Research article Special Issues

On fast reconstruction of periodic structures with partial scattering data

  • Received: 21 August 2024 Revised: 12 November 2024 Accepted: 19 November 2024 Published: 29 November 2024
  • This paper presents a numerical method for solving the inverse problem of reconstructing the shape of periodic structures from scattering data. This inverse problem is motivated by applications in the nondestructive evaluation of photonic crystals. The numerical method belongs to the class of sampling methods that aim to construct an imaging function for the shape of the periodic structure using scattering data. By extending the results of Nguyen, Stahl, and Truong [Inverse Problems, 39:065013, 2023], we studied a simple imaging function that uses half the data required by the numerical method in the cited paper. Additionally, this imaging function is fast, simple to implement, and very robust against noise in the data. Both isotropic and anisotropic cases were investigated, and numerical examples were presented to demonstrate the performance of the numerical method.

    Citation: John Daugherty, Nate Kaduk, Elena Morgan, Dinh-Liem Nguyen, Peyton Snidanko, Trung Truong. On fast reconstruction of periodic structures with partial scattering data[J]. Electronic Research Archive, 2024, 32(11): 6481-6502. doi: 10.3934/era.2024303

    Related Papers:

  • This paper presents a numerical method for solving the inverse problem of reconstructing the shape of periodic structures from scattering data. This inverse problem is motivated by applications in the nondestructive evaluation of photonic crystals. The numerical method belongs to the class of sampling methods that aim to construct an imaging function for the shape of the periodic structure using scattering data. By extending the results of Nguyen, Stahl, and Truong [Inverse Problems, 39:065013, 2023], we studied a simple imaging function that uses half the data required by the numerical method in the cited paper. Additionally, this imaging function is fast, simple to implement, and very robust against noise in the data. Both isotropic and anisotropic cases were investigated, and numerical examples were presented to demonstrate the performance of the numerical method.



    加载中


    [1] W. Dorfler, A. Lechleiter, M. Plum, G. Schneider, C. Wieners, Photonic Crystals: Mathematical Analysis and Numerical Approximation, Springer, 2012. https://doi.org/10.1007/978-3-0348-0113-3
    [2] T. Arens, N. Grinberg, A complete factorization method for scattering by periodic structures, Computing, 75 (2005), 111–132. https://doi.org/10.1007/s00607-004-0092-0 doi: 10.1007/s00607-004-0092-0
    [3] G. Bao, T. Cui, P. Li, Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799–4816. https://doi.org/10.1364/OE.22.004799 doi: 10.1364/OE.22.004799
    [4] F. Cakoni, H. Haddar, T. P. Nguyen, New interior transmission problem applied to a single Floquet–Bloch mode imaging of local perturbations in periodic media, Inverse Probl., 35 (2019), 015009. https://doi.org/10.1088/1361-6420/aaecfd doi: 10.1088/1361-6420/aaecfd
    [5] H. Haddar, T. P. Nguyen, Sampling methods for reconstructing the geometry of a local perturbation in unknown periodic layers, Comput. Math. Appl., 74 (2017), 2831–2855. https://doi.org/10.1016/j.camwa.2017.07.015 doi: 10.1016/j.camwa.2017.07.015
    [6] A. Lechleiter, D. L. Nguyen, Factorization method for electromagnetic inverse scattering from biperiodic structures, SIAM J. Imag. Sci., 6 (2013), 1111–1139. https://doi.org/10.1137/120903968 doi: 10.1137/120903968
    [7] D. L. Nguyen, The factorization method for the Drude-Born-Fedorov model for periodic chiral structures, Inverse Probl. Imaging, 10 (2016), 519–547. https://doi.org/10.3934/ipi.2016010 doi: 10.3934/ipi.2016010
    [8] D. L. Nguyen, T. Truong, Imaging of bi-anisotropic periodic structures from electromagnetic near field data, J. Inverse Ill-Posed Probl., 30 (2022), 205–219. https://doi.org/10.1515/jiip-2020-0114 doi: 10.1515/jiip-2020-0114
    [9] T. P. Nguyen, Differential imaging of local perturbations in anisotropic periodic media, Inverse Probl., 36 (2020), 034004. https://doi.org/10.1088/1361-6420/ab2066 doi: 10.1088/1361-6420/ab2066
    [10] K. Sandfort, The Factorization Method for Inverse Scattering from Periodic Inhomogeneous Media, Ph.D thesis, Karlsruher Institut für Technologie, 2010. https://doi.org/10.5445/KSP/1000019400
    [11] J. Yang, B. Zhang, R. Zhang, A sampling method for the inverse transmission problem for periodic media, Inverse Probl., 28 (2012), 035004. https://doi.org/10.1088/0266-5611/28/3/035004 doi: 10.1088/0266-5611/28/3/035004
    [12] A. Kirsch, N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, 2008. https://doi.org/10.1093/acprof: oso/9780199213535.001.0001
    [13] D. Colton, A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Probl., 12 (1996), 383–393. https://doi.org/10.1088/0266-5611/12/4/003 doi: 10.1088/0266-5611/12/4/003
    [14] A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Probl., 14 (1998), 1489–1512. https://doi.org/10.1088/0266-5611/14/6/009 doi: 10.1088/0266-5611/14/6/009
    [15] X. Jiang, P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004. https://doi.org/10.1088/1361-6420/aa76b9 doi: 10.1088/1361-6420/aa76b9
    [16] R. Griesmaier, Multi-frequency orthogonality sampling for inverse obstacle scattering problems, Inverse Probl., 27 (2011), 085005. https://doi.org/10.1088/0266-5611/27/8/085005 doi: 10.1088/0266-5611/27/8/085005
    [17] I. Harris, D. L. Nguyen, Orthogonality sampling method for the electromagnetic inverse scattering problem, SIAM J. Sci. Comput., 42 (2020), B722–B737. https://doi.org/10.1137/19M129783X doi: 10.1137/19M129783X
    [18] K. Ito, B. Jin, J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Probl., 28 (2012), 025003. https://doi.org/10.1088/0266-5611/28/2/025003 doi: 10.1088/0266-5611/28/2/025003
    [19] R. Potthast, A study on orthogonality sampling, Inverse Probl., 26 (2010), 074015. https://doi.org/10.1088/0266-5611/26/7/074015 doi: 10.1088/0266-5611/26/7/074015
    [20] D. L. Nguyen, K. Stahl, T. Truong, A new sampling indicator function for stable imaging of periodic scattering media, Inverse Probl., 39 (2023), 065013. https://doi.org/10.1088/1361-6420/acce5f doi: 10.1088/1361-6420/acce5f
    [21] D. L. Nguyen, T. Truong, A stable imaging functional for anisotropic periodic media in electromagnetic inverse scattering, SIAM J. Appl. Math., 84 (2024), 1631–1657. https://doi.org/10.1137/23M1577080 doi: 10.1137/23M1577080
    [22] A. S. Bonnet-Bendhia, F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem, Math. Methods Appl. Sci., 17 (1994), 305–338. https://doi.org/10.1002/mma.1670170502 doi: 10.1002/mma.1670170502
    [23] D. L. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edition, Springer, 1998. https://doi.org/10.1007/978-3-662-03537-5
    [24] A. Lechleiter, D. L. Nguyen, Volume integral equations for scattering from anisotropic diffraction gratings, Math. Methods Appl. Sci., 36 (2013), 262–274. https://doi.org/10.1002/mma.2585 doi: 10.1002/mma.2585
    [25] A. Lechleiter, D. L. Nguyen, A trigonometric Galerkin method for volume integral equations arising in TM grating scattering, Adv. Comput. Math., 40 (2014), 1–25. https://doi.org/10.1007/s10444-013-9295-2 doi: 10.1007/s10444-013-9295-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(410) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog