Research article Special Issues

An unconditionally stable numerical scheme for competing species undergoing nonlocal dispersion

  • Received: 01 January 2024 Revised: 04 March 2024 Accepted: 12 March 2024 Published: 26 March 2024
  • Nonstandard numerical approximation for the study of a competition model for two species that experience nonlocal diffusion, or dispersion, allows for faithful representation of the theoretical solution to the system. Such a scheme may preserve positivity of solutions, be uniquely solvable, and be completely stable. Under appropriate conditions, the error between the scheme and the theoretical solution can be measured. We present such a scheme here and confirm its desirable properties as they reflect the solution to the system.

    Citation: Jianlong Han, Seth Armstrong, Sarah Duffin. An unconditionally stable numerical scheme for competing species undergoing nonlocal dispersion[J]. Electronic Research Archive, 2024, 32(4): 2478-2490. doi: 10.3934/era.2024114

    Related Papers:

  • Nonstandard numerical approximation for the study of a competition model for two species that experience nonlocal diffusion, or dispersion, allows for faithful representation of the theoretical solution to the system. Such a scheme may preserve positivity of solutions, be uniquely solvable, and be completely stable. Under appropriate conditions, the error between the scheme and the theoretical solution can be measured. We present such a scheme here and confirm its desirable properties as they reflect the solution to the system.



    加载中


    [1] K. Chueh, C. Conley, J. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26 (1977), 373–392.
    [2] K. Gopalsamy, Competition, dispersion and coexistence, Math. Biosci., 33 (1977), 25–33. https://doi.org/10.1016/0025-5564(77)90061-X doi: 10.1016/0025-5564(77)90061-X
    [3] K. Harada, T. Fukao, Coexistence of competing species over a linear habitat of finite length, Math. Biosci., 38 (1978), 279–291. https://doi.org/10.1016/0025-5564(78)90049-4 doi: 10.1016/0025-5564(78)90049-4
    [4] J. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edition, Springer-Verlag, New York, 2003.
    [5] W. Ni, J. Shi, M. Wang, Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model, J. Differ. Equation, 264 (2018), 6891–6932. https://doi.org/10.1016/j.jde.2018.02.002 doi: 10.1016/j.jde.2018.02.002
    [6] V. Hutson, S. Martinez, K. Mischaikow, G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483–517. https://doi.org/10.1007/s00285-003-0210-1 doi: 10.1007/s00285-003-0210-1
    [7] P. Bates, J. Han, G. Zhao, On a nonlocal phase-field system, Nonlinear Anal. Theory Methods Appl., 64 (2006), 2251–2278. https://doi.org/10.1016/j.na.2005.08.013 doi: 10.1016/j.na.2005.08.013
    [8] P. W. Bates, On some nonlocal evolution equations arising from materials science, Fields Inst. Comm., 48 (2006), 13–52.
    [9] P. Bates, P. Fife, X. Ren, X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105–136. http://dx.doi.org/10.1007/s002050050037 doi: 10.1007/s002050050037
    [10] Q. Gan, R. Xu, P. Yang, X. Zhang, Traveling waves of a three-species Lotka–Volterra food-chain model with spatial diffusion and time delays, Nonlinear Anal. Real World Appl., 11 (2010), 2817–2832. https://doi.org/10.1016/j.nonrwa.2009.10.006 doi: 10.1016/j.nonrwa.2009.10.006
    [11] H. Huang, P. Weng, J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction, IMA J. Appl. Math., 68 (2003), 409–439. https://doi.org/10.1093/imamat/68.4.409 doi: 10.1093/imamat/68.4.409
    [12] Z. Xun, D. Xiao, Minimal wave speed and uniqueness of traveling waves for a nonlocal diffusion population model with spatio-temporal delays, Differ. Integral Equation, 27 (2014), 1073–1106. https://doi.org/10.57262/die/1408366785 doi: 10.57262/die/1408366785
    [13] P. Bates, S. Brown, J. Han, Numerical analysis for a nonlocal Allen-Cahn equation, Int. J. Numer. Anal. Mod., 6 (2009), 33–49.
    [14] R. Lin, H. Zhu, A discontinuous Galerkin least-squares finite element method for solving Fisher's equation, in Conference Publications, 2013 (2013), 489–497. https://doi.org/10.3934/proc.2013.2013.489
    [15] S. Armstrong, J. Han, An unconditionally stable numerical scheme for a competition system involving diffusion terms, Int. J. Numer. Anal. Mod., 17 (2020), 212–235.
    [16] S. Armstrong, S. Duffin, J. Han, C. Zhang, Long-term behavior and numerical analysis of a nonlocal evolution equation with Kac potential, SIAM J. Math. Anal., 47 (2015), 1234–1252. https://doi.org/10.1137/130949956 doi: 10.1137/130949956
    [17] A. de Masi, E. Orlandi, E. Presutti, L. Triolo, Glauber evolution with Kac potentials. Ⅰ. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity, 7 (1994), 633–696. https://doi.org/10.1088/0951-7715/7/3/001 doi: 10.1088/0951-7715/7/3/001
    [18] A. de Masi, E. Orlandi, E. Presutti, L. Triolo, Uniqueness and global stability of the instanton in non local evolution equations, Rend. Mat. Appl., 14 (1994), 693–723.
    [19] A. de Masi, E. Orlandi, E. Presutti, L. Triolo, Stability of the interface in a model of phase separation, Proc. R. Soc. Edinb. A: Math. 124 (1994), 1013–1022. https://doi.org/10.1017/S0308210500022472 doi: 10.1017/S0308210500022472
    [20] A. de Masi, E. Orlandi, E. Presutti, L. Triolo, Motion by curvature by scaling nonlocal evolution equations, J. Stat. Phys., 73 (1993), 543–570. https://doi.org/10.1007/BF01054339 doi: 10.1007/BF01054339
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(716) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog