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Abstract: Given matrices N € C*** and Sy, ..

.,S4 € C”, we solve the linear differential equation

q
DT (@/dn)" (o) = g(0),

n=0

where t € R, T,,(t) = eVS ,e™™", and f(¢) : R — C*, using the roots of d(v) = det D(v), where

q
D) = Z S, (I + N)".
n=0

For example,

implies

cost
eN =",
sin ¢

—sint
cost |’

so that 7,(¢) are periodic, giving an explicit solution to a form of Floquet’s theorem.
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1. Introduction

There is much research of linear differential equations involving or generated by matrices, see
Derevenskii [2] and Elishevich [3]. But these and other papers are limited to the first few orders.
We are not aware of papers giving solutions for linear differential equations of general order generated
by matrices. In the paper, we provide solutions for such a class of linear differential equations.

Let R and C denote the real and complex numbers, respectively. For any function f(¢) of € R,
set f,(t) = (d/dt)"f(t). Let Y(t) = Y = (Yy,...,Y,) € C* be a function of ¢t € R, and a constant
N = (Nj) € €™, such that

Y. () = Y(ON € C**. (1.1)

Choose g > 1. Suppose that for 0 < n < ¢, and T,(r) € C*, there is a constant S, = (S,,,j,k) e C™
such that

T, Y@)=Y(®)S,. (1.2)

If r = s, as in the abstract, we can take
Y() =€V, T,() =" S, e, (1.3)
If » > s, we can take Y(7) as the first s rows of ¢’V. We wish to solve the differential equation Lf = 0,

for f = f(t) : R — C°, where

q
L=L{) = Z T.(0) (d/dp)", s X s,
n=0

that is,
q
Lf =) Tufu (1.4)
n=0
Theorem 2.1 gives solutions in terms of the roots of d = d(v), where
q
d(v) =det D(v)and D(v) = D = Z S, I, + N)" e C™". (1.5)
n=0

We call D(v) the characteristic matrix of the operator L. If v is a multiple root, then other solutions are
given by Theorem 2.2.

Section 3 chooses r = s = 2 and N of (3.1) below. T,(t) of (1.3) are then linear in cos 2¢ and sin 2¢
and so have period 7. Example 3.2 gives for the first time the full solution of a well known example.
Example 3.3 solves a differential equation that arises in the theory of planetary perturbations, and was
the incentive for this paper. Section 4 shows how D(v) and T,,(t) are given by the Jordan form of N
when r = s.

Section 5 solves Lf = g, any given function in C*, when r = s and T,, = I, by converting it to the
standard form X; = AX + F. Its solution is then given by the variation of constants formula in terms
of the solution of Lf = 0,. When A is periodic, Floquet’s theorem only gives the form of the solution
of X; = AX. We give the actual solution. Examples 3.1-3.5 all have periodic A. Seti = V-1. Set
Ojx =1orOfor j=kor j#k.
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2. Main results

Theorem 2.1. Suppose that Y(t), N satisfy (1.1), and that T,(t), S, satisfy (1.2) for 0 < n < q. Let
v be any of the qr roots of d(v) = 0 for d(v)of (1.5). Choose a(v) = a = (ay,...,a,) € C" such that
E(v) =0,, where

E = E(v) = D(v)a®).

Then for f = f(t) € C* and L of (1.4), a solution of Lf = Oy is

r

folt,y) = €Y (Da() = " ) a(MYi(o). 2.1)

k=1
Proof: Since Y, = YN", by Leibniz’ rule, the nth derivative of ¢"Y is

(€'Y), =€"Y (vI. + N)". (2.2)
So,

q
Le'Y = ) T, (€"Y), = e"Y D),
n=0

and L fy = ¢"Y D(v)a(v) =0,. O
When the roots of d(v) are distinct, this gives gr independent solutions of (2.1).

Theorem 2.2. Take v, D = D(v), a = a(v) and E = E(v) of Theorem 2.1. Suppose that for some k > 1,
E(v) =0, (2.3)

for 0 <m < k, where E ,,(v) = OVE(v), and 0, = d/dv. Then for 0 < n < k, Lf = Oy has solutions
fu= Fult,y) = €Y (2, = € ) 20 (MY (1), (2.4)
=1

where z,, = z,(t,v) = (t + 0,)" a(v).
Proof: By (2.2) and Leibniz’ rule,

o

' ("Yz,) = Z (;)ewY Il + N 0"z,
m=0,

Lf, =e"YG,,

where

m

q 0
G.= ) S, (0)(% +NYI(E+ 0,)" a

AIMS Mathematics Volume 7, Issue 6, 9588-9602.
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S b

m,r

Transform from m to ¢ = m + r. Then (;‘l)(”_rm) = (Z)(;) So,

where
c
H. = D..,a,=0E = 0y
Z (r) ey = EW)
by (2.3). O
We call f,, a characteristic solution of Lf = 0. D(v) and d(v) expand as
q rq
D) = Y VD, dv) = ) Vdy,
k=0 k=0
where
!\ (n
D= ( k)S,,N""‘, Dy =D(0), D, =S,
n=k
dy = det D(0), d, = det §,.
So,

q rq
D) = D (0n* "Dy dn(v) = D (00} " (2.5)
k=m k=m

Corollary 2.1. Take Lf of (1.4). Consider the exceptional case when D(v) = Q4. Suppose that
D ju(v) = Oyxs
for 0, < m < n. Then for any a € C*, a characteristic solution of Lf = Oy is
fu(t,v) =1"e"Y (1) a.

We now transfer the condition (2.3) from E(v) to d(v). Let M be the adjoint of D: (=1)"**M;, jis the
determinant of D with its jth row and kth column deleted. If d # 0, then M = dD".

Corollary 2.2. Let ey, ..., ey, be any basis for R*. For D and d of (1.5), set a;; = Me;, and Ej;, =
Dagjy = de;,. So, form € Z9, E(j,, = dye;s. Choose v sothatd = 0. Given1 < j < sand a = ag;),
Jnj(t) = fu(t,v) of (2.4) is a characteristic solution of Lf = Oy if

d,(v)=0 (2.6)

forO<m<n.
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By (2.5), (2.6) does not extend to n = rq if d,, # 0. We now take ¢; as the jth unit vector in R°.
So, for 1 < j < s, agj is the jth column of M. For 1 < k < s, its kth element is ajx = My; = ajx
say. Corollary 2.2 breaks the solution f,(x, v) into s basis solutions f, j(x), 1 < j < s, of Lf = 0. For
example, if s = 2 then

Dy, =D,
d=D{Dy> —D{>,D,;, M = ’ 1,
1,122 1221 (—D2,1 Dy, )
€12 = (1,0)', €r1n = O, 1)’, aan = (Dz,z, _D2,1), » ) = (_DI,ZaDl,l), s (2.7)
d = (D2, D13)aqy = (D21, D22) agy.
d = 0 implies
foa1 =€ (DY — D21 Ya), foo =€"(=Di12Y1 + D11 12). (2.8)
d =d; = 0 implies
fii= e” [(tD,, + D2,2.1) Yy — (tDy1 + D21.1) V2], (2.9)
fiz=€"[-(Di2+ Dip1) Y1 + (D11 + Dy1a1) Yol (2.10)

d=d; =d, = 01implies
fri=¢e" [(f2D2,2 +2tDs5 + Dz,z.z) Y, - (t2D2,1 +2tDy ;1 + D2,1.2) Yz] , (2.11)
fra=e" [— (f2D1,2 +2tDy 51 + Dl,2.2) Yi + (IZDM +2tDy .1 + Dl,l.) Yz] . (2.12)
d,, = 0for 0 <m < 3implies f5; = € (z31Y1 + z3,Y>), where, for j = 1,

230 = Doy +3t2Dysy + 3tDyss + Dio s, (2.13)

230 = —'Dyy = 3Dy — 3tDy 15 — Day 3, (2.14)
and, for j = 2,

231 = =Dy = 3°Dy 2y — 3tDy 25 — Dy 23,

232 =Dy + 3Dy + 3tDy 15 + Dy 3.

Generally, each f, ; is a linear combination of (f,,;, 0 < m < n). We shall give details in a later paper.
For example, M, ; # 0 implies, for 2 < j < s, fo;(t) = fo.(OM;1/M;;. s = 2 and D,, # 0 imply

Jo2(t) = =f0.1(t)D2,1 /D1
For L(t) = L of (1.4) and 7 # 0, set

q
Le(t) = T'L(rt) = ) Tealt) (d/dr)',
n=0

where T,,(t) = 77"T,(tt). So, T, = I, implies T, = I,. For example, ¢ = s = 2, T, = I, imply
L.(t) = (d/dt)* + TT (1) + T*Ty(11).

Corollary 2.3. Take v, D = D(v), a = a(v) of Theorems 2.1-2.2, and f(t) = fo(t,v) of (2.1), or
f(@) = fu(t,v) of Theorem 2.2. Then a solution of L.(t)X(t) = 0, is X(¢) = f,(7t,v).
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We have not assumed that r = s or T, = I;,. However, if r = s and T, = I,, then Lf = O, can be
written in the standard form X | = AX, where

0 I o -- 0

]{ 0 0 I, - 0
X=| A=l e cos, (2.15)

0 0 o - I

O B A R Cpetr

(tobereadas A = —Tyif g = 1), and each O is s X 5. So, (2.15) with f of Theorems 2.1, 2.2 give all gs
linearly independent solutions of X ; = AX.

3. An application to the unit circle

Set ¢, = cost, s, = sint. Here, we take r = s = 2 and

_ O _1 _ _ lN_ C[ _S[ _
N_(l 0), Y—(Yl,Yz)—e _(St ct)—CtIQ'i‘St. (31)

So,
Ct _St
Y1=( ) Y2=Y1.1=( ) NY, =Y, NY, = -1;.

St Cy

Set

. 0 1
A—dlag(l,—l),J—(1 O)’

Rm:m+w:mrm=f ﬂ,

St —C;

S) = (Yz, Yl) =YJ :R.l(t)'

Q(t)=( o,

-8 C;
C

N, R(t), Q(t), A and J all have determinant +1. Some properties are:

J* =N =-N>=R(@t)’ = Q1t)’ = I,

NA=-AN=J, JN=-NJ=A, JA=-AJ =N,

R()Y(s) = R(t — s5) = Y(t — s)A, RQ1)Y = YA = R(p),

R(21)Y, = Y, RQR1Y, = =Y, AY = R(-1), Y(s)R(f) = R(s + 1),
JR(f) = YN = NY, RA =Y, AR(r) = Y, RQ2f) = YAY’,

1 0 01 00 00
R A L A O WA

(1.3) holds for

(S, Tw) = (I, 1), (N,N), (A,R(21)), (J,0(20)).

AIMS Mathematics Volume 7, Issue 6, 9588—-9602.
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So, (1.3) also holds for any linear combination of these, say

Sn = bn,IIZ + bn,zN + bn3A + bn,4J — ( bn,l + bn,3 bn,2 - bn,4) ’

_bn,Z - bn,4 bn,l - bn,3
Tn(t) = bn,IIZ + bn,2N + bn,3R(2t) + bn,4Q(2t)

_(bu1 +buzcry —buasr, —buo +by3sr, + buacy,
bup +by380; +byacry  bpi —bp3coy+ bpasy,

for any constants b, ; € C. Any 2 X 2 matrix §, can be put in this form: set

buy = (Sn11+S022)/2, bpz =(Sui11—Sn12) /2,
bur = (Sn21 —Sn12) /2, bya == (Sn21 +Su12) /2.

So,
T,(t)=A:(S,),
where

2A(S) = B(S) + c2, C(S) + 52, G(S),

(B -B, (-G N (e3e
B(S)—(B2 Bl),cm—(_c2 _cl)’G‘S)—(cl _Cz),

B =811+822,B,=812-821,Ci1=811—-822, C2=812+821,

T,Y1 = (byy + bu3) Y1 + (Do + bya) Yo, T,Ys = (=bpa + bya) Y1 + (byy — by3) Ya.

(3.2)

(3.3)

Corollary 3.1. For T,(t) of (3.3), a solution of Lf = 0, is (2.1) with v any of the 2q roots of d = 0,

c1t+c¢ —Cy +C
E:OQ,D:C1[2+C2N+C3A+C4J:(1 3 2 4),
cCr+Ccq4 Cp—C3

where

q

- _ 2, 2_2_ 2

cj= E Cpjy d=cy+Cy—c5—cy,
n=0

where

Cp1 = gnbn,l - hnbn,Za Cpo = gnbn,Z + hl’lbn,lv Cpn3 = gnbn,3 + hnbn,4, Cpna = gnbn,4 - hnbn,3a

80 = () = Real (v +iY) = (Z)(—w—za
J
= = ") = n 1N n=2j-1
h, = h,(v) = Imag (v +1)") = Zj: (2] . 1)( 1)iy=21,

where the real and imaginary parts are taken as if v were real.

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

AIMS Mathematics Volume 7, Issue 6, 9588-9602.
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Proof: Since N? = —1,,
(vl + N)" = g, I + h,N
for g, and h, of (3.7), (3.8). So, for §, of (3.2),
Sy WL+ N)' =cu1lh + cpaN + ez + cpald.

So, by (1.5), (3.4) holds. g,, h,, ¢, j, cj, D, d are polynomials in v of degree n, n — 1, n, q, q, 2q. So,
d = 0has 2g roots v. O
By (3.7)-(3.8), when g = 1, the c¢; needed for (3.5) are

c1 =bo1+ Vb1 —bin, c2 =bos+Vvbio+ by,

c3=bo3+Vbi3+bi4, c4 =bos+vbia—Dby3.
By (3.7)-(3.8), when g = 2, the c; needed for (3.5) are
= Do,y +vbiy — bio + (V2 = 1) byy = 2vbs,
€2 =boo + vbio+ byy + (v = 1) by +2vby
€3 = boy + Vb1 + bra+ (v = 1) by + 2vbya,
C4 = boa +vbia— bz + (v = 1) baa = 2vhys.

When g = 3, we add ¢3; of (3.6) to ¢; for j = 1,2,3,4.
Lf = 0, can only be reduced to the form X, = AX if ¢, # 0, where e, = det T,(r) = det §, =
b:, +Db.,— b, —Db.,, since then we can reduce T,(f) to I, by multiplying by T,(r)~". Set

q
L=T,0"'L= ) T, d/dr,
n=0

where Tn(t) = Tq(t)‘lTn(t) is a linear combination of 1, s,,, €2, Says Cay-

Example 3.1. Take g =1, S, =15, So = A A. So, (1.2) holds with T\ = I, and T((t) = AR(2t). Further,

D=vhL+aa+N=["FT1 1}
1 v—A1

12
and d = v* — 2>+ 1 with roots v = i(/lz - 1) ! = vy, Vo, say. By (2.7), a = aqy = ( ﬂ) implies a ((1))
=0

70 = (V__f) and 7, = ('(V__”;)”); a=ag = (Vlﬂ) implies a; = ((1)) Z0 = (v+/1) and 7, = (t(v+/l)+1) d
implies v = + (1 — /12)1/2. So, by (2.8), solutions are

for=e"[(v=DY, = Y,l, foo=€"[Yi+ v+ DY2].
Ifd=0and A = =1, thend; = v =0 so by (2.9) and (2.10) solutions are
Jor =—AY1 = Y2, foo =Y+ Y, = -Afo,,
fii = (1 =AY, = tYs, finr =tY) + (1 + AD)Ys.

AIMS Mathematics Volume 7, Issue 6, 9588-9602.
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An extension is

Example 3.2. Given scalars by, by, by, we solve f1(t) = A(t) f(¢) for

by +bicyy —by +bysy,
by +bisy;  by—Dbicyy,

by —bz)

A(t) = ( ) = B+ b1R(2t), (3.9

B = b012 + b,N = (b2 bo

So, Lf = f1 —AW)f. Takeq=1,S, =1, and

5, (—bo ~b by

s bl) = —~bol, — biA — b,N = —B — by A.

Then (1.4) holds with T,(t) = L, Ty(t) = —A(t). So,

D(v):So+v12+N:(V_b0_b1 b =1 )

-by+1 v—>by+ b
and d(v) = (v = by)* = b* + (b, — 1)* has roots

vi =bo+6"% vy =by—6"? (3.10)
foro = b% — (b, — 1~ By (2.8), if v = vy or v, then d = 0 and solutions are

for(®) =e"[(v=by+ b)Y, + (b, — 1) Y],
for()=€"[(1 =b) Y1+ (v—by— b)) Ya]. (3.11)

Consider the case 6 = 0. So, b, = 1 + Ab, where A = +1,

for(®) = b1 (Y1 + AY2), foo(t) = =bie™ (AY; + Y»),
fia(® = ™ [(bit + DY) + AbitYs], fio(t) = €™ [=AbytY) + (1 = bi1) Y,].

Let us rescale this example by transforming to 7 = ¢/, x(T) = f(7T) for T # 0, then replacing T
by t.

Example 3.3. Set A.(t) = TA(tt). For A(t) of (3.9), x.1(t) = A(t)x(t) has solutions f, j(tt) for fo (t) of

(3.11) with v of (3.10). If 6 = 0, other solutions are f, j(tt) for fi () of (2.9) and (2.10). We consider
two cases. The first case is that T = 1/2. In this case,

by + bic, —by + bys;

A0 = (b2 +bis;, by—bic

)/2 = (bol, + boN + b1R(21)) /2.

The second case is that T = —1, by = 1/4, b, = 1 and by = =3/4. Then vi = =1/2, vo = 1 and
independent solutions are

—S; t

fou(=1) = <—3/2>e’/2( “ ) foal—t) = (3/2>e-’(j’).

AIMS Mathematics Volume 7, Issue 6, 9588-9602.
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The other two fy j are 0,. In this case, A-(t) = —B — biR(=2t) can be written

(-1+G/DS 1=/
A0 = (—1 — 3/ 1+ (3/2)s$)’

with period T = n. Markus and Yamabe [5] used this form of A.(t) but only gave the first solution
Joa(=1). This example is quoted by Chicone [1], but again the second solution fy,(—t) is not given.

Example 3.4. Take g =2, S, =1, S| = 0y and S = diag (by + by, by — by) for scalars by, by. Then
Ty =1, T, =0y and

Ty = bol, + biR(2t) = (bo + b1C2,z blsz,t )

bysy, by — bicy,

Then, L = I,(d/dt)* + Ty. (1.2) holds with

2
_ 2 (v =1+by+b —2vy
D—(V12+N) +S0—( 2y V2—1+b0—b1’

d=(F=1+b) ~B+42 = v + 20 +c,
where b =bo+ 1, ¢ = (by — 1)* - b%. d has four roots, v = vy, +v,, where
vi=(-b+ (51/2)1/2, vy =(~b- 51/2)]/2’ §=0b*~c=4by+bi. (3.12)

So, v* =1 + by = =2 + 6% and solutions are given by fy1, for of (2.8) with Dy, = v* — 1 + by — by,
Dy =2v, D1y = =2vand Dy = v* — 1 + by + by. If § of (3.12) is 0 and b # 0, then there are two
roots of multiplicity two, v = Avy, where A = £1, vy = (=b)'/?; so other solutions are f, of (2.9) with
v = Avy,

Dy ==2-by, Dy =Dy =2v, Dyyy =2, (3.13)
and fi1, of (2.10) with v = A,
Dy =-2v, Doy =-2, D1y =b; =2, Dy, =2v. (3.14)

Now suppose that by = —1, by = 24, where A = 1. Then v = 0 has multiplicity 4. So, other solutions
are foy of (2.11), (3.13) with Dyp5 = 2, D212 = 0; fono 0f (2.12), (3.14) with D12, =0, D112 = 2; f3.
of (2.13) with

231 = — (2 + b)) £ + 6yt + 6t, 735 = 2Avt> — 61%;
and f3, of (2.14) with
231 = 24t + 612, 735 = (by — 2) £ + 6Av,t* + 6t.

To solve Lf = g, a given function in C?, Section 5 will need its derivative, 0, fo(t,v) = e"v(t,v),
where

2 2
V(t, V) = Zaj (VYJ' + Yj.l) =a WVY1+Y)+a (vY,— Yl) = Z €ij,
J=1 j=1

AIMS Mathematics Volume 7, Issue 6, 9588-9602.



9598

e =a1v—ay = _D]’QV_D]’] :V2+ 1 —bo—bl,

e;=a,+va =—-Dj,+vD;; = v(v2 + 1+ by +b1).

By (2.15), Lf = 0, can be written X; = AX, where

f ) (02><2 12 ) 4x4
X = , A= e C™,
(f.l —To 02

Now suppose that by, by are real. If 6 < 0, all four roots are complex. Suppose that 6 > 0. Then +v,
are real if b < 6'%, and +v, are real if "> < —b. So, if b < 6> < —b then all four roots are real.

The differential equation, Lf = 0,, arises in the theory of planetary perturbations with by = —y/2,
by = =3y/2, sothatb =1—v/2, ¢ = =2y* 6 = 9y(y — 8/9)/4, and y > 0 real. So, 6 > 0 if and only if
y > 8/9. Alsoy > 1 ifand only if v > 0. Fory > 8/9, v5 < 0. So, y < 8/9 implies four complex roots;
8/9 < vy < 1 implies four imaginary roots; 1 <y implies V% >0> v% so that two roots are real and two
are imaginary. For large vy, vy and v, of (3.12) satisfy

= 1-57"12+0(y?)]. =iy [1+y 6+ 0(y7?))].
By Corollary 2.3, we have

Example 3.5. For L of Example 3.4, L.(t) = (d/dt)* + t*Ty(tt), and L.(H)X(t) = 0, has solution
X(t) = f,,j(tt) when f, j(t) is a solution to Example 3.4.

4. Using the Jordan form when r = s

Suppose that r = s. Then D and T,(¢) can be easily written using the Jordan form of N, in terms
of block matrices, or scalars when the Jordan form is diagonal. Suppose that N has Jordan form
N = PJP™!, where J = diag (J1.....J,). J; = Ju, (1)), Ju(d) = AL, + U,,, and U,, is the m X m
matrix of zeros except for ones on the first super-diagonal, that is, (Uy) x = 6 j+1 for 1 < j < m. So,
s =my +---+m,and for 0 < n < m, Uy, is the m X m matrix of zeros except for ones on the nth
super-diagonal, that is, (Uy,) ; = Ok jwa for 1 < j <m —n. Also for n > m, U,, = Oyxm, and

min(n,m—1)
I =y (”_)A"-J'U,L, 4.1)
= M
exp {Jn (D1} = eV, (1), (4.2)

where

m—1

Us = I, Va0 = 3, PUL/ .
=0

So, V(1) has zeros on its subdiagonals, and the elements of its jth superdiagonal are all #//j. That is,
V(@) j4n =t/ j! for 1 < j < m — n. For example,

n n—1
0=(o o) =[5 3] mar =[5 ")

AIMS Mathematics Volume 7, Issue 6, 9588-9602.
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exp {2 (Dt} = e"Vi(1), Va(t) = ((1) i)

Partition P, P!, S, and T, = T,,(¢) of (1.3) as m; x my blocks, P = (P ), P' = (P*), S, = (S,4):
T,(t) = (Tu(t) i) for 1 < j, k < p, and do similarly for D, N" and ¥ = ¥(#) = ¢'*. Then

p p

n _ n pc,k _ tJ. pc.k

(N")juo = Y PicdtPE, Y= > PP,
c=1 c=1

p p
To(0)jx = Z Y oS napYpi(=1) = Z P;.e’ Qe P,

a,b=1 c,d=1
where
P
05, = Z PS oo Po.as
a,b=1
e n
D = Z SnP dlag (Mn,l, ey Mn,p) P_l = (Dj,k) , Mn,j = ij (V + /11) of (41),
n=0
a_ P
Dix= 2" > SujsPoclm (v + 1) P,
n=0 b,c=1
and e is given by (4.2) with m = m,, A = A.. So, T,(t) is a mixture of polynomials in ¢ and factors

e~ For example, if P = I, then
q
(N") e = 1600 Yiat) = €716 140, To()jx = €718 jue™, Dy = Z Smin v+ A"
n=0

Consider the two extremes: first the one Jordan block case J = Jg(A4). Then p = 1, m; = s, P is scalar,
say 1,

N = /lls + US’ Tn(t) = Vs(t)SnVs(_t)’

s k
Tu = D" Y [ 1@ = D] Snap (<0} 1k = b,

a=j b=1
q
D="S,J\(v+ ) of (4.1).
n=0
Second the diagonal Jordan form with J = diag (4;,...,4,). Thenp =s,m; =1, J. = A,

s

A=A, - pdk
T,(t)x = Z et p e QunP
c,d=1

with all components scalar, and

Dy = Zq: Zsl S isPoe (v + 2" P

n=0 b,c=1
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For example, if P = I, then

q
T,(t)x = e )ig njks Djx = Z Snje(v+ )"
n=0

Example 4.1. Take J = diag (11, 1,). So, s =2. Set 6 = A1 — A. Then

2
Ae—2, &k _ k O 1 2,k -8 2 1,k
Ty = Y e P05, P = 3" P08, P +e"P; 0}, PX + e P03 P

c,d=1 c=1

and
T.(t) = PH,P!,

where

ot
H. = qn,1,1 € qn1,2
n— -0t
€ "qn21  Gn22

and q, = P~'S,P. For N of Section 3, we can take

J = diag (i, —i), P = ( g 1)/\/5 detP =i, P! = (i _il.)/\/i.

In Section 3, we avoided having to use P and these eigenvalues by using N> = —1I,.
S. Solving Lf =gwhenT,=/;andr = s

We now give the solution of Lf = g when T, = I; and r = 5. This can be written X; = AX + F for
X,Aof (2.15)and F = (0,,0’,...,¢") as noted on page 90 of Hale [4] for the case s = 1.

For j=1,...,qr,set fj = f (t, vj) of (2.1) if v; are distinct. Otherwise choose f; using Theorem
2.2. Set

y(t,v) = ((Ya)', e, (Y(VI, + N)T! a),), , Uj = U(t, vj) ,
where
U(t,v) = ((e”Ya)' Y (e”Ya)_'q_l)/ =e"y(1,v).

So, U; € C%. For example, if s = 2 and {vj} are distinct, we can take a = ag or a) of (2.7). Now

suppose that r = s. Then U(t) = U = (Ul, e, qu) € C?% is a fundamental matrix solution of
X1 = AX. Thatis, det U(r) # 0. Its (J, k) element is

Uik =€y, (t, vj) . (5.1)
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So, U (1) = U(HU(0)7! is the principal matrix solution at 0 as it satisfies U(0) = I, see, for example,
page 80 of Hale [4]. So, by the variation of constants formula, see, for example, his page 81, X | =
AX + F has solution

X@®=U@

X(©0) + f U F] , (5.2)
0

where X(0) = U(0)"'X(0). Write U™ as a 2 X 2 block matrix with (j, k) element U** € C*. Then

U'F = (g;z)f, so that Lf = g has solution

2 f
f@ = Z Uy (o) [ij(o) +f0 Uj’zg] , (5.3)

=1
the first of the two block rows of

t
U [)?(0) + f 172g] :
0
where (ﬁl, Uz) = U~!. So, the solutions (5.2) and (5.3) have ¢s unknowns X(0) for X of (2.15), that is,
the initial values of f and its first ¢ — 1 derivatives.

We now illustrate a use of Floquet’s theorem. Set r = gs. Suppose that r = 5, T, = I, and {T,} have
period T'. (This holds for Example 1.1 and Section 3 with 7 = & or /7 for Example 3.4.) (2.15) puts
Lf = Oy in the standard form X; = AX, where A is periodic. According to Floquet’s theorem (see,
for example, page 118 of Hale [4] or page 164 of Chicone [1]), since U(?) is a fundamental matrix
solution of X; = AX € C™ for (X, A) of (2.15), and A has period T, there exists a constant B € C"™"
and P = P(t) with period T such that U(f) = P(t)e®. However, Floquet’s theorem does not give P(t),
B while our method does, as we now show. {vj} are the eigenvalues of B. Since these eigenvalues are
distinct, B has diagonal Jordan form, say QAQ~!, where A = diag (v,,...,v,). So,

P = QMO oM = diag (¢7,...,e""), U() = R Q™!
where R(t) = PQ. The (j, k) element of U(?)Q is

Z Ui ()Qix = Rjx(t)e™.
=1

So, R (1) is the coefficient of e in U(r)Q. This gives R(r). Set (Qf’k) = Q7 !. By (5.1), the coefficient
of e in

Uk = Zr: R;p(He Q"
b=1
is 6,,x4(1) = R;5(1 Q. So,
xjx(t) = yi (8 v)) = Z Rip(HQ™, x(t) = ROQ™', P(Q = R(t) = x(1Q.
b=1
P(t) = x(t) = (ye (£ v;)) is of (5.1). Also, U(r) = P(t)e™, so that QeMQ™! = ¥ = UP()™' = Q(r) say.
So, Qe = Q(1)Q. Write Q as (g1, . ..,q,). So, for all ¢, g, is an eigenvector of Q(¢) with eigenvalue

e"". So, we can take g; as the eigenvector of Q(T') with eigenvalue e”/". So, now we have A, Q and B.
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