A Leslie-Gower predator-prey model with Smith growth and constant-yield harvesting is proposed in this paper. We show that the system admits at most two boundary equilibria, both of which are unstable. The degenerate positive equilibrium of the system is a cusp of codimension 2, and the system undergoes cusp-type Bogdanov-Takens bifurcation of codimension 2. Moreover, we prove that the system has a weak focus of order at most 3, and the system can undergo a degenerate Hopf bifurcation of codimension 3. Our results reveal that the constant-yield harvesting can lead to richer dynamic behaviors.
Citation: Mengxin He, Zhong Li. Dynamic behaviors of a Leslie-Gower predator-prey model with Smith growth and constant-yield harvesting[J]. Electronic Research Archive, 2024, 32(11): 6424-6442. doi: 10.3934/era.2024299
A Leslie-Gower predator-prey model with Smith growth and constant-yield harvesting is proposed in this paper. We show that the system admits at most two boundary equilibria, both of which are unstable. The degenerate positive equilibrium of the system is a cusp of codimension 2, and the system undergoes cusp-type Bogdanov-Takens bifurcation of codimension 2. Moreover, we prove that the system has a weak focus of order at most 3, and the system can undergo a degenerate Hopf bifurcation of codimension 3. Our results reveal that the constant-yield harvesting can lead to richer dynamic behaviors.
[1] | P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. https://doi.org/10.2307/2332342 doi: 10.2307/2332342 |
[2] | P. H. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16–31. https://doi.org/10.2307/2333042 doi: 10.2307/2333042 |
[3] | A. Korobeinikov, A Lyapunov function for Leslie–Gower predator–prey models, Appl. Math. Lett., 14 (2001), 697–699. https://doi.org/10.1016/s0893-9659(01)80029-x doi: 10.1016/s0893-9659(01)80029-x |
[4] | S. B. Hsu, T. W. Huang, Global stability for a class of predator–prey system, SIAM J. Appl. Math., 55 (1995), 763–783. https://doi.org/10.1137/s0036139993253201 doi: 10.1137/s0036139993253201 |
[5] | J. C. Huang, S. G. Ruan, J. Song, Bifurcations in a predator–prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differ. Equations, 257 (2014), 1721–1752. https://doi.org/10.1016/j.jde.2014.04.024 doi: 10.1016/j.jde.2014.04.024 |
[6] | Y. F. Dai, Y. L. Zhao, B. Sang, Four limit cycles in a predator–prey system of Leslie type with generalized Holling type Ⅲ functional response, Nonlinear Anal. Real World Appl., 50 (2019), 218–239. https://doi.org/10.1016/j.nonrwa.2019.04.003 doi: 10.1016/j.nonrwa.2019.04.003 |
[7] | M. X. He, Z. Li, Global dynamics of a Leslie-Gower predator-prey model with square root response function, Appl. Math. Lett., 140 (2023), 108561. https://doi.org/10.1016/j.aml.2022.108561 doi: 10.1016/j.aml.2022.108561 |
[8] | Y. F. Wu, X. H. Ai, Analysis of a stochastic Leslie-Gower predator–prey system with Beddington-DeAngelis and Ornstein-Uhlenbeck process, Electron. Res. Arch., 32 (2024), 370-385. https://doi.org/10.3934/era.2024018 doi: 10.3934/era.2024018 |
[9] | J. Xu, Y. Tian, H. J. Guo, X. Y. Song, Dynamical analysis of a pest management Leslie-Gower model with ratio-dependent functional response, Nonlinear Dyn., 93 (2018), 507-720. https://doi.10.1007/s11071-018-4219-9 doi: 10.1007/s11071-018-4219-9 |
[10] | Y. Tian, X. R. Yan, K. B. Sun, Dual effects of additional food supply and threshold control on the dynamics of a Leslie-Gower model with pest herd behavior, Chaos Solitons Fractals, 185 (2024), 115163. https://doi.org/10.1016/j.chaos.2024.115163 doi: 10.1016/j.chaos.2024.115163 |
[11] | F. E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology, 44 (1963), 651–663. https://doi.org/10.2307/1933011 doi: 10.2307/1933011 |
[12] | V. Kumar, Pattern formation and delay-induced instability in a Leslie-Gower type prey–predator system with Smith growth function, Math. Comput. Simulat., 225 (2024), 78–97. https://doi.org/10.1016/j.matcom.2024.05.004 doi: 10.1016/j.matcom.2024.05.004 |
[13] | Z. Li, M. X. He, Hopf bifurcation in a delayed food-limited model with feedback control, Nonlinear Dyn., 76 (2014), 1215–1224. https://doi.org/10.1007/s11071-013-1205-0 doi: 10.1007/s11071-013-1205-0 |
[14] | X. Z. Feng, X. Liu, C. Sun, Y. L. Jiang, Stability and Hopf bifurcation of a modified Leslie-Gower predator–prey model with Smith growth rate and B-D functional response, Chaos Solitons Fractals, 174 (2023), 113794. https://doi.org/10.1016/j.chaos.2023.113794 doi: 10.1016/j.chaos.2023.113794 |
[15] | D. Bai, J. Zheng, Y. Kang, Global dynamics of a predator-prey model with a Smith growth function and the additive predation in prey, Discrete Continuous Dyn. Syst. Ser. B, 29 (2024), 1923–1960. https://doi.org/10.3934/dcdsb.2023161 doi: 10.3934/dcdsb.2023161 |
[16] | X. L. Han, C. Y. Lei, Bifurcation and turing instability analysis for a space- and time-discrete predator-prey system with Smith growth function, Chaos Solitons Fractals, 166 (2023), 112910. https://doi.org/10.1016/j.chaos.2022.112910 doi: 10.1016/j.chaos.2022.112910 |
[17] | H. Guo, Y. Tian, K. B. Sun, X. Y. Song, Dynamic analysis of two fishery capture models with a variable search rate and fuzzy biological parameters, Math. Biosci. Eng., 20 (2023), 21049–21074. https://doi.org/10.3934/mbe.2023931 doi: 10.3934/mbe.2023931 |
[18] | J. C. Huang, Y. J. Gong, S. G. Ruan, Bifurcations analysis in a predator-prey model with constant-yield predator harvesting, Discrete Continuous Dyn. Syst. Ser. B, 18 (2013), 2101–2121. https://doi.org/10.3934/dcdsb.2013.18.2101 doi: 10.3934/dcdsb.2013.18.2101 |
[19] | Y. C. Xu, Y. Yang, F. W. Meng, S. G. Ruan, Degenerate codimension-2 cusp of limit cycles in a Holling-Tanner model with harvesting and anti-predator behavior, Nonlinear Anal. Real World Appl., 76 (2024), 103995. https://doi.org/10.1016/j.nonrwa.2023.103995 doi: 10.1016/j.nonrwa.2023.103995 |
[20] | H. Wu, Z. Li, M. X. He, Bifurcation analysis of a Holling-Tanner model with generalist predator and constant-yield harvesting, Int. J. Bifurcation Chaos, 34 (2024), 2450076. https://doi.org/10.1142/s0218127424500767 doi: 10.1142/s0218127424500767 |
[21] | C. R. Zhu, K. Q. Lan, Phase portraits, Hopf bifurcations and limit cycles of Leslie–Gower predator-prey systems with harvesting rates, Discrete Continuous Dyn. Syst. Ser. B, 14 (2010), 289–306. https://doi.org/10.3934/dcdsb.2010.14.289 doi: 10.3934/dcdsb.2010.14.289 |
[22] | Z. F. Zhang, T. R. Ding, W. Z. Huang, Z. X. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, American Mathematical Society, 1992. https://doi.org/10.1090/mmono/101 |
[23] | L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1996. https://doi.org/10.1007/978-1-4684-0392-3 |
[24] | X. W. Chen, W. N. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 23 (2009), 565–581. https://doi.org/10.1016/j.cam.2009.06.029 doi: 10.1016/j.cam.2009.06.029 |
[25] | Z. Lu, B. He, Y. Lou, L. Pan, An algorithm of real root isolation for polynomial systems with application to the construction of limit cycles, Symb. Numer. Comput., 232 (2007), 131–147. https://doi.org/10.1007/978-3-7643-7984-1_9 doi: 10.1007/978-3-7643-7984-1_9 |
[26] | M. Lampart, J. Zapom$\check{e}$l, The disturbance influence on vibration of a belt device driven by a crank mechanism, Chaos Solitons Fractals, 173 (2023), 113634. https://doi.org/10.1016/j.chaos.2023.113634 doi: 10.1016/j.chaos.2023.113634 |
[27] | A. Lampartov$\acute{a}$, M. Lampart, Exploring diverse trajectory patterns in nonlinear dynamic systems, Chaos Solitons Fractals, 182 (2024), 114863. https://doi.org/10.1016/j.chaos.2024.114863 doi: 10.1016/j.chaos.2024.114863 |