In the work by Li (J. Combin. Theory Ser. B, 99 (2009), 447–454.), the author characterized the classification of vertex transitive embeddings of complete graphs, and proposed how to enumerate such maps. In this paper, we study the counting problem of orientable vertex imprimitive complete maps, which is the automorphism group of this map acts imprimitively on its vertex set. Moreover, we obtain the number of non-isomorphic embeddings when the vertex-stabilizer subgroups of the automorphism groups of maps are isomorphic to $ \text{Z}_{p-1} $ with odd prime $ p $.
Citation: Xue Yu. Orientable vertex imprimitive complete maps[J]. Electronic Research Archive, 2024, 32(4): 2466-2477. doi: 10.3934/era.2024113
In the work by Li (J. Combin. Theory Ser. B, 99 (2009), 447–454.), the author characterized the classification of vertex transitive embeddings of complete graphs, and proposed how to enumerate such maps. In this paper, we study the counting problem of orientable vertex imprimitive complete maps, which is the automorphism group of this map acts imprimitively on its vertex set. Moreover, we obtain the number of non-isomorphic embeddings when the vertex-stabilizer subgroups of the automorphism groups of maps are isomorphic to $ \text{Z}_{p-1} $ with odd prime $ p $.
[1] | Y. Q. Feng, J. H. Kwak, J. X. Zhou, Enumerating reflexible 2-cell embeddings of connected graphs, Sci. China Math., 56 (2013), 933–950. https://doi.org/10.1007/s11425-012-4544-2 doi: 10.1007/s11425-012-4544-2 |
[2] | L. D. James, G. A. Jones, Regular orientable imbeddings of complete graphs, J. Combin. Theory Ser. B, 39 (1985), 353–367. |
[3] | V. P. Korzhik, H. J. Voss, On the number of nonisomorphic orientable regular embeddings of complete graphs, J. Combin. Theory Ser. B, 81 (2001), 58–76. |
[4] | N. L. Biggs, Classification of complete maps on orientable surfaces, Rend. Mat., 4 (1971), 645–655. |
[5] | N. L. Biggs, Cayley maps and symmetrical maps, in Mathematical Proceedings of the Cambridge Philosophical Society, 72 (1972), 381–386. |
[6] | R. B. Richter, J. Širáň, R. Jajcay, T. W. Tucker, M. E. Watkins, Cayley maps, J. Combin. Theory Ser. B, 95 (2005), 189–245. https://doi.org/10.1016/j.jctb.2005.04.007 |
[7] | M. Škoviera, J. Širáň, Regular maps from Cayley graphs, Part 1: balanced Cayley maps, Discrete Math., 109 (1992), 265–276. https://doi.org/10.1016/0012-365X(92)90296-R doi: 10.1016/0012-365X(92)90296-R |
[8] | C. H. Li, Vertex transitive embeddings of complete graphs, J. Combin. Theory Ser. B, 99 (2009), 447–454. https://doi.org/10.1016/j.jctb.2008.09.002 doi: 10.1016/j.jctb.2008.09.002 |
[9] | J. Širáň, T. W. Tucker, Characterization of graphs which admit vertex-transitive embeddings, J. Graph Theory, 55 (2007), 233–248. https://doi.org/10.1002/jgt.20239 doi: 10.1002/jgt.20239 |
[10] | X. Yu, Q. S. Zhang, Orientable vertex transitive embeddings of $\text{K}_p$, AIMS Math., 8 (2023), 15024–15034. https://doi.org/10.3934/math.2023767 doi: 10.3934/math.2023767 |
[11] | L. D. James, Edge-symmetric orientable imbeddings of complete graphs, European J. Combin., 11 (1990), 133–144. |
[12] | X. Yu, B. G. Lou, The edge-regular complete maps, Open Math., 18 (2020), 1719–1726. https://doi.org/10.1515/math-2020-0115 doi: 10.1515/math-2020-0115 |
[13] | J. Y. Chen, W. W. Fan, Complete bipartite multi-graphs with a unique regular dessin, J. Algebr. Combin., 54 (2021), 635–649. https://doi.org/10.1007/s10801-021-01019-9 doi: 10.1007/s10801-021-01019-9 |
[14] | W. W. Fan, C. H. Li, The complete bipartite graphs with a unique edge-transitive embedding, J. Graph Theory, 87 (2018), 581–586. https://doi.org/10.1002/jgt.22176 doi: 10.1002/jgt.22176 |
[15] | W. W. Fan, C. H. Li, S. H. Qiao, Complete circular regular dessins of coprime orders, Discrete Math., 346 (2023), 113189. https://doi.org/10.1016/j.disc.2022.113189 doi: 10.1016/j.disc.2022.113189 |
[16] | W. W. Fan, C. H. Li, and N. Wang, Edge-transitive uniface embeddings of bipartite multi-graphs, J. Algebr. Combin., 49 (2019), 125–134. https://doi.org/10.1007/s10801-018-0821-7 doi: 10.1007/s10801-018-0821-7 |
[17] | Y. Q. Feng, K. Hu, R. Nedela, M. Skoviera, N. E. Wang, Complete regular dessins and skew-morphisms of cyclic groups, Ars Math. Contemp., 18 (2020), 289–307. |
[18] | X. Yu, B. G. Lou, W. W. Fan, The complete bipartite graphs which have exactly two orientably edge-transitive embeddings, Ars Math. Contemp., 18 (2020), 371–379. |
[19] | S. Lawrencenko, A. M. Magomedov, Generating the triangulations of the torus with the vertex-labeled complete 4-partite graph $\text{K}_{2, 2, 2, 2}$, Symmetry, 13 (2021), 1418. https://doi.org/10.3390/sym13081418 doi: 10.3390/sym13081418 |
[20] | L. D. James, Imbeddings of the complete graph, Ars Combin., 16 (1983), 57–72. |
[21] | V. P. Korzhik, H. J. Voss, Exponential families of non-isomorphic non-triangular orientable genus embeddings of complete graphs, J. Combin. Theory Ser. B, 86 (2002), 186–211. |
[22] | B. P. Mull, R. G. Rieper, A. T. White, Enumerating $2$-cell imbeddings of connected graphs, Proc. Amer. Math. Soc., 103 (1988), 321–330. |
[23] | N. L. Biggs, A. T. White, Permutation Groups and Combinatorial Structures, Cambridge University Press, Cambridge-New York, 1979. |
[24] | R. Jajcay, R. Nedela, Half-regular Cayley maps, Graphs Combin., 31 (2015), 1003–1018. https://doi.org/10.1007/s00373-014-1428-y |
[25] | P. Webb, A Course in Finite Group Representation Theory, Cambridge University Press, Cambridge, 2016. |
[26] | B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967. |
[27] | M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 2000. |
[28] | A. Devillers, W. Jin, C. H. Li, C. E. Praeger, On normal 2-geodesic transitive Cayley graphs, J. Algebr. Combin., 39 (2014), 903–918. https://doi.org/10.1007/s10801-013-0472-7 doi: 10.1007/s10801-013-0472-7 |
[29] | J. D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996. |