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Abstract: This paper presents a numerical method for solving the inverse problem of reconstructing
the shape of periodic structures from scattering data. This inverse problem is motivated by applications
in the nondestructive evaluation of photonic crystals. The numerical method belongs to the class of
sampling methods that aim to construct an imaging function for the shape of the periodic structure using
scattering data. By extending the results of Nguyen, Stahl, and Truong [Inverse Problems, 39:065013,
2023], we studied a simple imaging function that uses half the data required by the numerical method in
the cited paper. Additionally, this imaging function is fast, simple to implement, and very robust against
noise in the data. Both isotropic and anisotropic cases were investigated, and numerical examples were
presented to demonstrate the performance of the numerical method.
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1. Introduction

We consider the inverse scattering problem for two-dimensional periodic structures which are as-
sumed to be unboundedly periodic in the horizontal direction and bounded in the vertical direction.
These periodic strutures are motivated by one-dimensional photonic crystals [1]. The inverse scattering
problem of interest aims to reconstruct the shape of these periodic structures from boundary scattering
data. This inverse problem is motivated by applications of nondestructive testing for photonic crystals.

During the past two decades, there has been a considerable amount of research on numerical meth-
ods for this inverse problem, see [2–11]. A significant portion of these studies involves the factorization
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method [12]. This method, which belongs to the class of sampling or qualitative methods, was intro-
duced by D. Colton and A. Kirsch [13, 14]. The factorization method aims to construct a necessary
and sufficient characterization of the unknown scatterer from multi-static scattering data. It is a fast
and non-iterative method that does not require advanced a priori information about the unknown scat-
terers. However, it is not very robust against noise in the data when imaging periodic structures [2].
For periodic scattering structures modeled by a smooth periodic function multiplied by a small surface
deformation parameter, the near-field imaging method [3, 15] can provide reconstruction with super
resolution.

Inspired by the direct or orthogonality sampling methods [16–19], a sampling method with novel
imaging functions has been recently developed in [20,21] for imaging periodic structures from scatter-
ing data. Similar to the direct sampling method, this new sampling method is fast, stable, and simple
to implement, avoiding the need to solve an ill-posed problem. Numerical studies also show that
this method is more accurate than the direct sampling method and more stable than the factorization
method for imaging periodic structures. This paper extends the results in [20]. Specifically, we modify
the imaging function developed in [20] to use only half the data required by the original imaging func-
tion. Additionally, this imaging function is fast, simple to implement, and very robust against noise in
the data. We study the modified imaging function for both isotropic and anisotropic cases of periodic
scattering media. Numerical examples are presented to demonstrate the performance of the numerical
method and to compare it with the direct sampling method and the factorization method.

The paper is organized as follows. The basics of the scattering from periodic media and the inverse
problem of interest are described in Section 2. The modified imaging function and its analysis for
the isotropic case are discussed in Section 3. Results for the case of anisotropic media are presented
in Section 4. Finally, Section 5 is dedicated to a numerical study of the sampling method and its
comparison to the factorization method and the orthogonality sampling method.

2. Problem setup

We consider a two-dimensional medium that is 2π periodic in the x1-direction and bounded in the
x2-direction. While we choose the period to be 2π for convenience, the medium can have any arbitrary
period. For α ∈ R, a function f : R2 → C is α-quasiperiodic in x1 if

f (x1 + 2π j, x2) = ei2π jα f (x1, x2), ∀ j ∈ Z.

Let q : R2 → R be a bounded function that represents the material parameter of the medium
relative to that of the background. Assume that q is 2π-periodic in x1, supp(q) is bounded in x2, and
q = 0 outside of the medium. We consider an α-quasiperiodic incident field, uin, to illuminate the
medium. The medium scatters the incident field and produces a scattered field, usc, which satisfies the
Helmholtz equation,

∆usc + k2usc = −k2qu in R2, (2.1)

where u := usc + uin is the total field, and k > 0 is the wave number. It is well known that usc is also
α-quasiperiodic in x1. Thus, the problem can be reduced to one period:

Ω := (−π, π) × R.
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Let D := supp(q) ∩Ω and h > 0 such that

h > sup{|x2| : x = (x1, x2) ∈ D}. (2.2)

To ensure that the direct scattering problem is well-posed, we impose the Rayleigh radiation condi-
tion for the scattered field as

usc(x) =


∑

j∈Z u+j eiα j x1+iβ j(x2−h), x2 ≥ h,∑
j∈Z u−j eiα j x1−iβ j(x2+h), x2 ≤ −h,

(2.3)

where

α j := α + j, β j :=


√

k2 − α2
j , k2 > α2

j

i
√
α2

j − k2, k2 < α2
j

j ∈ Z,

and u±j , j ∈ Z, are called the Rayleigh coefficients of the scattered field. The condition (2.3) means
that usc is an outgoing wave. Note that we exclude the case where k = α j for some j, which is known
as Wood’s anomaly. See [22] for a detailed discussion on well-posedness of the direct problem under
some assumption on q and wave number k. For the study of the inverse problem of this paper, we will
assume that the direct problem (2.1)–(2.3) is well-posed. Let

Γ±h := (−π, π) × {±h},

and the inverse problem of interest can be stated as follows.

Inverse problem: Using multiple incident fields at a fixed wave number k to illuminate an unknown
scattering medium, determine the geometry D of the medium from the measurement of the scattered
fields on either Γ+h or Γ−h.

To solve this inverse problem, we introduce a new imaging function, which is inspired by that for
the case of full measurement on Γ+h ∪ Γ−h in [20].

3. The imaging function and its properties

For N ∈ N and l = 1, 2, . . . ,N, we denote by uin(x, l) the incident fields used to illuminate the
unknown medium. The corresponding scattered fields and total fields are denoted by usc(x, l) and
u(x, l), respectively. It is well-known that the scattered fields satisfy the Lippmann-Schwinger integral
equation [23]:

usc(x, l) = k2
∫

D
G(x, y)q(y)u(y, l)dy, (3.1)

where G(x, y) is the α-quasiperiodic Green’s function, which admits the following series representa-
tion [1]:

G(x, y) :=
i

4π

∑
j∈Z

1
β j

eiα j(x1−y1)+iβ j |x2−y2 |, x, y ∈ Ω, x , y. (3.2)

Note that G(·, y) also admits a Rayleigh expansion similar to (2.3), and its Rayleigh coefficients
g±j (y) are given by

g±j (y) =
i

4πβ j
e−iα jy1∓iβ j(y2∓h). (3.3)
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Now, let us discuss the following lemma, which is the motivation behind the definition of the imag-
ing function.

Lemma 1. Let Ωh := (−π, π) × (−h, h) and

F(x, y) :=
G(x, y) −G(y, x)

2i
.

Then, for x ∈ Γ+h ∪ Γ−h and y ∈ Ωh,

F(x, y) =
1

8π2

∑
j:β j>0

1
β j

eiα j(x1−y1) cos(β j(x2 − y2)).

Moreover, for y, z ∈ Ωh,∫
Γ+h∪Γ−h

∂F(x, y)
∂ν(x)

G(x, z) − F(x, y)
∂G(x, z)
∂ν(x)

ds(x) = F(z, y), (3.4)

where ν(x) denotes the normal vector.

Proof. For x ∈ Γ+h and y ∈ Ωh, we have x2 > y2 and

G(x, y) =
i

4π

∑
j∈Z

1
β j

eiα j(x1−y1)+iβ j(x2−y2), (3.5)

G(y, x) =
−i
4π

∑
j∈Z

1

β j

e−iα j(y1−x1)−iβ j(x2−y2).

From these two expressions, we can see that the terms for which β j is complex-valued in G(x, y)
coincide with their counterparts in G(y, x). Thus,

F(x, y) =
1

8π

∑
j:β j>0

1
β j

eiα j(x1−y1)
(
eiβ j(x2−y2) + e−iβ j(x2−y2)

)
=

1
4π

∑
j:β j>0

1
β j

eiα j(x1−y1) cos(β j(x2 − y2)).

Next, for fixed z, y ∈ Ωh,∫
Γ+h

∂F(x, y)
∂ν

G(x, z) − F(x, y)
∂G(x, z)
∂ν

ds(x)

=
i

16π2

∫
Γ+h

∑
j:β j>0

eiα j(x1−y1) sin(β j(x2 − y2))
∑
j∈Z

1

β j

e−iα j(x1−z1)−iβ j(x2−z2) ds(x)

+
1

16π2

∫
Γ+h

∑
j:β j>0

1
β j

eiα j(x1−y1) cos(β j(x2 − y2))
∑
j∈Z

e−iα j(x1−z1)−iβ j(x2−z2) ds(x)

=
i

16π2

∑
j1:β j1>0

∑
j2∈Z

1

β j2

sin(β j1(h − y2))e−iβ j2 (h−z2)eiα j2 z1−iα j1 y1

∫ π

−π

ei( j1− j2)x1 dx1

+
1

16π2

∑
j1:β j1>0

∑
j2∈Z

1
β j1

cos(β j(h − y2))e−iβ j2 (h−z2)eiα j2 z1−iα j1 y1

∫ π

−π

ei( j1− j2)x1 dx1.

Electronic Research Archive Volume 32, Issue 11, 6481–6502.



6485

Note that ∫ π

−π

ei( j1− j2)x1 dx1 =

2π if j1 = j2,

0 if j1 , j2,
(3.6)

and therefore,∫
Γ+h

∂F(x, y)
∂ν

G(x, z) − F(x, y)
∂G(x, z)
∂ν

ds(x) =
i

8π

∑
j:β j>0

1
β j

sin(β j(h − y2))e−iβ j(h−z2)eiα j(z1−y1)

+
1

8π

∑
j:β j>0

1
β j

cos(β j(h − y2))e−iβ j(h−z2)eiα j(z1−y1)

=
1

8π

∑
j:β j>0

1
β j

eiα j(z1−y1)+iβ j(z2−y2).

Similarly, for x ∈ Γ−h and y ∈ Ωh, we have x2 < y2, and we can show that

F(x, y) =
1

8π2

∑
j:β j>0

1
β j

eiα j(z1−y1) cos(β j(z2 − y2)).

Moreover, by the same reasoning, we can also show that∫
Γ−h

∂F(x, y)
∂ν

G(x, z) − F(x, y)
∂G(x, z)
∂ν

ds(x) =
1

8π

∑
j:β j>0

1
β j

eiα j(z1−y1)−iβ j(z2−y2).

Therefore, ∫
Γ+h∪Γ−h

∂F(x, y)
∂ν

G(x, z) − F(x, y)
∂G(x, z)
∂ν

ds(x)

=
1

8π

∑
j:β j>0

(
eiα j(z1−y1)+iβ j(z2−y2) + eiα j(z1−y1)−iβ j(z2−y2)

)
=

1
4π

∑
j:β j>0

1
β j

eiα j(z1−y1) cos(β j(z2 − y2)) = F(z, y).

The reason why (3.4) helps us define the imaging function is as follows. Using the Rayleigh expan-
sion of the Green’s function, the left-hand side of (3.4) becomes∫

Γ+h∪Γ−h

∂F(x, y)
∂ν

G(x, z) − F(x, y)
∂G(x, z)
∂ν

ds(x) = 2π
∑
j:β j>0

β j

(
g+j (z)g+j (y) + g−j (z)g−j (y)

)
.

Then, as done in [20], we can show that

2π
∑
j:β j>0

β j

(
g+j (z)u+j (l) + g−j (z)u−j (l)

)
= k2

∫
D

F(z, y)q(y)u(y, l) dy.
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So, if we define the imaging function as

I(z) :=
N∑

l=1

∣∣∣∣∣∣∣∣
∑
j:β j>0

β j

(
g+j (z)u+j (l) + g−j (z)u−j (l)

)∣∣∣∣∣∣∣∣
p

,

we would have

I(z) =
N∑

l=1

∣∣∣∣∣∣ k2

2π

∫
D

F(z, y)q(y)u(y, l) dy

∣∣∣∣∣∣p .
From this equation, we can expect the imaging function to exhibit behaviors similar to the kernel

F(z, y). We will discuss this in detail shortly. In the case of data measured on either Γ+h or Γ−h, we
will only have either u+j or u−j , respectively. A natural way to modify the imaging function is to omit
the term for which data is not available. For example, when data is measured only on Γ+, the term
g−j (z)u−j (l) will be dropped.

For z ∈ Ωh, we define the (general) imaging function I(z) as

I(z) :=
N∑

l=1

∣∣∣∣∣∣∣∣
∑
j:β j>0

β j

(
χ+(t)u+j (l)g+j (z) + χ−(t)u−j (l)g−j (z)

)∣∣∣∣∣∣∣∣
p

, (3.7)

where p ∈ N is used to sharpen the resolution of the imaging function, t ∈ {U, L, B} (abbreviations for
Upper, Lower, and Both), and

χ+(t) =
{

1, for t = U, B
0, for t = L

, χ−(t) =
{

1, for t = L, B
0, for t = U.

The choice of t here allows the imaging function to apply to scattering data measured on either one
side (Upper or Lower) or both sides (Both) of the periodic structures. The imaging function defined
above satisfies the following property.

Theorem 2. For all z ∈ Ωh, the imaging function I(z) satisfies

I(z) =
N∑

l=1

∣∣∣∣∣k2
∫

D
Ft(z, y)q(y)u(y, l)dy

∣∣∣∣∣p
where

Ft(z, y) =



1
16π2

∑
j:β j>0

1
β j

eiα j(z1−y1)+iβ j(z2−y2) if t = U,

1
16π2

∑
j:β j>0

1
β j

eiα j(z1−y1)−iβ j(z2−y2) if t = L,

1
8π2

∑
j:β j>0

1
β j

eiα j(z1−y1) cos(β j(z2 − y2)) if t = B.

(3.8)

Remark 3. Graphical observations display that the kernel functions (3.8) exhibit a peak when z ≈ y
and decay rapidly as z and y are apart from each other. Moreover, this peak becomes more distinct
with larger values of k, as shown in Figure 1.
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(a) k = 5.5 (b) k = 10.5

Figure 1. The values of |FU(z, 0)| for α = 0.

The behavior of the kernel can be justified in some simple cases. For example, in the context of
near-field measurements, where Γ±h are very close to periodic scatterer D, we can reasonably assume
that z2 ≈ y2. Furthermore, if we consider α ≈ 0 in the incident field, the kernel FU(z, y) simplifies to

FU(z, y) ≈
1

16π2

∑
j:| j|<k

ei j(z1−y1)√
k2 − j2

=
1

16π2k
+

1
8π2

∑
1≤ j<k

cos( j(z1 − y1))√
k2 − j2

.

When z1 = y1, the terms cos( j(z1 − y1)) all reach their maximum value simultaneously. However,
for z1 , y1, these terms also have other maxima, but they no longer align at the same point as j varies,
since the periods of the cosine functions differ. Therefore, FU(z, y) will have a larger value when z ≈ y.
As z moves farther from y, the cosine terms are more likely to differ in sign at z, leading to cancellations
in their sum. As a result, F(z, y) becomes significantly smaller. A larger k results in the summation of
more maximal values when z ≈ y and more cancellations as z and y are apart from each other. Thus,
the peak of FU(z, y) appears more distinct for larger k, as illustrated in Figure 1. This justification
certainly applies to Ft(z, y) for t = L or t = B. Based on the behavior of Ft(z, y), we expect I(z) to take
relatively small values when z is outside D and significantly larger values when z is inside D.

It is worth noting that Theorem 2 can be proved using the integral representation (3.4) by following a
similar approach as in [20]. However, in this paper, we propose an alternative simple proof. This proof
does not rely on Green’s identities, which allows us to study the imaging function using scattering data
measured from only one side of the periodic structure.

Proof. Case t = U. Note that the Rayleigh coefficients of the scattered field satisfy

u+j (l) =
1

2π

∫
Γ+h

usc(x, l)e−iα j x1ds(x). (3.9)

Substituting the Lippmann-Schwinger equation (3.1) into the integral (3.9) gives

u+j (l) =
1

2π

∫
Γ+h

(
k2

∫
D

Gk,α(x, y)q(y)u(y, l)dy
)
e−iα j x1ds(x).
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Note that the integrand is bounded and D and Γ+h are bounded sets. Therefore, by Fubini’s theorem,

u+j (l) = k2
∫

D

(
1

2π

∫
Γ+h

Gk,α(x, y)e−iα j x1 ds(x)
)

q(y)u(y, l)dy

= k2
∫

D
g+j (y)q(y)u(y, l)dy.

Plugging this into the definition of I(z) gives

I(z) =
N∑

l=1

∣∣∣∣∣∣∣∣
∑
j:β j>0

β jg+j (z)u+j (l)

∣∣∣∣∣∣∣∣
p

=

N∑
l=1

∣∣∣∣∣∣∣∣k2
∫

D

 ∑
j:β j>0

β jg+j (z)g+j (y)

 q(y)u(y, l)dy

∣∣∣∣∣∣∣∣
p

.

By (3.3), for j such that β j > 0,

g+j (z)g+j (y) =
1

16π2β2
j

eiα jz1+iβ j(z2−h)e−iα jy1−iβ j(y2−h)

=
1

16π2β2
j

eiα j(z1−y1)+iβ j(z2−y2).

Therefore, ∑
j:β j>0

β jg+j (z)g+j (y) =
1

16π2

∑
j:β j>0

1
β j

eiα j(z1−y1)+iβ j(z2−y2) = FU(z, y), (3.10)

and thus,

I(z) =
N∑

l=1

∣∣∣∣∣k2
∫

D
FU(z, y)q(y)u(y, l)dy

∣∣∣∣∣p .
Case t = L. By similar reasoning, we can show that∑

j:β j>0

β jg−j (z)g−j (y) = FL(z, y) (3.11)

and
u−j (l) = k2

∫
D

g−j (y)q(y)u(y, l)dy,

and the result then follows.
Case t = B. Adding (3.10) and (3.11) together gives∑

j:β j>0

β j

(
g+j (z)g+j (y) + g−j (z)g−j (y)

)
= FU(z, y) + FL(z, y) = FB(z, y).
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Therefore,

I(z) =
N∑

l=1

∣∣∣∣∣∣∣∣
∑
j:β j>0

β j

(
g+j (z)u+j (l) + g−j (z)u−j (l)

)∣∣∣∣∣∣∣∣
p

=

N∑
l=1

∣∣∣∣∣k2
∫

D
FB(z, y)q(y)u(y, l)dy

∣∣∣∣∣p .

Theorem 2 and Remark 3 partly justify the resolution of the imaging function I(z). The next
theorem shows that I(z) is stable with respect to noise in the data.

Theorem 4. For δ > 0, let usc,δ(·, l) be the noisy scattered fields that satisfy

∥usc,δ(·, l) − usc(·, l)∥L2(Γ+h∪Γ−h) ≤ δ∥usc(·, l)∥L2(Γ+h∪Γ−h), for all l = 1, 2, . . . ,N,

and let u±j,δ(l) be the corresponding Rayleigh coefficients. We define Iδ(z) as the imaging function as
in (3.7) where u±j (l) are replaced by u±j,δ(l). Then, for all z ∈ Ω, the following stability property holds:

|Iδ(z) − I(z)| ≤ Cδ, as δ→ 0,

where C > 0 is a constant independent of z and δ.

The proof of this theorem follows a similar approach to that in [20] and is therefore omitted here. In
summary, we have introduced an imaging function for reconstructing the unknown isotropic scatterer
D using scattering data measured either above or below the periodic structures. We also provided
partial justification for its resolution and stability. In the next section, we extend the analysis of this
imaging function to the case of anisotropic media.

4. The case of anisotropic media

In the case of scattering from anisotropic media, let Q : R2 → R2×2 be the material parameter
of the periodic scattering medium. We assume that Q is a matrix-valued bounded function which is
2π-periodic with respect to x1, Q is zero outside of the medium, and supp(Q) is bounded in x2. We
consider the following equation:

∆usc + k2usc = − ÷ (Q∇u),

where usc satisfies the radiation condition (2.3). We refer to [22] for results on the well-posedness of
the direct problem under some assumption on Q and wave number k. As in the isotropic case, we
assume that the direct problems is well-posed for the study of the inverse problem. Again we denote
D := supp(Q) ∩ Ω and the inverse problem is to determine D from given data of usc on Γ+h or Γ−h.
From [24], we know that the corresponding Lippmann-Schwinger equation is given by

usc(x) = ÷x

∫
D

G(x, y)Q(y)∇u(y)dy. (4.1)
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To simplify the presentation, we will analyze the imaging function for the case of measured data on
Γ+h, and the other cases can be derived through a similar process as in the isotropic case. Recall that
the imaging function for this case is

I(z) :=
N∑

l=1

∣∣∣∣∣∣∣∣
∑
j:β j>0

β ju+j (l)g+j (z)

∣∣∣∣∣∣∣∣
p

, (4.2)

for z ∈ Ωh. The following theorem is an extension of Theorem 2 to anisotropic media.

Theorem 5. The imaging function satisfies

I(z) =
N∑

l=1

∣∣∣∣∣∫
D

F(z, y) · Q(y)∇u(y, l)dy
∣∣∣∣∣p , (4.3)

where

F(z, y) :=
1

16π2

∑
j:β j>0

1
β j

[
α j

β j

]
eiα j(z1−y1)+iβ j(z2−y2). (4.4)

Proof. Plugging (4.1) into (3.9) gives

u+j (l) =
1

2π

∫
Γ+h

÷x

(∫
D

G(x, y)Q(y)∇u(y, l)dy
)

e−iα j x1ds(x)

=
1

2π

∫
Γ+h

÷x


∫

D
G(x, y)

(
Q11(y)∂y1u(y, l) + Q12(y)∂y2u(y, l)

)
dy∫

D
G(x, y)

(
Q21(y)∂y1u(y, l) + Q22(y)∂y2u(y, l)

)
dy

 e−iα j x1ds(x)

=
1

2π

∫
Γ+h

∫
D
∂x1G(x, y)

(
Q11(y)∂y1u(y, l) + Q12(y)∂y2u(y, l)

)
dy e−iα j x1ds(x)

+
1

2π

∫
Γ+h

∫
D
∂x2G(x, y)

(
Q21(y)∂y1u(y, l) + Q22(y)∂y2u(y, l)

)
dy e−iα j x1ds(x).

Swapping the integrals, we obtain,

u+j (l) =
∫

D

(
1

2π

∫
Γ+h

∂x1G(x, y)e−iα j x1ds(x)
) (

Q11(y)∂y1u(y, l) + Q12(y)∂y2u(y, l)
)

dy

+

∫
D

(
1

2π

∫
Γ+h

∂x2G(x, y)e−iα j x1ds(x)
) (

Q21(y)∂y1u(y, l) + Q22(y)∂y2u(y, l)
)

dy.

Since G(x, y) satisfies the radiation condition, so do ∂x1G(x, y) and ∂x2G(x, y), and their Rayleigh
coefficients are iα jg+j (y) and iβ jg+j (y), respectively. Thus,
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u+j (l) =
∫

D
iα jg+j (y)

(
Q11(y)∂y1u(y, l) + Q12(y)∂y2u(y, l)

)
dy

+

∫
D

iβ jg+j (y)
(
Q21(y)∂y1u(y, l) + Q22(y)∂y2u(y, l)

)
dy

=

∫
D

ig+j (y)
[
α j

β j

]
· Q(y)∇u(y, l)dy.

Plugging into (4.2), we obtain

I(z) =
N∑

l=1

∣∣∣∣∣∣∣∣
∑
j:β j>0

β ju+j (l)g+j (z)

∣∣∣∣∣∣∣∣
p

=

N∑
l=1

∣∣∣∣∣∣∣∣
∑
j:β j>0

iβ j

∫
D

g+j (z)g+j (y)
[
α j

β j

]
· Q(y)∇u(y, l)dy

∣∣∣∣∣∣∣∣
p

=

N∑
l=1

∣∣∣∣∣∣∣∣
∫

D

1
16π2

∑
j:β j>0

1
β j

[
α j

β j

]
eiα j(z1−y1)+iβ j(z2−y2) · Q(y)∇u(y, l)dy

∣∣∣∣∣∣∣∣
p

=

N∑
l=1

∣∣∣∣∣∫
D

F(z, y) · Q(y)∇u(y, l)dy
∣∣∣∣∣p .

This completes the proof.

The kernel F(z, y) has a similar behavior as FU(z, y) defined in (3.8). This means that, for any vector
v ∈ R2 and z, y ∈ Ωh, F(z, y) · v has a large value when z ≈ y and has a much smaller value when z
moves away from y. Therefore, we can expect the imaging function to have a large value when the
sampling point is inside the medium and a much smaller value when the sampling point moves away
from the medium. We will confirm this numerically in the next section.

5. Numerical study

In this section, we present numerical results on the performance of our imaging function. We only
present results for the case of transmission data, in which the incident sources are placed below the
scatterer and the receivers are placed above the scatterer. Numerical results for full-aperture data can
be found in [20]. We also compare our method with the orthogonality sampling method (OSM) and
the factorization method (FM). Recall that the imaging function for our method is

Iδ(z) =
N∑

l=1

∣∣∣∣∣∣∣∣
∑
j:β j>0

β ju+δ, j(l)g+j (z)

∣∣∣∣∣∣∣∣
p

,

and the imaging function of the OSM is given by

IOS M(z) :=
N∑

l=1

∣∣∣∣∣∣
∫
Γ+h

usc,δ(x, l) G(x, z)ds(x)

∣∣∣∣∣∣p .
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For the factorization method, we employ a singular value decomposition and regularize the method
by truncating all singular values that are less than 0.1. The parameters used in the simulation are
as follows.

• h = 1, α = 0.
• Wave number: k = 10.5.
• Sampling domain: (−π, π) × (−1, 1), partitioned into a grid of 128 × 64 sampling points.
• Number of incident sources: N = 128, placed on Γ−3 = (−π, π) × {−3}.
• Number of receivers: 128, placed on Γ+1 = (−π, π) × {1}.
• Noise level: δ = 20%. The noise is added to the scattered fields according the following model:

usc,δ = usc + δ∥usc∥L2n,

where n : Γ+h → C is the noise function whose values are random numbers such that ∥n∥L2 = 1.
• Exponent of the imaging functions: p = 5.

We refer to [20] for a detailed study of the behavior of the imaging function for different sets of
parameters, including different values of h, α, k, and δ, as well as different numbers of incident sources
and receivers. The imaging function behaves similarly in the case of limited-aperture data with respect
to these parameters.

To generate synthetic data for the inverse problem, we solve the direct problem using a spectral
method studied in [25]. We compute the scattered fields at the receivers’ location, add noise to them,
and then compute the corresponding Rayleigh coefficients via (3.9). The incident fields we used are of
the form

uin(x, l) = G(x, xl), x ∈ Ωh,

where xl is the receivers’ location, l = 1, . . . ,N.

5.1. Results for isotropic media

First, we show numerical examples of some isotropic media. Recall that in this case, the medium is
characterized by the function q(x). In all examples, the function q(x) has the form

q(x) =
{

0.5 if x ∈ D,
0 if x < D.

We consider four periodic media with four different geometries D.

Electronic Research Archive Volume 32, Issue 11, 6481–6502.



6493

Aligned ellipses (Figure 2). This medium consists of two horizontally aligned ellipses in each pe-
riod. The radii of each ellipse are π/4 and 0.4.

(a) True geometry

(b) Reconstruction by the proposed method

(c) Reconstruction by the OSM

(d) Reconstruction by the FM

Figure 2. Reconstructions by the proposed method, the OSM, and the FM for the isotropic
aligned ellipses.
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Aligned squares (Figure 3). This medium consists of two horizontally aligned squares in each pe-
riod. The side of each square is 0.4.

(a) True geometry

(b) Reconstruction by the proposed method

(c) Reconstruction by the OSM

(d) Reconstruction by the FM

Figure 3. Reconstructions by the proposed method, the OSM, and the FM for the isotropic
aligned squares.

Electronic Research Archive Volume 32, Issue 11, 6481–6502.



6495

Aligned crosses (Figure 4). This medium consists of two horizontally aligned crosses in each period.
Each cross is made up of one horizontal 0.55 × 0.18 rectangle and vertical 0.18 × 0.45 rectangle.

(a) True geometry

(b) Reconstruction by the proposed method

(c) Reconstruction by the OSM

(d) Reconstruction by the FM

Figure 4. Reconstructions by the proposed method, the OSM, and the FM for the isotropic
crosses.
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Aligned kites (Figure 5). This medium consists of a kite-shaped object in each period.

(a) True geometry

(b) Reconstruction by the proposed method

(c) Reconstruction by the OSM

(d) Reconstruction by the FM

Figure 5. Reconstructions by the proposed method, the OSM, and the FM for the isotropic
aligned kites.

In all cases, the proposed imaging function outperforms the OSM. The FM simply fails because of
a high level of noise and a lack of data. Note again that we aim to solve the inverse problem under
a lack of data, which is extremely challenging. Nevertheless, the proposed method is able to provide
reasonable results.

5.2. Results for anisotropic media

In this part, we present results for some anisotropic media. In this case, the medium is characterized
by a 2 × 2 matrix-valued function Q(x). In all examples, Q(x) has the form

Q(x) =
{

diag(0.5, 0.25) if x ∈ D,
0 if x < D,

where diag(0.5, 0.25) is a 2 × 2 diagonal matrix whose first and second diagonal entries are 0.5
and 0.25, respectively. We consider the same geometries as in the isotropic case. Figures 6–9 show the
reconstructions of the proposed imaging function versus those of the OSM and FM. The comparison
result is similar to the isotropic case, with the proposed method outperforming both the OSM and FM.
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(a) True geometry

(b) Reconstruction by the proposed method

(c) Reconstruction by the OSM

(d) Reconstruction by the FM

Figure 6. Reconstructions by the proposed method, the OSM, and the FM for the anisotropic
aligned ellipses.
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(a) True geometry

(b) Reconstruction by the proposed method

(c) Reconstruction by the OSM

(d) Reconstruction by the FM

Figure 7. Reconstructions by the proposed method, the OSM, and the FM for the anisotropic
aligned squares.
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(a) True geometry

(b) Reconstruction by the proposed method

(c) Reconstruction by the OSM

(d) Reconstruction by the FM

Figure 8. Reconstructions by the proposed method, the OSM, and the FM for the anisotropic
aligned crosses.
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(a) True geometry

(b) Reconstruction by the proposed method

(c) Reconstruction by the OSM

(d) Reconstruction by the FM

Figure 9. Reconstructions by the proposed method, the OSM, and the FM for the anisotropic
aligned kites.
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