

Mathematics

Research article

Some linear differential equations generated by matrices

Christopher Withers ${ }^{1}$ and Saralees Nadarajah ${ }^{2, *}$

${ }^{1}$ Callaghan Innovation, Lower Hutt, New Zealand
${ }^{2}$ University of Manchester, Manchester M13 9PL, UK

* Correspondence: Email: mbbsssn2@manchester.ac.uk.

Abstract: Given matrices $N \in C^{s \times s}$ and $S_{0}, \ldots, S_{q} \in C^{s \times s}$, we solve the linear differential equation

$$
\sum_{n=0}^{q} T_{n}(t)(d / d t)^{n} f(t)=g(t)
$$

where $t \in R, T_{n}(t)=e^{t N} S_{n} e^{-t N}$, and $f(t): R \rightarrow C^{s}$, using the roots of $d(v)=\operatorname{det} D(v)$, where

$$
D(v)=\sum_{n=0}^{q} S_{n}\left(v I_{r}+N\right)^{n} .
$$

For example,

$$
N=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

implies

$$
e^{t N}=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

so that $T_{n}(t)$ are periodic, giving an explicit solution to a form of Floquet's theorem.
Keywords: characteristic matrix; Floquet's theorem; planetary perturbations Mathematics Subject Classification: 34A99

1. Introduction

There is much research of linear differential equations involving or generated by matrices, see Derevenskii [2] and Elishevich [3]. But these and other papers are limited to the first few orders. We are not aware of papers giving solutions for linear differential equations of general order generated by matrices. In the paper, we provide solutions for such a class of linear differential equations.

Let R and C denote the real and complex numbers, respectively. For any function $f(t)$ of $t \in R$, set $f_{. n}(t)=(d / d t)^{n} f(t)$. Let $Y(t)=Y=\left(Y_{1}, \ldots, Y_{r}\right) \in C^{s \times r}$ be a function of $t \in R$, and a constant $N=\left(N_{j, k}\right) \in C^{r \times r}$, such that

$$
\begin{equation*}
Y_{.1}(t)=Y(t) N \in C^{s \times r} . \tag{1.1}
\end{equation*}
$$

Choose $q \geq 1$. Suppose that for $0 \leq n \leq q$, and $T_{n}(t) \in C^{s \times s}$, there is a constant $S_{n}=\left(S_{n, j, k}\right) \in C^{r \times r}$ such that

$$
\begin{equation*}
T_{n}(t) Y(t)=Y(t) S_{n} . \tag{1.2}
\end{equation*}
$$

If $r=s$, as in the abstract, we can take

$$
\begin{equation*}
Y(t)=e^{t N}, T_{n}(t)=e^{t N} S_{n} e^{-t N} \tag{1.3}
\end{equation*}
$$

If $r>s$, we can take $Y(t)$ as the first s rows of $e^{t N}$. We wish to solve the differential equation $L f=0_{s}$ for $f=f(t): R \rightarrow C^{s}$, where

$$
L=L(t)=\sum_{n=0}^{q} T_{n}(t)(d / d t)^{n}, s \times s,
$$

that is,

$$
\begin{equation*}
L f=\sum_{n=0}^{q} T_{n} f_{. n} . \tag{1.4}
\end{equation*}
$$

Theorem 2.1 gives solutions in terms of the roots of $d=d(v)$, where

$$
\begin{equation*}
d(v)=\operatorname{det} D(v) \text { and } D(v)=D=\sum_{n=0}^{q} S_{n}\left(v I_{r}+N\right)^{n} \in C^{r \times r} . \tag{1.5}
\end{equation*}
$$

We call $D(v)$ the characteristic matrix of the operator L. If v is a multiple root, then other solutions are given by Theorem 2.2.

Section 3 chooses $r=s=2$ and N of (3.1) below. $T_{n}(t)$ of (1.3) are then linear in $\cos 2 t$ and $\sin 2 t$ and so have period π. Example 3.2 gives for the first time the full solution of a well known example. Example 3.3 solves a differential equation that arises in the theory of planetary perturbations, and was the incentive for this paper. Section 4 shows how $D(v)$ and $T_{n}(t)$ are given by the Jordan form of N when $r=s$.

Section 5 solves $L f=g$, any given function in C^{s}, when $r=s$ and $T_{q}=I_{s}$, by converting it to the standard form $X_{.1}=A X+F$. Its solution is then given by the variation of constants formula in terms of the solution of $L f=0_{s}$. When A is periodic, Floquet's theorem only gives the form of the solution of $X_{.1}=A X$. We give the actual solution. Examples 3.1-3.5 all have periodic A. Set $i=\sqrt{-1}$. Set $\delta_{j, k}=1$ or 0 for $j=k$ or $j \neq k$.

2. Main results

Theorem 2.1. Suppose that $Y(t), N$ satisfy (1.1), and that $T_{n}(t), S_{n}$ satisfy (1.2) for $0 \leq n \leq q$. Let v be any of the qr roots of $d(v)=0$ for $d(v) o f(1.5)$. Choose $a(v)=a=\left(a_{1}, \ldots, a_{r}\right)^{\prime} \in C^{r}$ such that $E(v)=0_{r}$, where

$$
E=E(v)=D(v) a(v) .
$$

Then for $f=f(t) \in C^{s}$ and L of (1.4), a solution of $L f=0_{s}$ is

$$
\begin{equation*}
f_{0}(t, v)=e^{v t} Y(t) a(v)=e^{v t} \sum_{k=1}^{r} a_{k}(v) Y_{k}(t) . \tag{2.1}
\end{equation*}
$$

Proof: Since $Y_{. n}=Y N^{n}$, by Leibniz' rule, the nth derivative of $e^{\nu t} Y$ is

$$
\begin{equation*}
\left(e^{v t} Y\right)_{. n}=e^{v t} Y\left(v I_{r}+N\right)^{n} . \tag{2.2}
\end{equation*}
$$

So,

$$
L e^{v t} Y=\sum_{n=0}^{q} T_{n}(t)\left(e^{v t} Y\right)_{. n}=e^{v t} Y D(v)
$$

and $L f_{0}=e^{v t} Y D(v) a(v)=0_{r}$.
When the roots of $d(v)$ are distinct, this gives $q r$ independent solutions of (2.1).
Theorem 2.2. Take $v, D=D(v), a=a(v)$ and $E=E(v)$ of Theorem 2.1. Suppose that for some $k \geq 1$,

$$
\begin{equation*}
E_{. m}(v)=0_{r} \tag{2.3}
\end{equation*}
$$

for $0 \leq m<k$, where $E_{. m}(v)=\partial_{v}^{m} E(v)$, and $\partial_{v}=d / d v$. Then for $0 \leq n<k, L f=0_{s}$ has solutions

$$
\begin{equation*}
f_{n}=f_{n}(t, v)=e^{v t} Y(t) z_{n}=e^{v t} \sum_{j=1}^{r} z_{n, j}(t, v) Y_{j}(t) \tag{2.4}
\end{equation*}
$$

where $z_{n}=z_{n}(t, v)=\left(t+\partial_{v}\right)^{n} a(v)$.
Proof: By (2.2) and Leibniz' rule,

$$
\begin{aligned}
& \partial_{t}^{o}\left(e^{\nu t} Y z_{n}\right)=\sum_{m=0_{p}}^{o}\binom{o}{m} e^{\nu t} Y\left(\nu I_{s}+N\right)^{o-m} \partial_{t}^{m} z_{n}, \\
& L f_{n}=e^{\nu t} Y G_{n}
\end{aligned}
$$

where

$$
G_{n}=\sum_{o=0}^{q} S_{o} \sum_{m=0}^{o}\binom{o}{m}\left(v I_{s}+N\right)^{o-m} \partial_{t}^{m}\left(t+\partial_{v}\right)^{n} a
$$

$$
=\sum_{m, r}\binom{n}{m}\binom{n-m}{r}^{t^{n-m-r} D_{. m} a_{. r} .}
$$

Transform from m to $c=m+r$. Then $\binom{n}{m}\binom{n-m}{r}=\binom{n}{c}\binom{c}{r}$ So,

$$
G_{n}=\sum_{c}\binom{n}{c}^{n-c} H_{c},
$$

where

$$
H_{c}=\sum_{r}\binom{c}{r} D_{. c-r} a_{. r}=\partial_{v}^{c} E(v)=0_{s}
$$

by (2.3).
We call f_{n} a characteristic solution of $L f=0_{s} . D(v)$ and $d(v)$ expand as

$$
D(v)=\sum_{k=0}^{q} v^{k} D_{k}, d(v)=\sum_{k=0}^{r q} v^{k} d_{k},
$$

where

$$
\begin{aligned}
& D_{k}=\sum_{n=k}^{q}\binom{n}{k} S_{n} N^{n-k}, D_{0}=D(0), D_{q}=S_{q} \\
& d_{0}=\operatorname{det} D(0), d_{q}=\operatorname{det} S_{q} .
\end{aligned}
$$

So,

$$
\begin{equation*}
D_{. m}(v)=\sum_{k=m}^{q}(k)_{m} v^{k-m} D_{k}, d_{. m}(v)=\sum_{k=m}^{r q}(k)_{m} v^{k-m} d_{k} . \tag{2.5}
\end{equation*}
$$

Corollary 2.1. Take $L f$ of (1.4). Consider the exceptional case when $D(v) \equiv 0_{s \times s .}$. Suppose that

$$
D_{. m}(v)=0_{s \times s}
$$

for $0_{q} \leq m \leq n$. Then for any a $\in C^{s}$, a characteristic solution of $L f=0_{s}$ is

$$
f_{n}(t, v)=t^{n} e^{v t} Y(t) a .
$$

We now transfer the condition (2.3) from $E(v)$ to $d(v)$. Let M be the adjoint of $D:(-1)^{j+k} M_{k, j}$ is the determinant of D with its j th row and k th column deleted. If $d \neq 0$, then $M=d D^{-1}$.
Corollary 2.2. Let $e_{1, s}, \ldots, e_{2, s}$ be any basis for R^{s}. For D and d of (1.5), set $a_{(j)}=M e_{j, s}$ and $E_{(j)}=$ $D a_{(j)}=d e_{j, s .}$. So, for $m \in Z^{q}, E_{(j) . m}=d_{. m} e_{j, s}$. Choose v so that $d=0$. Given $1 \leq j \leq s$ and $a=a_{(j)}$, $f_{n, j}(t)=f_{n}(t, v)$ of (2.4) is a characteristic solution of $L f=0_{s}$ if

$$
\begin{equation*}
d_{. m}(v)=0 \tag{2.6}
\end{equation*}
$$

for $0 \leq m \leq n$.

By (2.5), (2.6) does not extend to $n=r q$ if $d_{r, q} \neq 0$. We now take $e_{j, s}$ as the j th unit vector in R^{s}. So, for $1 \leq j \leq s, a_{(j)}$ is the j th column of M. For $1 \leq k \leq s$, its k th element is $a_{(j) k}=M_{k, j}=a_{j, k}$ say. Corollary 2.2 breaks the solution $f_{n}(x, v)$ into s basis solutions $f_{n, j}(x), 1 \leq j \leq s$, of $L f=0_{s}$. For example, if $s=2$ then

$$
\begin{align*}
& d=D_{1,1} D_{2,2}-D_{1,2} D_{2,1}, M=\left(\begin{array}{cc}
D_{2,2} & -D_{1,2} \\
-D_{2,1} & D_{1,1}
\end{array}\right), \\
& e_{1,2}=(1,0)^{\prime}, e_{2,2}=(0,1)^{\prime}, a_{(1)}=\left(D_{2,2},-D_{2,1}\right)^{\prime}, a_{(2)}=\left(-D_{1,2}, D_{1,1}\right)^{\prime}, \tag{2.7}\\
& d=\left(D_{2,2}, D_{1,2}\right) a_{(1)}=\left(D_{2,1}, D_{2,2}\right) a_{(2)} .
\end{align*}
$$

$d=0$ implies

$$
\begin{equation*}
f_{0,1}=e^{\nu t}\left(D_{2,2} Y_{1}-D_{2,1} Y_{2}\right), f_{0,2}=e^{\nu t}\left(-D_{1,2} Y_{1}+D_{1,1} Y_{2}\right) . \tag{2.8}
\end{equation*}
$$

$d=d_{.1}=0$ implies

$$
\begin{align*}
f_{1,1} & =e^{\nu t}\left[\left(t D_{2,2}+D_{2,2.1}\right) Y_{1}-\left(t D_{2,1}+D_{2,1.1}\right) Y_{2}\right], \tag{2.9}\\
f_{1,2} & =e^{v t}\left[-\left(t D_{1,2}+D_{1,2.1}\right) Y_{1}+\left(t D_{1,1}+D_{1,1.1}\right) Y_{2}\right] . \tag{2.10}
\end{align*}
$$

$d=d_{.1}=d_{.2}=0$ implies

$$
\begin{align*}
f_{2,1} & =e^{v t}\left[\left(t^{2} D_{2,2}+2 t D_{2,2.1}+D_{2,2.2}\right) Y_{1}-\left(t^{2} D_{2,1}+2 t D_{2,1.1}+D_{2,1.2}\right) Y_{2}\right] \tag{2.11}\\
f_{2,2} & =e^{v t}\left[-\left(t^{2} D_{1,2}+2 t D_{1,2.1}+D_{1,2.2}\right) Y_{1}+\left(t^{2} D_{1,1}+2 t D_{1,1.1}+D_{1,1 .}\right) Y_{2}\right] . \tag{2.12}
\end{align*}
$$

$d_{\cdot m}=0$ for $0 \leq m \leq 3$ implies $f_{3, j}=e^{\nu t}\left(z_{3,1} Y_{1}+z_{3,2} Y_{2}\right)$, where, for $j=1$,

$$
\begin{align*}
& z_{3,1}=t^{3} D_{2,2}+3 t^{2} D_{2,2.1}+3 t D_{2,2.2}+D_{2,2.3}, \tag{2.13}\\
& z_{3,2}=-t^{3} D_{2,1}-3 t^{2} D_{2,1.1}-3 t D_{2,1.2}-D_{2,1.3}, \tag{2.14}
\end{align*}
$$

and, for $j=2$,

$$
\begin{aligned}
& z_{3,1}=-t^{3} D_{1,2}-3 t^{2} D_{1,2.1}-3 t D_{1,2.2}-D_{1,2.3} \\
& z_{3,2}=t^{3} D_{1,1}+3 t^{2} D_{1,1.1}+3 t D_{1,1.2}+D_{1,1.3}
\end{aligned}
$$

Generally, each $f_{n, j}$ is a linear combination of $\left(f_{m, 1}, 0 \leq m \leq n\right)$. We shall give details in a later paper. For example, $M_{1,1} \neq 0$ implies, for $2 \leq j \leq s, f_{0, j}(t)=f_{0,1}(t) M_{j, 1} / M_{1,1} . s=2$ and $D_{2,2} \neq 0$ imply $f_{0,2}(t)=-f_{0,1}(t) D_{2,1} / D_{2,2}$.

For $L(t)=L$ of (1.4) and $\tau \neq 0$, set

$$
L_{\tau}(t)=\tau^{q} L(\tau t)=\sum_{n=0}^{q} T_{\tau, n}(t)(d / d t)^{n}
$$

where $T_{\tau, n}(t)=\tau^{q-n} T_{n}(\tau t)$. So, $T_{q}=I_{s}$ implies $T_{\tau, q}=I_{s}$. For example, $q=s=2, T_{2}=I_{2}$ imply $L_{\tau}(t)=(d / d t)^{2}+\tau T_{1}(\tau t)+\tau^{2} T_{0}(\tau t)$.

Corollary 2.3. Take $v, D=D(v)$, $a=a(v)$ of Theorems 2.1-2.2, and $f(t)=f_{0}(t, v)$ of (2.1), or $f(t)=f_{n}(t, v)$ of Theorem 2.2. Then a solution of $L_{\tau}(t) X(t)=0_{s}$ is $X(t)=f_{n}(\tau t, v)$.

We have not assumed that $r=s$ or $T_{q}=I_{s}$. However, if $r=s$ and $T_{q}=I_{s}$, then $L f=0_{s}$ can be written in the standard form $X_{.1}=A X$, where

$$
X=\left(\begin{array}{c}
f \tag{2.15}\\
f_{.1} \\
\cdots \\
f_{. q-1}
\end{array}\right), A=\left(\begin{array}{ccccc}
0 & I_{s} & 0 & \cdots & 0 \\
0 & 0 & I_{s} & \cdots & 0 \\
\cdots & & & & \\
0 & 0 & 0 & \cdots & I_{s} \\
-T_{0} & -T_{1} & -T_{2} & \cdots & -T_{q-1}
\end{array}\right) \in C^{q s \times q s},
$$

(to be read as $A=-T_{0}$ if $q=1$), and each 0 is $s \times s$. So, (2.15) with f of Theorems 2.1, 2.2 give all $q s$ linearly independent solutions of $X_{.1}=A X$.

3. An application to the unit circle

Set $c_{t}=\cos t, s_{t}=\sin t$. Here, we take $r=s=2$ and

$$
N=\left(\begin{array}{cc}
0 & -1 \tag{3.1}\\
1 & 0
\end{array}\right), Y=\left(Y_{1}, Y_{2}\right)=e^{t N}=\left(\begin{array}{cc}
c_{t} & -s_{t} \\
s_{t} & c_{t}
\end{array}\right)=c_{t} I_{2}+s_{t}
$$

So,

$$
Y_{1}=\binom{c_{t}}{s_{t}}, Y_{2}=Y_{1.1}=\binom{-s_{t}}{c_{t}}, N Y_{1}=Y_{2}, N Y_{2}=-Y_{1}
$$

Set

$$
\begin{aligned}
& \Lambda=\operatorname{diag}(1,-1), J=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
& R(t)=c_{t} \Lambda+s_{t} J=\left(Y_{1},-Y_{2}\right)=\left(\begin{array}{cc}
c_{t} & s_{t} \\
s_{t} & -c_{t}
\end{array}\right), \\
& Q(t)=\left(\begin{array}{cc}
-s_{t} & c_{t} \\
c_{t} & s_{t}
\end{array}\right)=\left(Y_{2}, Y_{1}\right)=Y J=R_{.1}(t) .
\end{aligned}
$$

$N, R(t), Q(t), \Lambda$ and J all have determinant ± 1. Some properties are:

$$
\begin{aligned}
& J^{2}=\Lambda^{2}=-N^{2}=R(t)^{2}=Q(t)^{2}=I_{2}, \\
& N \Lambda=-\Lambda N=J, J N=-N J=\Lambda, J \Lambda=-\Lambda J=N, \\
& R(t) Y(s)=R(t-s)=Y(t-s) \Lambda, R(2 t) Y=Y \Lambda=R(t), \\
& R(2 t) Y_{1}=Y_{1}, R(2 t) Y_{2}=-Y_{2}, \Lambda Y=R(-t), Y(s) R(t)=R(s+t), \\
& J R(t)=\bar{Y} N=N \bar{Y}, R(t) \Lambda=Y, \Lambda R(t)=\bar{Y}, R(2 t)=Y \Lambda Y^{\prime}, \\
& I_{2}+\Lambda=2\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), J-N=2\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), J+N=2\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), I_{2}-\Lambda=2\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

(1.3) holds for

$$
\left(S_{n}, T_{n}\right)=\left(I_{2}, I_{2}\right),(N, N),(\Lambda, R(2 t)),(J, Q(2 t)) .
$$

So, (1.3) also holds for any linear combination of these, say

$$
\begin{align*}
& S_{n}=b_{n, 1} I_{2}+b_{n, 2} N+b_{n, 3} \Lambda+b_{n, 4} J=\left(\begin{array}{cc}
b_{n, 1}+b_{n, 3} & b_{n, 2}-b_{n, 4} \\
-b_{n, 2}-b_{n, 4} & b_{n, 1}-b_{n, 3}
\end{array}\right), \tag{3.2}\\
& T_{n}(t)=b_{n, 1} I_{2}+b_{n, 2} N+b_{n, 3} R(2 t)+b_{n, 4} Q(2 t) \tag{3.3}\\
& =\left(\begin{array}{ll}
b_{n, 1}+b_{n, 3} c_{2, t}-b_{n, 4} s_{2, t} & -b_{n, 2}+b_{n, 3} s_{2, t}+b_{n, 4} c_{2, t} \\
b_{n, 2}+b_{n, 3} s_{2, t}+b_{n, 4} c_{2, t} & b_{n, 1}-b_{n, 3} c_{2, t}+b_{n, 4} s_{2, t}
\end{array}\right)
\end{align*}
$$

for any constants $b_{n, j} \in C$. Any 2×2 matrix S_{n} can be put in this form: set

$$
\begin{aligned}
& b_{n, 1}=\left(S_{n, 1,1}+S_{n, 2,2}\right) / 2, b_{n, 3}=\left(S_{n, 1,1}-S_{n, 1,2}\right) / 2 \\
& b_{n, 2}=\left(S_{n, 2,1}-S_{n, 1,2}\right) / 2, b_{n, 4}=-\left(S_{n, 2,1}+S_{n, 1,2}\right) / 2
\end{aligned}
$$

So,

$$
T_{n}(t)=A_{t}\left(S_{n}\right),
$$

where

$$
\begin{aligned}
& 2 A_{t}(S)=B(S)+c_{2, t} C(S)+s_{2, t} G(S), \\
& B(S)=\left(\begin{array}{cc}
B_{1} & -B_{2} \\
B_{2} & B_{1}
\end{array}\right), C(S)=\left(\begin{array}{cc}
C_{1} & -C_{2} \\
-C_{2} & -C_{1}
\end{array}\right), G(S)=\left(\begin{array}{cc}
C_{2} & C_{1} \\
C_{1} & -C_{2}
\end{array}\right), \\
& B_{1}=S_{1,1}+S_{2,2}, B_{2}=S_{1,2}-S_{2,1}, C_{1}=S_{1,1}-S_{2,2}, C_{2}=S_{1,2}+S_{2,1}, \\
& T_{n} Y_{1}=\left(b_{n, 1}+b_{n, 3}\right) Y_{1}+\left(b_{n, 2}+b_{n, 4}\right) Y_{2}, T_{n} Y_{2}=\left(-b_{n, 2}+b_{n, 4}\right) Y_{1}+\left(b_{n, 1}-b_{n, 3}\right) Y_{2} .
\end{aligned}
$$

Corollary 3.1. For $T_{n}(t)$ of (3.3), a solution of $L f=0_{2}$ is (2.1) with v any of the $2 q$ roots of $d=0$,

$$
E=0_{2}, D=c_{1} I_{2}+c_{2} N+c_{3} \Lambda+c_{4} J=\left(\begin{array}{cc}
c_{1}+c_{3} & -c_{2}+c_{4} \tag{3.4}\\
c_{2}+c_{4} & c_{1}-c_{3}
\end{array}\right),
$$

where

$$
\begin{equation*}
c_{j}=\sum_{n=0}^{q} c_{n, j}, d=c_{1}^{2}+c_{2}^{2}-c_{3}^{2}-c_{4}^{2}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{n, 1}=g_{n} b_{n, 1}-h_{n} b_{n, 2}, c_{n, 2}=g_{n} b_{n, 2}+h_{n} b_{n, 1}, c_{n, 3}=g_{n} b_{n, 3}+h_{n} b_{n, 4}, c_{n, 4}=g_{n} b_{n, 4}-h_{n} b_{n, 3}, \tag{3.6}\\
& g_{n}=g_{n}(v)=\operatorname{Real}\left((v+i)^{n}\right)=\sum_{j}\binom{n}{2 j}(-1)^{j} v^{n-2 j}, \tag{3.7}\\
& h_{n}=h_{n}(v)=\operatorname{Imag}\left((v+i)^{n}\right)=\sum_{j}\binom{n}{2 j+1}(-1)^{j} v^{n-2 j-1}, \tag{3.8}
\end{align*}
$$

where the real and imaginary parts are taken as if v were real.

Proof: Since $N^{2}=-I_{2}$,

$$
\left(\nu I_{2}+N\right)^{n}=g_{n} I_{2}+h_{n} N
$$

for g_{n} and h_{n} of (3.7), (3.8). So, for S_{n} of (3.2),

$$
S_{n}\left(v I_{2}+N\right)^{n}=c_{n, 1} I_{2}+c_{n, 2} N+c_{n, 3} \Lambda+c_{n, 4} J .
$$

So, by (1.5), (3.4) holds. $g_{n}, h_{n}, c_{n, j}, c_{j}, D, d$ are polynomials in v of degree $n, n-1, n, q, q, 2 q$. So, $d=0$ has $2 q$ roots v.

By (3.7)-(3.8), when $q=1$, the c_{j} needed for (3.5) are

$$
\begin{aligned}
& c_{1}=b_{0,1}+v b_{1,1}-b_{1,2}, c_{2}=b_{0,2}+v b_{1,2}+b_{1,1} \\
& c_{3}=b_{0,3}+v b_{1,3}+b_{1,4}, c_{4}=b_{0,4}+v b_{1,4}-b_{1,3} .
\end{aligned}
$$

By (3.7)-(3.8), when $q=2$, the c_{j} needed for (3.5) are

$$
\begin{aligned}
& c_{1}=b_{0,1}+v b_{1,1}-b_{1,2}+\left(v^{2}-1\right) b_{2,1}-2 v b_{2,2} \\
& c_{2}=b_{0,2}+v b_{1,2}+b_{1,1}+\left(v^{2}-1\right) b_{2,2}+2 v b_{2,1} \\
& c_{3}=b_{0,3}+v b_{1,3}+b_{1,4}+\left(v^{2}-1\right) b_{2,3}+2 v b_{2,4} \\
& c_{4}=b_{0,4}+v b_{1,4}-b_{1,3}+\left(v^{2}-1\right) b_{2,4}-2 v b_{2,3}
\end{aligned}
$$

When $q=3$, we add $c_{3, j}$ of (3.6) to c_{j} for $j=1,2,3,4$.
$L f=0_{2}$ can only be reduced to the form $X_{.1}=A X$ if $e_{q} \neq 0$, where $e_{n}=\operatorname{det} T_{n}(t)=\operatorname{det} S_{n}=$ $b_{n, 1}^{2}+b_{n, 2}^{2}-b_{n, 3}^{2}-b_{n, 4}^{2}$, since then we can reduce $T_{q}(t)$ to I_{2} by multiplying by $T_{q}(t)^{-1}$. Set

$$
\bar{L}=T_{q}(t)^{-1} L=\sum_{n=0}^{q} \overline{T_{n}}(t)(d / d t)^{n},
$$

where $\overline{T_{n}}(t)=T_{q}(t)^{-1} T_{n}(t)$ is a linear combination of $1, s_{2, t}, c_{2, t}, s_{4, t}, c_{4, t}$.
Example 3.1. Take $q=1, S_{1}=I_{2}, S_{0}=\lambda \Lambda$. So, (1.2) holds with $T_{1}=I_{2}$ and $T_{0}(t)=\lambda R(2 t)$. Further,

$$
D=v I_{2}+\lambda \Lambda+N=\left(\begin{array}{cc}
v+\lambda & -1 \\
1 & v-\lambda
\end{array}\right)
$$

and $d=v^{2}-\lambda^{2}+1$ with roots $v= \pm\left(\lambda^{2}-1\right)^{1 / 2}=v_{1}, v_{2}$, say. By $(2.7), a=a_{(1)}=\binom{v-\lambda}{-1}$ implies $a_{.1}=\binom{1}{0}$, $z_{0}=\binom{v-\lambda}{-1}$ and $z_{1}=\binom{t(v-\lambda)+1}{-t} ; a=a_{(2)}=\binom{1}{v+\lambda}$ implies $a_{.1}=\binom{0}{1}, z_{0}=\binom{1}{v+\lambda}$ and $z_{1}=\binom{t}{t(v+\lambda)+1} ; d=0$ implies $v= \pm\left(1-\lambda^{2}\right)^{1 / 2}$. So, by (2.8), solutions are

$$
f_{0,1}=e^{v t}\left[(v-\lambda) Y_{1}-Y_{2}\right], f_{0,2}=e^{v t}\left[Y_{1}+(v+\lambda) Y_{2}\right] .
$$

If $d=0$ and $\lambda= \pm 1$, then $d_{.1}=v=0$ so by (2.9) and (2.10) solutions are

$$
\begin{aligned}
& f_{0,1}=-\lambda Y_{1}-Y_{2}, f_{0,2}=Y_{1}+\lambda Y_{2}=-\lambda f_{0,1} \\
& f_{1,1}=(1-\lambda t) Y_{1}-t Y_{2}, f_{1,2}=t Y_{1}+(1+\lambda t) Y_{2}
\end{aligned}
$$

An extension is
Example 3.2. Given scalars b_{0}, b_{1}, b_{2}, we solve $f_{.1}(t)=A(t) f(t)$ for

$$
\begin{align*}
& A(t)=\left(\begin{array}{ll}
b_{0}+b_{1} c_{2, t} & -b_{2}+b_{1} s_{2, t} \\
b_{2}+b_{1} s_{2, t} & b_{0}-b_{1} c_{2, t}
\end{array}\right)=B+b_{1} R(2 t), \tag{3.9}\\
& B=b_{0} I_{2}+b_{2} N=\left(\begin{array}{cc}
b_{0} & -b_{2} \\
b_{2} & b_{0}
\end{array}\right) .
\end{align*}
$$

So, $L f=f_{.1}-A(t) f$. Take $q=1, S_{1}=I_{2}$ and

$$
S_{0}=\left(\begin{array}{cc}
-b_{0}-b_{1} & b_{2} \\
-b_{2} & -b_{0}+b_{1}
\end{array}\right)=-b_{0} I_{2}-b_{1} \Lambda-b_{2} N=-B-b_{1} \Lambda .
$$

Then (1.4) holds with $T_{1}(t)=I_{2}, T_{0}(t)=-A(t)$. So,

$$
D(v)=S_{0}+v I_{2}+N=\left(\begin{array}{cc}
v-b_{0}-b_{1} & b_{2}-1 \\
-b_{2}+1 & v-b_{0}+b_{1}
\end{array}\right)
$$

and $d(v)=\left(v-b_{0}\right)^{2}-b_{1}^{2}+\left(b_{2}-1\right)^{2}$ has roots

$$
\begin{equation*}
v_{1}=b_{0}+\delta^{1 / 2}, v_{2}=b_{0}-\delta^{1 / 2} \tag{3.10}
\end{equation*}
$$

for $\delta=b_{1}^{2}-\left(b_{2}-1\right)^{2}$. By (2.8), if $v=v_{1}$ or v_{2}, then $d=0$ and solutions are

$$
\begin{align*}
f_{0,1}(t) & =e^{v t}\left[\left(v-b_{0}+b_{1}\right) Y_{1}+\left(b_{2}-1\right) Y_{2}\right], \\
f_{0,2}(t) & =e^{v t}\left[\left(1-b_{2}\right) Y_{1}+\left(v-b_{0}-b_{1}\right) Y_{2}\right] . \tag{3.11}
\end{align*}
$$

Consider the case $\delta=0$. So, $b_{2}=1+\lambda b_{1}$, where $\lambda= \pm 1$,

$$
\begin{aligned}
& f_{0,1}(t)=b_{1} e^{b_{0} t}\left(Y_{1}+\lambda Y_{2}\right), f_{0,2}(t)=-b_{1} e^{b_{0} t}\left(\lambda Y_{1}+Y_{2}\right) \\
& f_{1,1}(t)=e^{b_{0} t}\left[\left(b_{1} t+1\right) Y_{1}+\lambda b_{1} t Y_{2}\right], f_{1,2}(t)=e^{b_{0} t}\left[-\lambda b_{1} t Y_{1}+\left(1-b_{1} t\right) Y_{2}\right]
\end{aligned}
$$

Let us rescale this example by transforming to $T=t / \tau, x(T)=f(\tau T)$ for $\tau \neq 0$, then replacing T by t.
Example 3.3. Set $A_{\tau}(t)=\tau A(\tau t)$. For $A(t)$ of (3.9), $x_{11}(t)=A_{\tau}(t) x(t)$ has solutions $f_{0, j}(\tau t)$ for $f_{0, j}(t)$ of (3.11) with v of (3.10). If $\delta=0$, other solutions are $f_{1, j}(\tau t)$ for $f_{1, j}(t)$ of (2.9) and (2.10). We consider two cases. The first case is that $\tau=1 / 2$. In this case,

$$
A_{\tau}(t)=\left(\begin{array}{cc}
b_{0}+b_{1} c_{t} & -b_{2}+b_{1} s_{t} \\
b_{2}+b_{1} s_{t} & b_{0}-b_{1} c_{t}
\end{array}\right) / 2=\left(b_{0} I_{2}+b_{2} N+b_{1} R(2 t)\right) / 2
$$

The second case is that $\tau=-1, b_{0}=1 / 4, b_{2}=1$ and $b_{1}=-3 / 4$. Then $v_{1}=-1 / 2, v_{2}=1$ and independent solutions are

$$
f_{0,1}(-t)=(-3 / 2) e^{t / 2}\binom{c_{t}}{-s_{t}}, f_{0,2}(-t)=(3 / 2) e^{-t}\binom{s_{t}}{c_{t}} \text {. }
$$

The other two $f_{0, j}$ are 0_{2}. In this case, $A_{\tau}(t)=-B-b_{1} R(-2 t)$ can be written

$$
A_{\tau}(t)=\left(\begin{array}{cc}
-1+(3 / 2) c_{t}^{2} & 1-(3 / 2) c_{t} s_{t}, \\
-1-(3 / 2) c_{t} s_{t} & -1+(3 / 2) s_{t}^{2}
\end{array}\right),
$$

with period $T=\pi$. Markus and Yamabe [5] used this form of $A_{\tau}(t)$ but only gave the first solution $f_{0,1}(-t)$. This example is quoted by Chicone [1], but again the second solution $f_{0,2}(-t)$ is not given.

Example 3.4. Take $q=2, S_{2}=I_{2}, S_{1}=0_{2 \times 2}$ and $S_{0}=\operatorname{diag}\left(b_{0}+b_{1}, b_{0}-b_{1}\right)$ for scalars b_{0}, b_{1}. Then $T_{2}=I_{2}, T_{1}=0_{2 \times 2}$ and

$$
T_{0}=b_{0} I_{2}+b_{1} R(2 t)=\left(\begin{array}{cc}
b_{0}+b_{1} c_{2, t} & b_{1} s_{2, t} \\
b_{1} s_{2, t} & b_{0}-b_{1} c_{2, t}
\end{array}\right) .
$$

Then, $L=I_{2}(d / d t)^{2}+T_{0}$. (1.2) holds with

$$
\begin{aligned}
& D=\left(v I_{2}+N\right)^{2}+S_{0}=\left(\begin{array}{cc}
v^{2}-1+b_{0}+b_{1} & -2 v \\
2 v & v^{2}-1+b_{0}-b_{1}
\end{array}\right), \\
& d=\left(v^{2}-1+b_{0}\right)^{2}-b_{1}^{2}+4 v^{2}=v^{4}+2 b v^{2}+c,
\end{aligned}
$$

where $b=b_{0}+1, c=\left(b_{0}-1\right)^{2}-b_{1}^{2}$. d has four roots, $v= \pm v_{1}, \pm v_{2}$, where

$$
\begin{equation*}
v_{1}=\left(-b+\delta^{1 / 2}\right)^{1 / 2}, v_{2}=\left(-b-\delta^{1 / 2}\right)^{1 / 2}, \delta=b^{2}-c=4 b_{0}+b_{1}^{2} \tag{3.12}
\end{equation*}
$$

So, $v^{2}-1+b_{0}=-2 \pm \delta^{1 / 2}$ and solutions are given by $f_{0,1}, f_{0,2}$ of (2.8) with $D_{2,2}=v^{2}-1+b_{0}-b_{1}$, $D_{2,1}=2 v, D_{1,2}=-2 v$ and $D_{1,1}=v^{2}-1+b_{0}+b_{1}$. If δ of (3.12) is 0 and $b \neq 0$, then there are two roots of multiplicity two, $v=\lambda v_{0}$, where $\lambda= \pm 1, v_{0}=(-b)^{1 / 2}$; so other solutions are $f_{1,1}$ of (2.9) with $v=\lambda v_{0}$,

$$
\begin{equation*}
D_{2,2}=-2-b_{1}, D_{2,2.1}=D_{2,1}=2 v, D_{2,1.1}=2 \tag{3.13}
\end{equation*}
$$

and $f_{1,2}$ of (2.10) with $v=\lambda v_{0}$,

$$
\begin{equation*}
D_{1,2}=-2 v, D_{1,2.1}=-2, D_{1,1}=b_{1}-2, D_{1,1.1}=2 v . \tag{3.14}
\end{equation*}
$$

Now suppose that $b_{0}=-1, b_{1}=2 \lambda$, where $\lambda= \pm 1$. Then $v=0$ has multiplicity 4 . So, other solutions are $f_{2,1}$ of (2.11), (3.13) with $D_{2,2.2}=2, D_{2,1.2}=0 ; f_{2,2}$ of (2.12), (3.14) with $D_{1,2.2}=0, D_{1,1.2}=2$; $f_{3,1}$ of (2.13) with

$$
z_{3,1}=-\left(2+b_{1}\right) t^{3}+6 \lambda v_{0} t^{2}+6 t, z_{3,2}=2 \lambda v_{0} t^{3}-6 t^{2}
$$

and $f_{3,2}$ of (2.14) with

$$
z_{3,1}=2 \lambda v_{0} t^{3}+6 t^{2}, z_{3,2}=\left(b_{1}-2\right) t^{3}+6 \lambda v_{0} t^{2}+6 t
$$

To solve $L f=g$, a given function in C^{2}, Section 5 will need its derivative, $\partial_{t} f_{0}(t, v)=e^{v t} v(t, v)$, where

$$
v(t, v)=\sum_{j=1}^{2} a_{j}\left(v Y_{j}+Y_{j .1}\right)=a_{1}\left(v Y_{1}+Y_{2}\right)+a_{2}\left(v Y_{2}-Y_{1}\right)=\sum_{j=1}^{2} e_{j} Y_{j}
$$

$$
\begin{aligned}
& e_{1}=a_{1} v-a_{2}=-D_{1,2} v-D_{1,1}=v^{2}+1-b_{0}-b_{1}, \\
& e_{2}=a_{1}+v a_{2}=-D_{1,2}+v D_{1,1}=v\left(v^{2}+1+b_{0}+b_{1}\right) .
\end{aligned}
$$

By (2.15), $L f=0_{2}$ can be written $X_{.1}=A X$, where

$$
X=\binom{f}{f_{1}}, A=\left(\begin{array}{cc}
0_{2 \times 2} & I_{2} \\
-T_{0} & 0_{2 \times 2}
\end{array}\right) \in C^{4 \times 4}
$$

Now suppose that b_{0}, b_{1} are real. If $\delta<0$, all four roots are complex. Suppose that $\delta \geq 0$. Then $\pm v_{1}$ are real if $b \leq \delta^{1 / 2}$, and $\pm v_{2}$ are real if $\delta^{1 / 2} \leq-b$. So, if $b \leq \delta^{1 / 2} \leq-b$ then all four roots are real.

The differential equation, $L f=0_{2}$, arises in the theory of planetary perturbations with $b_{0}=-\gamma / 2$, $b_{1}=-3 \gamma / 2$, so that $b=1-\gamma / 2, c=-2 \gamma^{2}, \delta=9 \gamma(\gamma-8 / 9) / 4$, and $\gamma>0$ real. So, $\delta \geq 0$ if and only if $\gamma \geq 8 / 9$. Also $\gamma \geq 1$ if and only if $v_{1}^{2} \geq 0$. For $\gamma \geq 8 / 9, v_{2}^{2}<0$. So, $\gamma<8 / 9$ implies four complex roots; $8 / 9 \leq \gamma<1$ implies four imaginary roots; $1 \leq \gamma$ implies $v_{1}^{2} \geq 0>v_{2}^{2}$ so that two roots are real and two are imaginary. For large γ, v_{1} and ν_{2} of (3.12) satisfy

$$
v_{1}=(2 \gamma)^{1 / 2}\left[1-5 \gamma^{-1} / 12+O\left(\gamma^{-2}\right)\right], v_{2}=i \gamma^{1 / 2}\left[1+\gamma^{-1} / 6+O\left(\gamma^{-2}\right)\right]
$$

By Corollary 2.3, we have
Example 3.5. For L of Example 3.4, $L_{\tau}(t)=(d / d t)^{2}+\tau^{2} T_{0}(\tau t)$, and $L_{\tau}(t) X(t)=0_{2}$ has solution $X(t)=f_{n, j}(\tau t)$ when $f_{n, j}(t)$ is a solution to Example 3.4.

4. Using the Jordan form when $r=s$

Suppose that $r=s$. Then D and $T_{n}(t)$ can be easily written using the Jordan form of N, in terms of block matrices, or scalars when the Jordan form is diagonal. Suppose that N has Jordan form $N=P J P^{-1}$, where $J=\operatorname{diag}\left(J_{1}, \ldots, J_{p}\right), J_{j}=J_{m_{j}}\left(\lambda_{j}\right), J_{m}(\lambda)=\lambda I_{m}+U_{m}$, and U_{m} is the $m \times m$ matrix of zeros except for ones on the first super-diagonal, that is, $\left(U_{m}\right)_{j, k}=\delta_{k, j+1}$ for $1 \leq j<m$. So, $s=m_{1}+\cdots+m_{p}$ and for $0 \leq n<m, U_{m}^{n}$ is the $m \times m$ matrix of zeros except for ones on the nth super-diagonal, that is, $\left(U_{m}^{n}\right)_{j, k}=\delta_{k, j+n}$ for $1 \leq j<m-n$. Also for $n \geq m, U_{m}^{n}=0_{m \times m}$, and

$$
\begin{align*}
& J_{m}(\lambda)^{n}=\sum_{j=0}^{\min (n, m-1)}\binom{n}{j} \lambda^{n-j} U_{m}^{j}, \tag{4.1}\\
& \exp \left\{J_{m}(\lambda) t\right\}=e^{\lambda t} V_{m}(t), \tag{4.2}
\end{align*}
$$

where

$$
U_{m}^{0}=I_{m}, V_{m}(t)=\sum_{j=0}^{m-1} t^{j} U_{m}^{j} / j!
$$

So, $V_{m}(t)$ has zeros on its subdiagonals, and the elements of its j th superdiagonal are all t^{j} / j. That is, $V_{m}(t)_{j, j+n}=t^{j} / j$! for $1 \leq j<m-n$. For example,

$$
U_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), J_{2}(\lambda)=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right), J_{2}(\lambda)^{n}=\left(\begin{array}{cc}
\lambda^{n} & n \lambda^{n-1} \\
0 & \lambda^{n}
\end{array}\right)
$$

$$
\exp \left\{J_{2}(\lambda) t\right\}=e^{\lambda t} V_{2}(t), V_{2}(t)=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

Partition P, P^{-1}, S_{n} and $T_{n}=T_{n}(t)$ of (1.3) as $m_{j} \times m_{k}$ blocks, $P=\left(P_{j, k}\right), P^{-1}=\left(P^{j, k}\right), S_{n}=\left(S_{n, j, k}\right)$, $T_{n}(t)=\left(T_{n}(t)_{j, k}\right)$ for $1 \leq j, k \leq p$, and do similarly for D, N^{n} and $Y=Y(t)=e^{t N}$. Then

$$
\begin{aligned}
\left(N^{n}\right)_{j, k} & =\sum_{c=1}^{p} P_{j, c} J_{c}^{n} P^{c, k}, Y_{j, k}=\sum_{c=1}^{p} P_{j, c} e^{t J_{c}} P^{c, k}, \\
T_{n}(t)_{j, k} & =\sum_{a, b=1}^{p} Y_{j, a}(t) S_{n, a, b} Y_{b, k}(-t)=\sum_{c, d=1}^{p} P_{j, c} e^{t J_{c}} Q_{d, n}^{c} e^{-t J_{d}} P^{d, k}
\end{aligned}
$$

where

$$
\begin{aligned}
& Q_{d, n}^{c}=\sum_{a, b=1}^{p} P^{c, a} S_{n, a, b} P_{b, d}, \\
& D=\sum_{n=0}^{q} S_{n} P \operatorname{diag}\left(M_{n, 1}, \ldots, M_{n, p}\right) P^{-1}=\left(D_{j, k}\right), M_{n, j}=J_{m_{j}}\left(v+\lambda_{j}\right)^{n} \text { of }(4.1), \\
& D_{j, k}=\sum_{n=0}^{q} \sum_{b, c=1}^{p} S_{n, j, b} P_{b, c} J_{m_{c}}\left(v+\lambda_{c}\right)^{n} P^{c, k}
\end{aligned}
$$

and $e^{t J_{c}}$ is given by (4.2) with $m=m_{c}, \lambda=\lambda_{c}$. So, $T_{n}(t)$ is a mixture of polynomials in t and factors $e^{\left(\lambda_{c}-\lambda_{d}\right) t}$. For example, if $P=I_{s}$, then

$$
\left(N^{n}\right)_{j, k}=J_{j}^{n} \delta_{j, k}, Y_{j, k}(t)=e^{t J_{j}} \delta_{j, k}, T_{n}(t)_{j, k}=e^{t J_{j}} S_{n, j, k} e^{-t J_{k}}, D_{j, k}=\sum_{n=0}^{q} S_{n, j, k}\left(v+\lambda_{k}\right)^{n} .
$$

Consider the two extremes: first the one Jordan block case $J=J_{s}(\lambda)$. Then $p=1, m_{1}=s, P$ is scalar, say 1 ,

$$
\begin{aligned}
& N=\lambda I_{s}+U_{s}, T_{n}(t)=V_{s}(t) S_{n} V_{s}(-t), \\
& T_{n}(t)_{j, k}=\sum_{a=j}^{s} \sum_{b=1}^{k}\left[t^{a-j} /(a-j)!\right] S_{n, a, b}(-t)^{k-b} /(k-b)!, \\
& D=\sum_{n=0}^{q} S_{n} J_{s}(v+\lambda)^{n} \text { of (4.1). }
\end{aligned}
$$

Second the diagonal Jordan form with $J=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{s}\right)$. Then $p=s, m_{j} \equiv 1, J_{c}=\lambda_{c}$,

$$
T_{n}(t)_{j, k}=\sum_{c, d=1}^{s} e^{\left(\lambda_{c}-\lambda_{d}\right) t} P_{j, c} Q_{d, n}^{c} P^{d, k}
$$

with all components scalar, and

$$
D_{j, k}=\sum_{n=0}^{q} \sum_{b, c=1}^{s} S_{n, j, b} P_{b, c}\left(v+\lambda_{c}\right)^{n} P^{c, k}
$$

For example, if $P=I_{s}$, then

$$
T_{n}(t)_{j, k}=e^{\left(\lambda_{j}-\lambda_{k}\right) t} S_{n, j, k}, D_{j, k}=\sum_{n=0}^{q} S_{n, j, k}\left(v+\lambda_{k}\right)^{n} .
$$

Example 4.1. Take $J=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$. So, $s=2$. Set $\delta=\lambda_{1}-\lambda_{2}$. Then

$$
T_{n}(t)_{j, k}=\sum_{c, d=1}^{2} e^{\left(a_{c}-\lambda_{d}\right) t} P_{j, c} Q_{d, n}^{c} P^{d, k}=\sum_{c=1}^{2} P_{j, c} Q_{c, n}^{c} P^{, k, k}+e^{\delta t} P_{j, 1} Q_{2, n}^{1} P^{2, k}+e^{-\delta t} P_{j, 2} Q_{1, n}^{2} P^{1, k}
$$

and

$$
T_{n}(t)=P H_{n} P^{-1},
$$

where

$$
H_{n}=\left(\begin{array}{cc}
q_{n, 1,1} & e^{\delta t} q_{n, 1,2} \\
e^{-\delta t} q_{n, 2,1} & q_{n, 2,2}
\end{array}\right)
$$

and $q_{n}=P^{-1} S_{n} P$. For N of Section 3, we can take

$$
J=\operatorname{diag}(i,-i), P=\left(\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right) / \sqrt{2}, \operatorname{det} P=i, P^{-1}=\left(\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right) / \sqrt{2} .
$$

In Section 3, we avoided having to use P and these eigenvalues by using $N^{2}=-I_{2}$.
5. Solving $L f=g$ when $T_{q}=I_{s}$ and $r=s$

We now give the solution of $L f=g$ when $T_{q}=I_{s}$ and $r=s$. This can be written $X_{.1}=A X+F$ for X, A of (2.15) and $F=\left(0_{s}^{\prime}, 0_{s}^{\prime}, \ldots, g^{\prime}\right)^{\prime}$ as noted on page 90 of Hale [4] for the case $s=1$.

For $j=1, \ldots, q r$, set $f_{j}=f\left(t, v_{j}\right)$ of (2.1) if v_{j} are distinct. Otherwise choose f_{j} using Theorem 2.2. Set

$$
y(t, v)=\left((Y a)^{\prime}, \ldots,\left(Y\left(v I_{r}+N\right)^{q-1} a\right)^{\prime}\right)^{\prime}, U_{j}=U\left(t, v_{j}\right)
$$

where

$$
U(t, v)=\left(\left(e^{v t} Y a\right)^{\prime}, \ldots,\left(e^{v t} Y a\right)_{\cdot q-1}^{\prime}\right)^{\prime}=e^{v t} y(t, v)
$$

So, $U_{j} \in C^{q s}$. For example, if $s=2$ and $\left\{v_{j}\right\}$ are distinct, we can take $a=a_{(1)}$ or $a_{(2)}$ of (2.7). Now suppose that $r=s$. Then $U(t)=U=\left(U_{1}, \ldots, U_{q s}\right) \in C^{q s \times q s}$ is a fundamental matrix solution of $X_{.1}=A X$. That is, $\operatorname{det} U(t) \neq 0$. Its (j, k) element is

$$
\begin{equation*}
U_{j, k}=e^{v_{j} t} y_{k}\left(t, v_{j}\right) . \tag{5.1}
\end{equation*}
$$

So, $\widetilde{U}(t)=U(t) U(0)^{-1}$ is the principal matrix solution at 0 as it satisfies $U(0)=I_{q s}$: see, for example, page 80 of Hale [4]. So, by the variation of constants formula, see, for example, his page $81, X_{.1}=$ $A X+F$ has solution

$$
\begin{equation*}
X(t)=U(t)\left[\widetilde{X}(0)+\int_{0}^{t} U^{-1} F\right], \tag{5.2}
\end{equation*}
$$

where $\widetilde{X}(0)=U(0)^{-1} X(0)$. Write U^{-1} as a 2×2 block matrix with (j, k) element $U^{j, k} \in C^{s \times s}$. Then $U^{-1} F=\binom{U^{1,2}}{U^{2,2}} f$, so that $L f=g$ has solution

$$
\begin{equation*}
f(t)=\sum_{j=1}^{2} U_{1, j}(t)\left[\widetilde{X}_{j}(0)+\int_{0}^{t} U^{j, 2} g\right], \tag{5.3}
\end{equation*}
$$

the first of the two block rows of

$$
U(t)\left[\widetilde{X}(0)+\int_{0}^{t} \widetilde{U}_{2} g\right],
$$

where $\left(\widetilde{U}_{1}, \widetilde{U}_{2}\right)=U^{-1}$. So, the solutions (5.2) and (5.3) have $q s$ unknowns $X(0)$ for X of (2.15), that is, the initial values of f and its first $q-1$ derivatives.

We now illustrate a use of Floquet's theorem. Set $r=q s$. Suppose that $r=s, T_{q}=I_{s}$, and $\left\{T_{n}\right\}$ have period T. (This holds for Example 1.1 and Section 3 with $T=\pi$ or π / τ for Example 3.4.) (2.15) puts $L f=0_{s}$ in the standard form $X_{.1}=A X$, where A is periodic. According to Floquet's theorem (see, for example, page 118 of Hale [4] or page 164 of Chicone [1]), since $U(t)$ is a fundamental matrix solution of $X_{.1}=A X \in C^{r \times r}$ for (X, A) of (2.15), and A has period T, there exists a constant $B \in C^{r \times r}$ and $P=P(t)$ with period T such that $U(t)=P(t) e^{B t}$. However, Floquet's theorem does not give $P(t)$, B while our method does, as we now show. $\left\{v_{j}\right\}$ are the eigenvalues of B. Since these eigenvalues are distinct, B has diagonal Jordan form, say $Q \Lambda Q^{-1}$, where $\Lambda=\operatorname{diag}\left(v_{1}, \ldots, v_{r}\right)$. So,

$$
e^{B t}=Q e^{\Lambda t} Q^{-1}, e^{\Lambda t}=\operatorname{diag}\left(e^{\nu_{1} t}, \ldots, e^{\nu_{r} t}\right), U(t)=R(t) e^{\Lambda t} Q^{-1},
$$

where $R(t)=P Q$. The (j, k) element of $U(t) Q$ is

$$
\sum_{l=1}^{r} U_{j, l}(t) Q_{l, k}=R_{j, k}(t) e^{v_{k} t}
$$

So, $R_{j, k}(t)$ is the coefficient of $e^{v_{k} t}$ in $U(t) Q$. This gives $R(t)$. Set $\left(Q^{j, k}\right)=Q^{-1}$. By (5.1), the coefficient of $e^{v_{b} t}$ in

$$
U_{j, k}(t)=\sum_{b=1}^{r} R_{j, b}(t) e^{v_{b} t} Q^{b, k}
$$

is $\delta_{b, j} x_{j, k}(t)=R_{j, b}(t) Q^{b, k}$. So,

$$
x_{j, k}(t)=y_{k}\left(t, v_{j}\right)=\sum_{b=1}^{r} R_{j, b}(t) Q^{b, k}, x(t)=R(t) Q^{-1}, P(t) Q=R(t)=x(t) Q .
$$

$P(t)=x(t)=\left(y_{k}\left(t, v_{j}\right)\right)$ is of (5.1). Also, $U(t)=P(t) e^{B t}$, so that $Q e^{\Lambda t} Q^{-1}=e^{B t}=U P(t)^{-1}=Q(t)$ say. So, $Q e^{\Lambda t}=Q(t) Q$. Write Q as $\left(q_{1}, \ldots, q_{r}\right)$. So, for all t, q_{j} is an eigenvector of $Q(t)$ with eigenvalue $e^{\nu_{j} t}$. So, we can take q_{j} as the eigenvector of $Q(T)$ with eigenvalue $e^{\nu_{j} T}$. So, now we have Λ, Q and B.

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

1. C. C. Chicone, Ordinary Differential Equations with Applications, Springer Verlag, New York, 1991.
2. V. P. Derevenskii, First-order linear ordinary differential equations over special matrices, Differential Equations, 56 (2020), 696-709. https://doi.org/10.1134/S0012266120060038
3. M. Elishevich, Boundary-value problem for a system of linear inhomogeneous differential equations of the first order with rectangular matrices, Journal of Mathematical Sciences, 228 (2018), 226-244. https://doi.org/10.1007/s10958-017-3617-8
4. J. K. Hale, Ordinary Differential Equations, 2nd edition, Krieger, Florida, 1980.
5. L. Markus, H. Yamabe, Global stability criteria for differential systems, Osaka Math. Journal, 12 (1960), 305-317.
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
