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1. Introduction

Pseudo-analysis, originated by Pap [1–4], has enjoyed wide application in distinct domains, in-
cluding measure theory, integration, integral operators, convolution, Laplace transform, optimization,
nonlinear differential and difference equations, economics, game theory, etc. In fact, in many uncertain
issues, such as probabilistic metric spaces, fuzzy logics and fuzzy sets theory, and fuzzy measures,
operations differ from the usual addition and multiplication defined for real numbers, such as trian-
gular norms, triangular conorms, pseudo-additions, and pseudo-multiplications, which are more effec-
tive. In particular, the triangular conorm decomposable measure was initially presented by Dubois and
Prade [5] as a special class of key fuzzy measures [6]. Further, by using Aczel’s representation [1,7,8],
these could be represented with corresponding results of reals [9], such as the addition operator, mul-
tiplication operator, differentiability, and integrability.

However, the definition of g-integrability is inconsistent with the definition of the pseudo-
integrability regarding a decomposable measure in extant research [4, 9]. Specifically, based on the
integrability and the limit of an elementary function, [1,2,4,10,11] defined null-additive set functions,
decomposable measures, nonlinear equations, fuzzy integrals based on pseudo-additions and multipli-
cations, pseudo-additive measures, and integrals. Besides, according to the usual Riemann, Stieltjes,
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or Lebesgue integral of reals by Aczel’s representation, [2, 4, 9] defined decomposable measures, non-
linear equations, and the double g-integral.

Recently, under the combination of the pseudo-differentiability and the pseudo-integrability pre-
sented by Gong [12], Newton–Leibniz formula has been developed and applied directly to the nonlin-
ear differential equations. Also, the Jensen’s and reverse Jensen’s inequalities for Choquet integrals
and asymmetric Choquet integrals are obtained [13, 14]. In the current work, first, the α−pseudo-
differentiability and the α−pseudo-integrability are defined. Further, the corresponding transformation
theorems are explored, and the Newton–Leibniz formula is investigated. Finally, the obtained results
are directly utilized to discuss differential equations.

The remainder of the work is organized as follows: in Section 1, some basic results of pseudo-
additions are recalled. Section 2 investigates the α−pseudo-differentiability and the pseudo-Stieltjes
integrability, and further gives the transformation theorems for them. Also, the Newton–Leibniz for-
mula is obtained. In Section 4, we utilize the obtained results as a framework to directly discuss
nonlinear differential equations.

2. Notations and preliminaries

According to [1,10], let [a, b] be a closed (in some cases it can be considered semiclosed) subinterval
of [−∞,+∞]. Let ⪯ be the full order on [a, b]. A binary operation ⊕ on [a, b] is pseudo-addition, if
it is commutative, nondecreasing (with respect to ⪯), associative, and with a zero element 0. Let
[a, b]+ ⊆ [a, b] with 0 ⪯ x.A binary operation ⊗ on [a, b] is pseudo-multiplication, if it is commutative,
positively nondecreasing, i.e., x ⪯ y implies x ⊗ z ⪯ y ⊗ z for all z ∈ [a, b]+, associative, and with unit
element 1 ∈ [a, b].We adopt the convention 0 ⊗ x = 0 for each x ∈ [a, b], and ⊗ is distributive over ⊕.
Further more, the convention that the operation ⊗ has priority with respect to the operation ⊕ will also
be adopted. It is easy to verify that the structure ([a, b],⊕,⊗) is a (real) semiring.
Lemma 2.1. (Aczel’s theorem [7, 8]) If ⊕ is continuous and strictly increasing in (a, b) × (a, b), then
there exists a monotone function g : [a, b]→ [−∞,+∞] such that g(0) = 0 and

x ⊕ y = g−1(g(x) + g(y)),

where g is called a generator of ⊕.
The structure ([a, b],⊕,⊗) is a general g-semiring [1] with a continuous and strictly monotone gen-

erator g: [a, b]→ [−∞,+∞], i.e., x ⊕ y = g−1(g(x) + g(y)), and x ⊗ y = g−1(g(x)g(y)), x, y ∈ [a, b]. And
0 = g−1(0) holds. and 1 = g−1(1).

Referring to [1], the following statements hold:
(a) If g is a strictly increasing generator, then 0 = a, the usual order induced by ⊕ is as follows:

x ⪯ y⇔ g(x) ≤ g(y).
(b) If g is a strictly decreasing generator, then 0 = b, the usual order induced by ⊕ as follows:

x ⪯ y⇔ g(x) ≥ g(y).
A metric can be induced as follows: d(x, y) = |g(x) − g(y)|.
Aczel’s representation theorem is designed to solve computational problems in real valued non

additive measure fuzzy calculus, so our theory is a further development and application of real valued
non additive measure fuzzy calculus.
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3. Pseudo-substraction and the pseudo-division

Definition 3.1. Let ⊕ be continuous and strictly increasing. For x, y ∈ [a, b], if there exists z ∈ [a, b]
such that x = y ⊕ z, then z is said to be a pseudo-difference of x and y, denoted as z = x ⊖ y.
Remark 3.1. For simplicity, the operator ⊖ is called the pseudo-substraction.

The following results are direct consequences of Definition 3.1.
Corollary 3.1. As a general g-semiring ( [1]) with a continuous and strictly monotone generator g,
the pseudo-substraction of the structure ([a, b],⊕,⊗) exists, and x ⊖ y = g−1(g(x) − g(y)), where g is a
generator of ⊕.
Proof. For any elements x, y ∈ [a, b], there is z = g−1(g(x) − g(y)) such that g−1(g(y) + g(z)) = x, i.e.,
g(y) + g(z) = g(x). Then there exists a z such that x = y ⊕ z. Thus, there exists a z ∈ [a, b] such that
x = y ⊖ z.
Definition 3.2. Let 0, 1 ∈ [a, b] be the zero (neutral) element and unit element respectively. Then ⊖1
is defined by ⊖1 = 0 ⊖ 1 = g−1(−g(1)).
Corollary 3.2. If x ⊖ y exists, then a ⊕ (⊖1) ⊗ b) = a ⊖ b..
Definition 3.3. Let x, y ∈ [a, b] and y , 0. If there exists z ∈ [a, b] such that x = y ⊗ z, then z is said
to be a pseudo-quotient of x and y, denoted by x ⊘ y.
Remark 3.2. For simplicity, the operator ⊘ is called the pseudo-division.
Corollary 3.3. As a general g-semiring[12] with a continuous and strictly monotone generator g, for
any non-zero element y ∈ [a, b], the pseudo-division of the structure ([a, b],⊕,⊗) exists, and x ⊘ y =
g−1( g(x)

g(y) ), where g is a generator of ⊕.
Proof. For any non-zero element y ∈ [a, b], there is z = g−1(g(x)/g(y)) such that g−1(g(y) · g(z)) = x,
i.e., g(y) · g(z) = g(x). Thus, there exists a z ∈ [a, b] such that x = y ⊗ z.
Corollary 3.4. Let 1 ∈ [a, b] be the unit element, respectively. For any x ∈ [a, b] and x , 0. Then
x(−1) is defined by x(−1) = g−1( 1

g(x) ). It is easily to prove that x ⊘ y = x ⊗ y(−1) = g−1( g(x)
g(y) ).

4. The definitions of the pseudo-differentiability and its properties

Given x ∈ [a, b], its pseudo-absolute value |x|⊕is defined as

|x|⊕ = |g(x)|

where g is a generator of ⊕.
The metric on [a, b] is given by

d(x, y) = |g(x) − g(y)|

for x, y ∈ [a, b], wherein g is a generator of ⊕. Obviously, mapping d is a metric.
Furthermore, we have the following representation:

Remark 4.1. Let ⊕ be continuous and strictly increasing. If x ⊖ y exists, then the pseudo-metric d on
[a, b] can be represented by

d(x, y) = |x ⊖ y|⊕,

where | · |⊕ is a pseudo-absolute value.
Remark 4.2. Let d be the metric defined on [a, b], and x, y, λ1, λ2 ∈ [a, b]. Then

d(λ1 ⊗ x, λ2 ⊗ y) = |g(λ1)g(x) − g(λ2)g(y)|
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where g is a generator of ⊕.
Definition 4.1. Let ⊕ be strictly increasing and continuous, let α be a nondecreasing function, and let
f : [c, d]→ [a, b]. Then f is said to be pseudo-differentiable with respect to α at the point x ∈ [c, d], if
there exists d⊕α f (x)

dx ∈ [a, b] such that

lim
h→0

[( f (x + h) ⊖ f (x)) ⊘ (α(x + h) ⊖ α(x)]

exists and equals to d⊕α f (x)
dx . d⊕α f (x)

dx (or wrote f ′⊕α (x0)) is called the α−pseudo-derivative of f (x) at x. For
x = c, x = d, only consider the single α−pseudo-derivative: lim

h→0+
[( f (c + h) ⊖ f (c)) ⊘ ((α(c + h) ⊖ α(c)]

or lim
h→0−

[( f (d) ⊖ f (d − h)) ⊘ (α(d) ⊖ α(d − h))].
Obviously, we have the following statements.

Remark 4.3. It is clear that if α(x) = x, then Definition 4.1 degenerate to the definition of the pseudo-
differentiability of f introduced in [12], and the α−pseudo-derivative of f (x) at the point x is written
to be d⊕ f (x)

dx (or written f ′⊕(x0)).
Remark 4.4. Let ⊕ be strictly increasing and continuous, let α be a nondecreasing function, and
let f : [c, d] → [a, b]. Then f is α−pseudo-differentiable at the point x0 ∈ [c, d] ( f ′⊕α (x0) is the α-
derivative at x0), if and only if for every ϵ > 0, there exists a δ > 0 such that for any u, v satisfying
x0 ∈ [u, v] ⊂ (x0 − δ, x0 + δ),

d(( f (v) ⊖ f (u)) ⊘ ((α(v) ⊖ α(u)), f ′⊕α (x0)) < ϵ

holds.
Theorem 4.1. Let ⊕ be strictly increasing and continuous, and let α be a nondecreasing function with
α ∈ C1

g[a, b] (i.e., g(α) ∈ C1[a, b]), f : [c, d] → [a, b]. Then f is α−pseudo-differentiable at the point
x0 ∈ [c, d], and f ′⊕α (x0) is the α-derivative at x0, if and only if f is pseudo-differentiable at x0 ∈ [c, d],
and

f ′⊕(x0) = α′(x0) ⊗ f ′⊕α (x0),

where C1[a, b] is the continuously differentiable function space.
Proof. If f is α−pseudo-differentiable at the point x0 ∈ [c, d], then for any ϵ > 0, there exists a δ > 0
such that for any interval [u, v] satisfying x0 ∈ [u, v] ⊂ (x0 − δ, x0 + δ), we have

d(( f (v) − f (u)) ⊘ ((α(v) ⊖ α(u)), f ′⊕α (x0)) < ϵ.

Note that

d(( f (v) − f (u)) ⊘ (v ⊖ u), α′(x0) ⊗ f ′⊕α (x0)
=d([( f (v) − f (u)) ⊘ ((α(v) ⊖ α(u))] ⊗ [(α(v) ⊖ α(u)) ⊘ (v ⊖ u), α′(x0) ⊗ f ′⊕α (x0))
=|g([( f (v) − f (u)) ⊘ ((α(v) ⊖ α(u))])g([(α(v) ⊖ α(u)) ⊘ (v ⊖ u)]) − g(α′(x0))g( f ′⊕α (x0))|
=|g([( f (v) − f (u)) ⊘ ((α(v) ⊖ α(u))]) − g( f ′⊕α (x0))| · |g([(α(v) ⊖ α(u)) ⊘ (v ⊖ u)])|
+|g([(α(v) ⊖ α(u)) ⊘ (v ⊖ u)]) − g(α′(x0))| · |g( f ′⊕α (x0))|
≤ε · |g([(α(v) ⊖ α(u)) ⊘ (v ⊖ u)])| + ε · |g( f ′⊕α (x0))|
=ε · |g([(α(v) ⊖ α(u)) ⊘ (v ⊖ u)]) − g(α′(x0))| + |g(α′(x0))|) + ε · |g( f ′⊕α (x0))|
≤ε · (ε + M) + ε · |g( f ′⊕α (x0))|.
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Remark 4.5. Let ⊕ be strictly increasing and continuous, and let α be a nondecreasing function with
α ∈ C1

g[a, b], f : [c, d] → [a, b]. Further assume f be α−pseudo-differentiable x0 ∈ [c, d]. Then f is
pseudo-continuous at x0, i.e., lim

h→0
f (x0 + h) = f (x0) for any x0 ∈ [c, d].

Proof. Fixed x0 ∈ [c, d]. Follows that Remark 4.4, f is pseudo-differentiable at x0, and

lim
h→0

[( f (x0 + h) ⊖ f (x)) ⊘ (α(x0 + h) ⊖ α(x))] = f ′⊕α (x0).

For the generator g of ⊕, we have

lim
h→0
|g[( f (x0 + h) ⊖ f (x)) ⊘ (α(x0 + h) ⊖ α(x))] − g( f ′⊕α (x0))| = 0.

It follows that
lim
h→0
|

g( f (x0 + h)) − g( f (x0))
g((α(x0 + h)) − g((α(x0))

− g( f ′⊕α (x0))| = 0.

That is to say,

lim
h→0
|(g( f (x0 + h)) − g( f (x0))) − (g((α(x0 + h)) − g((α(x0)))g( f ′⊕α (x0))| = 0.

By the continuity of g(α(x)), we have

lim
h→0
|g( f (x0 + h)) − g( f (x0))| = 0.

It implies
lim
h→0

f (x0 + h) = f (x0).

Hence, f is pseudo-continuous on [c, d].
Theorem 4.2. Let ⊕ be continuous and strictly increasing, α be a nondecreasing function, and f1

and f2 be two α−pseudo-differentiable functions on [c, d]. Then the following statements hold for any
λ, λ1, λ2 ∈ [a, b].

1) λ1 ⊗ f1 ⊕ λ2 ⊗ f2 is α−pseudo-differentiable on [c, d] and

d⊕α(λ1 ⊗ f1 ⊕ λ2 ⊗ f2)
dx

= λ1 ⊗
d⊕α f1

dx
⊕ λ2 ⊗

d⊕α f2

dx
;

2) f1 ⊗ f2 is α−pseudo-differentiable on [c, d] and

d⊕α( f1 ⊗ f2)
dx

=
d⊕α f1

dx
⊗ f2 ⊕ f1 ⊗

d⊕α f2

dx
;

3) d⊕αλ
dx = 0.

Proof. 1) Since f1 and f2 are α−pseudo-differentiable, we have

d⊕α(λ1 ⊗ f1 ⊕ λ2 ⊗ f2)
dx

= lim
h→0
{[(λ1 ⊗ f1(x + h) ⊕ λ2 ⊗ f2(x + h)) ⊖

(
λ1 ⊗ f1(x) ⊕ λ2 ⊗ f2(x)

)
] ⊘ [α(x + h) ⊖ α(x)]}

= lim
h→0
{[λ1 ⊗ ( f1(x + h) ⊖ f1(x)) ⊕ λ2 ⊗ ( f2(x + h) ⊖ f2(x))] ⊘ [α(x + h) ⊖ α(x)]}

=λ1 ⊗ lim
h→0

[( f1(x + h) ⊖ f1(x)) ⊘ (α(x + h) ⊖ α(x)] ⊕ λ2 ⊗ lim
h→0

[( f2(x + h) ⊖ f2(x)) ⊘ (α(x + h) ⊖ α(x)]

=λ1 ⊗
d⊕α f1

dx
⊕ λ2 ⊗

d⊕α f2

dx
.
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According to Definition 4.1, λ1 ⊗ f1 ⊕ λ2 ⊗ f2 is α−pseudo-differentiable on [c, d] and

d⊕(λ1 ⊗ f1 ⊕ λ2 ⊗ f2)
dx

= λ1 ⊗
d⊕α f1

dx
⊕ λ2 ⊗

d⊕α f2

dx
.

2) Since f1 and f2 are α−pseudo-differentiable, we have

d⊕α( f1 ⊗ f2)
dx

= lim
h→0
{[ f1(x + h) ⊗ f2(x + h) ⊖ f1(x) ⊗ f2(x)] ⊘ [α(x + h) ⊖ α(x)]}

= lim
h→0
{[ f1(x + h) ⊗ f2(x + h) ⊖ f1(x) ⊗ f2(x) ⊖ f1(x) ⊗ f2(x + h) ⊕ f1(x) ⊗ f2(x + h)] ⊘ [α(x + h) ⊖ α(x)]}

= lim
h→0
{[( f1(x + h) ⊖ f1(x)) ⊗ f2(x + h) ⊕ f1(x) ⊗ ( f2(x + h) ⊖ f2(x))] ⊘ [α(x + h) ⊖ α(x)]}

= lim
h→0

[( f1(x + h) ⊖ f1(x)) ⊘ (α(x + h) ⊖ α(x))] ⊗ f2(x)

⊕ f1(x) ⊗ lim
h→0

[( f2(x + h) ⊖ f2(x)) ⊘ (α(x + h) ⊖ α(x))]

=
d⊕α f1

dx
⊗ f2 ⊕ f1 ⊗

d⊕α f2

dx
.

According to Definition 4.1, f1 ⊗ f2 is α−pseudo-differentiable on [c, d] and

d⊕α( f1 ⊗ f2)
dx

=
d⊕α f1

dx
⊗ f2 ⊕ f1 ⊗

d⊕α f2

dx
.

3) d⊕αλ
dx = lim

h→0
(λ ⊖ λ) ⊘ (α(x + h) ⊖ α(x)) = 0.

Theorem 4.3. Let ⊕ be strictly increasing and continuous, α be a nondecreasing function, and f :
[c, d]→ [a, b]. Let f be α−pseudo-differentiable and the generator g(α) of ⊕ be differentiable on [a, b].
Then

d⊕α f (x)
dx

= g−1
(
dg( f (x))
dg(α(x))

)
.

Proof.
d⊕α f (x)

dx
= lim

h→0
[( f (x + h) ⊖ f (x)) ⊘ (α(x + h) ⊖ α(x))]

= lim
h→0

g−1
(

g( f (x + h)) − g( f (x))
g(α(x + h)) − g(α(x))

)
= g−1

(
lim
h→0

g( f (x + h)) − g( f (x))
h

·
h

g(α(x + h)) − g(α(x))

)
= g−1

(
[g( f )]

′

/g
′

(α(x))
)

= g−1
(
dg( f (x))
dg(α(x))

)
.

Remark 4.6. Obviously, if α(x) = x, f : [c, d]→ [a, b] be pseudo-differentiable [12], and the generator
g of ⊕ be differentiable on [a, b]. Then

d⊕ f (x)
dx

= g−1
(
dg( f (x))

dg(x)

)
.
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Remark 4.7. However, in [9, 15, 16], the g-derivative is directly defined as follows:

d⊕ f (x)
dx

= g−1
(
dg( f (x))

dx

)
.

However, it may be more natural to define the integral following the method proposed in this research
according to Definition 4.1 and further obtain Theorem 4.2.
Definition 4.2. Let f : [c, d] → [a, b], if f has the (n − 1)-th α−pseudo-derivative, then the (n)-th
α−pseudo-derivative of f (if it exists) is defined as

d(n)⊕
α f
dxn =

d⊕

dx

(
d(n−1)⊕
α f
dxn−1

)
, n ⩾ 1.

Theorem 4.4. Let f : [c, d] → [a, b], ⊕ be strictly increasing and continuous, and α be a nonde-
creasing function. If f (n)-th α−pseudo-differentiable on [c, d] and the generator g(α) of ⊕ be (n)-th
differentiable on [a, b]. Then

d(n)⊕
α f (x)

xn = g−1
(

dn
αg( f (x))

d[g(α(x))]n

)
, n ⩾ 0.

Proof. For n = 0, the theorem is obviously true.
Assume that the theorem is true for n − 1 , i.e.,

d(n−1)⊕
α f (x)

xn−1 = g−1
(

dn−1
α g( f (x))

d[g(α(x))]n−1

)
,

then
d(n)⊕
α f (x)

xn =
d⊕α
dx

(
d(n−1)⊕ f
dxn−1

)
=

d⊕α
dx

(
g−1

(
dn−1g( f (x))

d[g(α(x))]n−1

))
= g−1

(
d

dg(α(x))

(
dn−1g( f (x))

d[g(α(x))]n−1

))
= g−1

(
dn
αg( f (x))

d[g(α(x))]n

)
.

By mathematical induction, the proof is completed.

5. The definitions of the pseudo-Stieltjes integrability and its Newton–Leibniz formula

Definition 5.1. Let ⊕ be strictly increasing and continuous, α be a nondecreasing function, and f (x)
be a bounded function defined on [c, d]. If for any partition of [c, d]

P : c = x0 < x1 < x2 < · · · < xn = d,

denote λ = max
1⩽i⩽n

(xi ⊖ xi−1), and if for any ξi ∈ [xi−1, xi], the limit

lim
λ→0

n⊕
i=1

f (ξi) ⊗ (α(xi) ⊖ α(xi−1))
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exists, then f (x) is said to be pseudo-Stieltjes integrable on [c, d], and its pseudo-Stieltjes integral value
equals to the limit value, denoted by

∫ (⊕,⊗,α)

[c,d]
f (x)dα.

Theorem 5.1. Let ⊕ be strictly increasing and continuous, α be a nondecreasing function, and f1 :
[c, d] → [a, b], f2 : [c, d] → [a, b]. If f1 and f2 are pseudo-Stieltjes integrable on [c, d] . Then for
λ1, λ2 ∈ [a, b], λ1 ⊗ f1 ⊕ λ2 ⊗ f2 is also generalized integrable on [c, d] and∫ (⊕,⊗,α)

[c,d]
(λ1 ⊗ f1 ⊕ λ2 ⊗ f2)dα = λ1 ⊗

∫ (⊕,⊗,α)

[c,d]
f1dα ⊕ λ2 ⊗

∫ (⊕,⊗,α)

[c,d]
f2dα.

Proof. For any partition of [c, d]

P : c = x0 < x1 < x2 < · · · < xn = d

and for any ξi ∈ [xi−1, xi], we have

n⊕
i=1

(
λ1 ⊗ f1(ξi) ⊕ λ2 ⊗ f2(ξi)

)
⊗ (α(xi) ⊖ α(xi−1))

=

n⊕
i=1

(
λ1 ⊗ f1(ξi) ⊗ (α(xi) ⊖ α(xi−1)) ⊕ λ2 ⊗ f2(ξi) ⊗ (α(xi) ⊖ α(xi−1))

)
=λ1 ⊗

 n⊕
i=1

f1(ξi) ⊗ (α(xi) ⊖ α(xi−1))

 ⊕ λ2 ⊗

 n⊕
i=1

f2(ξi) ⊗ (α(xi) ⊖ α(xi−1))

 .
Let λ = max

1⩽i⩽n
(xi ⊖ xi−1)→ 0, since f1 and f2 are pseudo-Stieltjes integrable on [c, d], we have

lim
λ→0

n⊕
i=1

(
λ1 ⊗ f1(ξi) ⊕ λ2 ⊗ f2(ξi)

)
⊗ (α(xi) ⊖ α(xi−1))

=λ1 ⊗

lim
λ→0

n⊕
i=1

f1(ξi) ⊗ (α(xi) ⊖ α(xi−1))

 ⊕ λ2 ⊗

lim
λ→0

n⊕
i=1

f2(ξi) ⊗ (α(xi) ⊖ α(xi−1))


=λ1 ⊗

∫ (⊕,⊗,α)

[c,d]
f1dα ⊕ λ2 ⊗

∫ (⊕,⊗,α)

[c,d]
f2dα.

According to Definition 5.1, λ1 ⊗ f1 ⊕ λ2 ⊗ f2 is pseudo-Stieltjes integrable on [c, d] and∫ (⊕,⊗,α)

[c,d]
(λ1 ⊗ f1 ⊕ λ2 ⊗ f2)dx = λ1 ⊗

∫ (⊕,⊗,α)

[c,d]
f1dα ⊕ λ2 ⊗

∫ (⊕,⊗,α)

[c,d]
f2dα.

Theorem 5.2. Let ⊕ be strictly increasing and continuous, α be a nondecreasing function, and f (x)
pseudo-Stieltjes integrable on [c, d]. Then∫ (⊕,⊗,α)

[c,d]
f dα = g−1

(∫ d

c
g( f (x))dg(α(x))

)
,

when the right part is meaningful.
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Proof.∫ (⊕,⊗,α)

[c,d]
f dα = lim

λ→0

n⊕
i=1

f (ξi) ⊗ (α(xi) ⊖ α(xi−1))

= lim
λ→0

[ f (ξ1) ⊗ (α(x1) ⊖ α(x0)) ⊕ f (ξ2) ⊗ (α(x2) ⊖ α(x1)) ⊕ · · · ⊕ f (ξn) ⊗ (α(xn) ⊖ α(xn−1))]

= lim
λ→0
{g−1[g( f (ξ1)) · g(α(x1) ⊖ α(x0))] ⊕ g−1[g( f (ξ2)) · g(α(x2) ⊖ α(x1))] ⊕ · · ·

⊕ g−1[g( f (ξn)) · g(α(xn) ⊖ α(xn−1))]}
= lim
λ→0

g−1[g( f (ξ1)) · g(α(x1) ⊖ α(x0)) + g( f (ξ2)) · g(α(x2) ⊖ α(x1)) + · · ·

+ g( f (ξn)) · g(α(xn) ⊖ α(xn−1))]
=g−1[ lim

λ
′
→0

(
g( f (ξ1)) · (g(α(x1)) − g(α(x0))) + g( f (ξ2)) · (g(α(x2)) − g(α(x1))) + · · ·

+ g( f (ξn)) · (g(α(xn)) − g(α(xn−1)))
)
]

=g−1
(∫ d

c
g( f (x))dg(α(x))

)
,

where λ
′

= max
1⩽i⩽n
|g(α(xi)) − g(α(xi−1))|.

Remark 5.1. For 1 ⩽ i ⩽ n, we have

xi ⊖ xi−1 → 0⇐⇒ d(xi, xi−1)→ 0
⇐⇒ |g(xi) − g(xi−1)| → 0
⇐⇒ |g(α(xi)) − g(α(xi−1))| → 0,

therefore
max
1⩽i⩽n

(xi ⊖ xi−1)→ 0⇐⇒ max
1⩽i⩽n
|g(α(xi)) − g(α(xi−1))| → 0,

namely,
λ→ 0⇐⇒ λ

′

→ 0.

Remark 5.2. In [9, 15, 16], the g-integral is directly defined as follows:∫ (⊕,⊗)

[c,d]
f dx = g−1

(∫ d

c
g( f )dx

)
.

However, it may be more natural to define the g-integral the way proposed in Definition 5.1 in this
research and obtain Theorem 5.2. In addition, the definition of integral presented in this research is
consistent with the definition of integral regarding a decomposable measure m proposed in [1, 2], i.e.,∫ (⊕,⊗)

[c,d]
f dm = g−1

(∫ d

c
g( f )dg ◦ m

)
.

Theorem 5.3. Let ⊕ be continuous and strictly increasing, α be a nondecreasing function, and f be
continuous on [c, d]. Then we have

d⊕α
dx

(∫ (⊕,⊗,α)

[c,x]
f (t)dα

)
= f (x)

for any x ∈ [c, d].
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Proof. From Theorems 4.2 and 5.2, we have for any x ∈ [c, d]

d⊕α
dx

(∫ (⊕,⊗,α)

[c,x]
f (t)dα

)
= g−1


dg

(∫ (⊕,⊗,α)

[c,x]
f (t)dα

)
dg(α(x))


= g−1

d(
∫ x

c
g( f (t))dg(α(t)))

dg(α(x))


= g−1(g( f (x)))
= f (x),

where the fundamental theorems of calculus are used.
Theorem 5.4. (Newton–Leibniz formula) Let ⊕ be strictly increasing and continuous, and α be a
nondecreasing function. If d⊕α f

dt is continuous on [c, d]. Then we have for any x ∈ [c, d]∫ (⊕,⊗,α)

[c,x]

d⊕α f
dt

dα = f (α(x)) ⊖ f (α(c))

for any x ∈ [c, d].
Proof. According to Theorems 4.2 and 5.2, for any x ∈ [c, d], we have∫ (⊕,⊗,α))

[c,x]

d⊕α f (t)
dt

dα = g−1
(∫ x

c
g
(
d⊕α f (t)

dt

)
dg(α(t))

)
= g−1

(∫ x

c

dg( f (t))
dg(α(t))

dg(α(t))
)

= g−1
(∫ x

c
dg( f (t))

)
= g−1(g( f (x)) − g( f (c))

)
= f (x) ⊖ f (c).

6. Applications in the discussion of the nonlinear differential equations

Compared to the case where α is discontinuous, due to the application of Theorem 4.1 in this
article, the involved α is not only continuous but also differentiable. Our example demonstrates that
the proposed derivative and integral applications have certain practical value in a sense, as they can
transform complex nonlinear calculus equations into simple calculus equations containing only newly
defined derivatives and integrals.
Example 6.1. Considering the following first-order ordinary differential equation:

ln y
′

+ y − 2xs − (s − 1) ln x − ln s = 0, (6.1)

where s ∈ [0,+∞).
Let α(x) = xs, and construct x⊕ y = ln(ex + ey), x⊗ y = x+ y, and g(x) = ex. Capitalize Eq (6.1) can

have the following form:
d⊕αy
dx
= xs.
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Pseudo-Stieltjes integrates the preceding equation correspondingly, and we have

y =
∫ (⊕,⊗,α)

xsdx ⊕C1

= g−1
(∫

g(xs)dg(xs) + g(C1)
)

= ln
(
e2xs

2
+C

)
,

where C = e−C1 . That is to say, an ordinary differential equation (6.1) has a solution y = ln
(

e2xs

2 +C
)
.

Example 6.2. Consider the following ordinary differential equation:

((
y
2

)
′

)
1
p y1− 1

p − x(s+2− 1
p ) = 0. (6.2)

Where p > 0 and s ∈ [0,+∞).
Let α(x) = x2. By constructing x ⊕ y = (xp + yp)

1
p , x ⊗ y = xy, then g(x) = xp, and Eq (6.2) has the

following form:

d⊕αy
dx
= xs.

Pseudo-Stieltjes integrates the preceding equation correspondingly, and we have

y =
∫ (⊕,⊗,α)

xsdx ⊕C1

= g−1
(∫

g(xs)dg(x2) + g(C1)
)

=

(
2

s + 2
xp(s+2) +C

)1/p

.

That is to say ordinary differential equation (6.2) has solution y =
(

2
s+2 xp(s+2) +C

)1/p
.

Example 6.3. Consider the following differential equation:

λ(1 + λ)yy
′

− 2x(1 + λ)2x2
− 2x(1 + λ)x2

= 0. (6.3)

where λ > 0.
Let α(x) = x2, x ⊕ y = ln((1+λ)x+(1+λ)y−1))

ln(1+λ) . Then g(x) = (1+λ)x−1
λ

, λ > 0, and Eq (6.3) can be represented
as follows:

d⊕αy
dx
= x2.
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Pseudo-Stieltjes integrates the preceding equation correspondingly, and we have

y =
∫ (⊕,⊗,α)

x2dx ⊕C1

= g−1
(∫

g(x2)dg(x2) + g(C1)
)

= g−1
(
1
2

g2(x2) + g(C1)
)

=
ln

(
((1 + λ)x2

− 1)2/2λ +C
)

ln(1 + λ)
.

That is to say ordinary differential equation (6.3) has solution y =
ln

(
((1+λ)x2

−1)2/2λ+C
)

ln(1+λ) .

Example 6.4. Considering the following first-order nonlinear integro-differential equation:

y′ey = sxs−1exs+1 + sxs−1exs
∫ x

0
sxs−1exs

eydx (6.4)

where s ∈ [0,+∞).
Let α(x) = xs, and construct x⊕ y = ln(ex + ey), x⊗ y = x+ y, and g(x) = ex. Capitalize Eq (6.4) can

have the following form:
d⊕αy
dx
= 1 ⊕

∫ (⊕,⊗,α)

[0,x]
ydα.

By definitions of α−pseudo-derivative and pseudo-Stieltjes integral, we have y = exs
. It is easy to

calculate that
d⊕αexs

dx
= exs
,

1 ⊕
∫ (⊕,⊗,α)

[0,x]
exs

dα = exs
.

That is to say, the integro-differential equation (6.4) has solution y = exs
.

7. Conclusions

We present the concepts of the α−pseudo-differentiability and the pseudo-Stieltjes integrability, and
also present the characteristic theorems and the transformation theorems. According to the transfor-
mation theorem between the α−pseudo-derivative and the classical derivative and the transformation
theorem between the pseudo-Stieltjes integration and the classical Stieltjes integration, the calculation
methods and formulas for α−pseudo-derivative and pseudo-Stieltjes integration are explored. Further,
Newton–Leibniz formula is also obtained. At last, the obtained results provide a framework for ana-
lyzing nonlinear differential equations.
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