pcbi.1007568

76. C. Wang, J. Guo, N. Zhao, Y. Liu, X. Liu, G. Liu, et al., A Cancer Survival Prediction Method

Based on Graph Convolutional Network, IEEE Trans. NanoBiosci., 19 (2019), 117–126.

https://doi.org/10.1109/TNB.2019.2936398

77. H. Chen, F. Zhuang, L. Xiao, L. Ma, H. Liu, R. Zhang, et al., AMA-GCN: Adaptive Multi-layer

Aggregation Graph Convolutional Network for Disease Prediction, in Proc. IJCAI, (2021), 2235–

2241. https://doi.org/10.24963/ijcai.2021/308

https://doi.org/10.1609/aaai.v35i2.16197
https://doi.org/10.1016/j.patcog.2020.107410
https://doi.org/10.1109/ACCESS.2020.2973039
https://doi.org/10.48550/arXiv.2110.04573
https://doi.org/10.1109/ICCV48922.2021.01128
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.3390/ijgi8060243
https://doi.org/10.1109/ACCESS.2020.2989443
https://doi.org/10.1109/MDM.2019.00-52
https://doi.org/10.3390/app10041509
https://doi.org/10.1145/3292500.3330912
https://doi.org/10.1007/s00438-020-01693-7
https://doi.org/10.1371/journal.pcbi.1007568
https://doi.org/10.1109/TNB.2019.2936398
https://doi.org/10.24963/ijcai.2021/308

4214

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

78. K. Gopinath, C. Desrosiers, H. Lombaert, Learnable Pooling in Graph Convolutional Networks

for Brain Surface Analysis, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2022), 864–876.

https://doi.org/10.1109/TPAMI.2020.3028391

79. R. Ying, R. He, K. Chen, Graph Convolutional Neural Networks for Web-Scale Recommender

Systems, in Proc. Knowl. Disc. Data Min., (2018), 974–983.

https://doi.org/10.1145/3219819.3219890

80. X. Xia, H. Yin, J. Yu, Q. Wang, L. Cui, X. Zhang, Self-Supervised Hypergraph Convolutional

Networks for Session-based Recommendation, in Proc. Int. Joint Conf. Artif. Intell., 35 (2021),

4503–4511. https://doi.org/10.1609/aaai.v35i5.16578

81. H. Chen, L. Wang, Y. Lin, C. Yeh, F. Wang, H. Yang, Structured Graph Convolutional Networks

with Stochastic Masks for Recommender Systems, in Proc. SIGIR, (2021), 614–623.

https://doi.org/10.1145/3404835.3462868

82. L. Chen, Y. Xie, Z. Zheng, H. Zheng, J. Xie, Friend Recommendation Based on Multi-Social

Graph Convolutional Network, IEEE Access, 8 (2020), 43618–43629.

https://doi.org/10.1109/ACCESS.2020.2977407

83. T. Zhong, S. Zhang, F. Zhou, K. Zhang, G. Trajcevski, J. Wu, Hybrid graph convolutional

networks with multi-head attention for location recommendation, World Wide Web, 23 (2020),

3125–33151. https://doi.org/10.1007/s11280-020-00824-9

84. T. H. Nguyen, R. Grishman, Graph Convolutional Networks with Argument-Aware Pooling for

Event Detection, in Proc. AAAI Confer. Artif. Intell., 32 (2018).

https://doi.org/10.1609/aaai.v32i1.12039

85. Z. Guo, Y. Zhang, W. Lu, Attention Guided Graph Convolutional Networks for Relation

Extraction, Ann. Meet. Assoc. Comput. Linguist., (2019), 241–251.

https://doi.org/10.18653/v1/P19-1024

86. Y. Hong, Y. Liu, S. Yang, K. Zhang, A. Wen, J. Hu, Improving Graph Convolutional Networks

Based on Relation-Aware Attention for End-to-End Relation Extraction, IEEE Access, 8 (2020),

51315–51323. https://doi.org/10.1109/ACCESS.2020.2980859

87. Z. Meng, S. Tian, L. Yu, Y. Lv, Joint extraction of entities and relations based on character graph

convolutional network and Multi-Head Self-Attention Mechanism, J. Exp. Theor. Artif. Intell., 33

(2021), 349–362. https://doi.org/10.1080/0952813X.2020.1744198

88. L. Yao, C. Mao, Y. Luo, Graph Convolutional Networks for Text Classification, Artif. Intell.,

(2019), 7370–7377. https://doi.org/10.1609/aaai.v33i01.33017370

89. M. Chandra, D. Ganguly, P. Mitra, B. Pal, J. Thomas, NIP-GCN: An Augmented Graph

Convolutional Network with Node Interaction Patterns, in Proc. SIGIR, (2021), 2242–2246.

https://doi.org/10.1145/3404835.3463082

90. L. Xiao, X. Hu, Y. Chen, Y. Xue, D. Gu, B. Chen, et al., Targeted Sentiment Classification Based

on Attentional Encoding and Graph Convolutional Networks, Appl. Sci., 10 (2020), 957.

https://doi.org/10.3390/app10030957

91. P. Zhao, L. Hou, O. Wu, Modeling sentiment dependencies with graph convolutional networks

for aspect-level sentiment classification, Knowl.-Based Syst., 193 (2020), 105443.

https://doi.org/10.1016/j.knosys.2019.105443

92. S. Jiang, Q. Chen, X. Liu, B. Hu, L. Zhang, Multi-hop Graph Convolutional Network with High-

order Chebyshev Approximation for Text Reasoning, arXiv preprint, (2021), arXiv:2106.05221.

https://doi.org/10.18653/v1/2021.acl-long.513

https://doi.org/10.1109/TPAMI.2020.3028391
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1609/aaai.v35i5.16578
https://doi.org/10.1145/3404835.3462868
https://doi.org/10.1109/ACCESS.2020.2977407
https://doi.org/10.1007/s11280-020-00824-9
https://doi.org/10.1609/aaai.v32i1.12039
https://doi.org/10.18653/v1/P19-1024
https://doi.org/10.1109/ACCESS.2020.2980859
https://doi.org/10.1080/0952813X.2020.1744198
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1145/3404835.3463082
https://doi.org/10.3390/app10030957
https://doi.org/10.1016/j.knosys.2019.105443
https://doi.org/10.18653/v1/2021.acl-long.513

4215

Electronic Research Archive Volume 31, Issue 7, 4185-4215.

93. R. Li, H. Chen, F. Feng, Z. Ma, X. Wang, E. Hovy, Dual Graph Convolutional Networks for

Aspect-based Sentiment Analysis, in Proc. 59 Ann. Meet. Assoc. Comput. Linguist. And 11th Int.

joint Conf. Nat. Language process., 1 (2021), 6319–6329.

94. L. Lv, J. Cheng, N. Peng, M. Fan, D. Zhao, J. Zhang, Auto-encoder based Graph Convolutional

Networks for Online Financial Anti-fraud, IEEE Comput. Intell. Financ. Eng. Econ., (2019), 1–

6. https://doi.org/10.1109/CIFEr.2019.8759109

95. C. Li, D. Goldwasser, Encoding Social Information with Graph Convolutional Networks for

Political Perspective Detection in News Media, in Proc. 57th Ann. Meet. Assoc. Comput. Linguist.,

(2019), 2594–2604. https://doi.org/10.18653/v1/p19-1247

96. Y. Sun, T. He, J. Hu, H. Hang, B. Chen, Socially-Aware Graph Convolutional Network for Human

Trajectory Prediction, in 2019 IEEE 3rd Inf. Technol. Network. Electron. Autom. Control Conf.

(ITNEC), (2019), 325–333. https://doi.org/10.1109/ITNEC.2019.8729387

97. J. Chen, J. Li, M. Ahmed, J. Pang, M. Lu, X. Sun, Next Location Prediction with a Graph

Convolutional Network Based on a Seq2seq Framework, KSII Trans. Internet Inf. Syst., 14 (2020),

1909–1928. https://doi.org/10.3837/tiis.2020.05.003

98. X. Li, Y. Xin, C. Zhao, Y. Yang, Y. Chen, Graph Convolutional Networks for Privacy Metrics in

Online Social Networks, Appl. Sci.-Basel, 10 (2020), 1327. https://doi.org/10.3390/app10041327

©2023 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0).

https://doi.org/10.1109/CIFEr.2019.8759109
https://doi.org/10.18653/v1/p19-1247
https://doi.org/10.1109/ITNEC.2019.8729387
https://doi.org/10.3837/tiis.2020.05.003
https://doi.org/10.3390/app10041327

