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Abstract: Given matrices N ∈ C s×s and S 0, . . . , S q ∈ C s×s, we solve the linear differential equation

q∑
n=0

Tn(t) (d/dt)n f (t) = g(t),

where t ∈ R, Tn(t) = etNS ne−tN , and f (t) : R→ C s, using the roots of d(ν) = det D(ν), where

D(ν) =

q∑
n=0

S n (νIr + N)n .

For example,

N =

(
0 −1
1 0

)
implies

etN =

(
cos t − sin t
sin t cos t

)
,

so that Tn(t) are periodic, giving an explicit solution to a form of Floquet’s theorem.
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1. Introduction

There is much research of linear differential equations involving or generated by matrices, see
Derevenskii [2] and Elishevich [3]. But these and other papers are limited to the first few orders.
We are not aware of papers giving solutions for linear differential equations of general order generated
by matrices. In the paper, we provide solutions for such a class of linear differential equations.

Let R and C denote the real and complex numbers, respectively. For any function f (t) of t ∈ R,
set f�n(t) = (d/dt)n f (t). Let Y(t) = Y = (Y1, . . . ,Yr) ∈ C s×r be a function of t ∈ R, and a constant
N =

(
N j,k

)
∈ Cr×r, such that

Y�1(t) = Y(t)N ∈ C s×r. (1.1)

Choose q ≥ 1. Suppose that for 0 ≤ n ≤ q, and Tn(t) ∈ C s×s, there is a constant S n =
(
S n, j,k

)
∈ Cr×r

such that

Tn(t) Y(t) = Y(t) S n. (1.2)

If r = s, as in the abstract, we can take

Y(t) = etN , Tn(t) = etN S n e−tN . (1.3)

If r > s, we can take Y(t) as the first s rows of etN . We wish to solve the differential equation L f = 0s

for f = f (t) : R→ C s, where

L = L(t) =

q∑
n=0

Tn(t) (d/dt)n, s × s,

that is,

L f =

q∑
n=0

Tn f�n. (1.4)

Theorem 2.1 gives solutions in terms of the roots of d = d(ν), where

d(ν) = det D(ν) and D(ν) = D =

q∑
n=0

S n (νIr + N)n
∈ Cr×r. (1.5)

We call D(ν) the characteristic matrix of the operator L. If ν is a multiple root, then other solutions are
given by Theorem 2.2.

Section 3 chooses r = s = 2 and N of (3.1) below. Tn(t) of (1.3) are then linear in cos 2t and sin 2t
and so have period π. Example 3.2 gives for the first time the full solution of a well known example.
Example 3.3 solves a differential equation that arises in the theory of planetary perturbations, and was
the incentive for this paper. Section 4 shows how D(ν) and Tn(t) are given by the Jordan form of N
when r = s.

Section 5 solves L f = g, any given function in C s, when r = s and Tq = Is, by converting it to the
standard form X�1 = AX + F. Its solution is then given by the variation of constants formula in terms
of the solution of L f = 0s. When A is periodic, Floquet’s theorem only gives the form of the solution
of X�1 = AX. We give the actual solution. Examples 3.1-3.5 all have periodic A. Set i =

√
−1. Set

δ j,k = 1 or 0 for j = k or j , k.
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2. Main results

Theorem 2.1. Suppose that Y(t), N satisfy (1.1), and that Tn(t), S n satisfy (1.2) for 0 ≤ n ≤ q. Let
ν be any of the qr roots of d(ν) = 0 for d(ν)of (1.5). Choose a(ν) = a = (a1, . . . , ar)′ ∈ Cr such that
E(ν) = 0r, where

E = E(ν) = D(ν)a(ν).

Then for f = f (t) ∈ C s and L of (1.4), a solution of L f = 0s is

f0(t, ν) = eνtY(t)a(ν) = eνt
r∑

k=1

ak(ν)Yk(t). (2.1)

Proof: Since Y�n = YNn, by Leibniz’ rule, the nth derivative of eνtY is(
eνtY

)
�n = eνtY (νIr + N)n . (2.2)

So,

L eνtY =

q∑
n=0

Tn(t)
(
eνtY

)
�n = eνtY D(ν),

and L f0 = eνtY D(ν)a(ν) = 0r. �
When the roots of d(ν) are distinct, this gives qr independent solutions of (2.1).

Theorem 2.2. Take ν, D = D(ν), a = a(ν) and E = E(ν) of Theorem 2.1. Suppose that for some k ≥ 1,

E�m(ν) = 0r (2.3)

for 0 ≤ m < k, where E�m(ν) = ∂m
ν E(ν), and ∂ν = d/dν. Then for 0 ≤ n < k, L f = 0s has solutions

fn = fn(t, ν) = eνtY(t)zn = eνt
r∑

j=1

zn, j(t, ν)Y j(t), (2.4)

where zn = zn(t, ν) = (t + ∂ν)n a(ν).

Proof: By (2.2) and Leibniz’ rule,

∂o
t
(
eνtYzn

)
=

o∑
m=0p

(
o
m

)
eνtY (νIs + N)o−m ∂m

t zn,

L fn = eνtYGn,

where

Gn =

q∑
o=0

S o

o∑
m=0

(
o
m

)
(νIs + N)o−m ∂m

t (t + ∂ν)n a
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=
∑
m,r

(
n
m

)(
n − m

r

)
tn−m−rD�ma�r.

Transform from m to c = m + r. Then
(

n
m

)(
n−m

r

)
=

(
n
c

)(
c
r

)
. So,

Gn =
∑

c

(
n
c

)
tn−cHc,

where

Hc =
∑

r

(
c
r

)
D�c−ra�r = ∂c

νE(ν) = 0s

by (2.3). �
We call fn a characteristic solution of L f = 0s. D(ν) and d(ν) expand as

D(ν) =

q∑
k=0

νkDk, d(ν) =

rq∑
k=0

νkdk,

where

Dk =

q∑
n=k

(
n
k

)
S nNn−k, D0 = D(0), Dq = S q,

d0 = det D(0), dq = det S q.

So,

D�m(ν) =

q∑
k=m

(k)mν
k−mDk, d�m(ν) =

rq∑
k=m

(k)mν
k−mdk. (2.5)

Corollary 2.1. Take L f of (1.4). Consider the exceptional case when D(ν) ≡ 0s×s. Suppose that

D�m(ν) = 0s×s

for 0q ≤ m ≤ n. Then for any a ∈ C s, a characteristic solution of L f = 0s is

fn(t, ν) = tneνtY(t) a.

We now transfer the condition (2.3) from E(ν) to d(ν). Let M be the adjoint of D: (−1) j+kMk, j is the
determinant of D with its jth row and kth column deleted. If d , 0, then M = dD−1.

Corollary 2.2. Let e1,s, . . . , e2,s be any basis for Rs. For D and d of (1.5), set a( j) = Me j,s and E( j) =

Da( j) = de j,s. So, for m ∈ Zq, E( j)�m = d�me j,s. Choose ν so that d = 0. Given 1 ≤ j ≤ s and a = a( j),
fn, j(t) = fn(t, ν) of (2.4) is a characteristic solution of L f = 0s if

d�m(ν) = 0 (2.6)

for 0 ≤ m ≤ n.
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By (2.5), (2.6) does not extend to n = rq if dr,q , 0. We now take e j,s as the jth unit vector in Rs.
So, for 1 ≤ j ≤ s, a( j) is the jth column of M. For 1 ≤ k ≤ s, its kth element is a( j)k = Mk, j = a j,k

say. Corollary 2.2 breaks the solution fn(x, ν) into s basis solutions fn, j(x), 1 ≤ j ≤ s, of L f = 0s. For
example, if s = 2 then

d = D1,1D2,2 − D1,2D2,1, M =

(
D2,2 −D1,2

−D2,1 D1,1

)
,

e1,2 = (1, 0)′, e2,2 = (0, 1)′, a(1) =
(
D2,2,−D2,1

)′ , a(2) =
(
−D1,2,D1,1

)′ , (2.7)
d =

(
D2,2,D1,2

)
a(1) =

(
D2,1,D2,2

)
a(2).

d = 0 implies

f0,1 = eνt
(
D2,2Y1 − D2,1Y2

)
, f0,2 = eνt

(
−D1,2Y1 + D1,1Y2

)
. (2.8)

d = d�1 = 0 implies

f1,1 = eνt
[(

tD2,2 + D2,2�1
)

Y1 −
(
tD2,1 + D2,1�1

)
Y2

]
, (2.9)

f1,2 = eνt
[
−

(
tD1,2 + D1,2�1

)
Y1 +

(
tD1,1 + D1,1�1

)
Y2

]
. (2.10)

d = d�1 = d�2 = 0 implies

f2,1 = eνt
[(

t2D2,2 + 2tD2,2�1 + D2,2�2

)
Y1 −

(
t2D2,1 + 2tD2,1�1 + D2,1�2

)
Y2

]
, (2.11)

f2,2 = eνt
[
−

(
t2D1,2 + 2tD1,2�1 + D1,2�2

)
Y1 +

(
t2D1,1 + 2tD1,1�1 + D1,1�

)
Y2

]
. (2.12)

d�m = 0 for 0 ≤ m ≤ 3 implies f3, j = eνt
(
z3,1Y1 + z3,2Y2

)
, where, for j = 1,

z3,1 = t3D2,2 + 3t2D2,2�1 + 3tD2,2�2 + D2,2�3, (2.13)
z3,2 = −t3D2,1 − 3t2D2,1�1 − 3tD2,1�2 − D2,1�3, (2.14)

and, for j = 2,

z3,1 = −t3D1,2 − 3t2D1,2�1 − 3tD1,2�2 − D1,2�3,

z3,2 = t3D1,1 + 3t2D1,1�1 + 3tD1,1�2 + D1,1�3.

Generally, each fn, j is a linear combination of
(
fm,1, 0 ≤ m ≤ n

)
. We shall give details in a later paper.

For example, M1,1 , 0 implies, for 2 ≤ j ≤ s, f0, j(t) = f0,1(t)M j,1/M1,1. s = 2 and D2,2 , 0 imply
f0,2(t) = − f0,1(t)D2,1/D2,2.

For L(t) = L of (1.4) and τ , 0, set

Lτ(t) = τqL(τt) =

q∑
n=0

Tτ,n(t) (d/dt)n,

where Tτ,n(t) = τq−nTn(τt). So, Tq = Is implies Tτ,q = Is. For example, q = s = 2, T2 = I2 imply
Lτ(t) = (d/dt)2 + τT1(τt) + τ2T0(τt).

Corollary 2.3. Take ν, D = D(ν), a = a(ν) of Theorems 2.1-2.2, and f (t) = f0(t, ν) of (2.1), or
f (t) = fn(t, ν) of Theorem 2.2. Then a solution of Lτ(t)X(t) = 0s is X(t) = fn(τt, ν).
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We have not assumed that r = s or Tq = Is. However, if r = s and Tq = Is, then L f = 0s can be
written in the standard form X�1 = AX, where

X =


f
f�1
· · ·

f�q−1

 , A =


0 Is 0 · · · 0
0 0 Is · · · 0
· · ·

0 0 0 · · · Is

−T0 −T1 −T2 · · · −Tq−1


∈ Cqs×qs, (2.15)

(to be read as A = −T0 if q = 1), and each 0 is s × s. So, (2.15) with f of Theorems 2.1, 2.2 give all qs
linearly independent solutions of X�1 = AX.

3. An application to the unit circle

Set ct = cos t, st = sin t. Here, we take r = s = 2 and

N =

(
0 −1
1 0

)
, Y = (Y1,Y2) = etN =

(
ct −st

st ct

)
= ctI2 + st. (3.1)

So,

Y1 =

(
ct

st

)
, Y2 = Y1�1 =

(
−st

ct

)
, NY1 = Y2, NY2 = −Y1.

Set

Λ = diag (1,−1), J =

(
0 1
1 0

)
,

R(t) = ctΛ + stJ = (Y1,−Y2) =

(
ct st

st −ct

)
,

Q(t) =

(
−st ct

ct st

)
= (Y2,Y1) = Y J = R�1(t).

N, R(t), Q(t), Λ and J all have determinant ±1. Some properties are:

J2 = Λ2 = −N2 = R(t)2 = Q(t)2 = I2,

NΛ = −ΛN = J, JN = −NJ = Λ, JΛ = −ΛJ = N,

R(t)Y(s) = R(t − s) = Y(t − s)Λ, R(2t)Y = YΛ = R(t),
R(2t)Y1 = Y1, R(2t)Y2 = −Y2, ΛY = R(−t), Y(s)R(t) = R(s + t),

JR(t) = YN = NY , R(t)Λ = Y, ΛR(t) = Y , R(2t) = YΛY ′,

I2 + Λ = 2
(
1 0
0 0

)
, J − N = 2

(
0 1
0 0

)
, J + N = 2

(
0 0
1 0

)
, I2 − Λ = 2

(
0 0
0 1

)
.

(1.3) holds for

(S n,Tn) = (I2, I2) , (N,N), (Λ,R(2t)) , (J,Q(2t)) .
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So, (1.3) also holds for any linear combination of these, say

S n = bn,1I2 + bn,2N + bn,3Λ + bn,4J =

(
bn,1 + bn,3 bn,2 − bn,4

−bn,2 − bn,4 bn,1 − bn,3

)
, (3.2)

Tn(t) = bn,1I2 + bn,2N + bn,3R(2t) + bn,4Q(2t) (3.3)

=

(
bn,1 + bn,3c2,t − bn,4s2,t −bn,2 + bn,3s2,t + bn,4c2,t

bn,2 + bn,3s2,t + bn,4c2,t bn,1 − bn,3c2,t + bn,4s2,t

)
for any constants bn, j ∈ C. Any 2 × 2 matrix S n can be put in this form: set

bn,1 =
(
S n,1,1 + S n,2,2

)
/2, bn,3 =

(
S n,1,1 − S n,1,2

)
/2,

bn,2 =
(
S n,2,1 − S n,1,2

)
/2, bn,4 = −

(
S n,2,1 + S n,1,2

)
/2.

So,

Tn(t) = At (S n) ,

where

2At(S ) = B(S ) + c2,t C(S ) + s2,t G(S ),

B(S ) =

(
B1 −B2

B2 B1

)
, C(S ) =

(
C1 −C2

−C2 −C1

)
, G(S ) =

(
C2 C1

C1 −C2

)
,

B1 = S 1,1 + S 2,2, B2 = S 1,2 − S 2,1, C1 = S 1,1 − S 2,2, C2 = S 1,2 + S 2,1,

TnY1 =
(
bn,1 + bn,3

)
Y1 +

(
bn,2 + bn,4

)
Y2, TnY2 =

(
−bn,2 + bn,4

)
Y1 +

(
bn,1 − bn,3

)
Y2.

Corollary 3.1. For Tn(t) of (3.3), a solution of L f = 02 is (2.1) with ν any of the 2q roots of d = 0,

E = 02, D = c1I2 + c2N + c3Λ + c4J =

(
c1 + c3 −c2 + c4

c2 + c4 c1 − c3

)
, (3.4)

where

c j =

q∑
n=0

cn, j, d = c2
1 + c2

2 − c2
3 − c2

4, (3.5)

where

cn,1 = gnbn,1 − hnbn,2, cn,2 = gnbn,2 + hnbn,1, cn,3 = gnbn,3 + hnbn,4, cn,4 = gnbn,4 − hnbn,3, (3.6)

gn = gn(ν) = Real ((ν + i)n) =
∑

j

(
n
2 j

)
(−1) jνn−2 j, (3.7)

hn = hn(ν) = Imag ((ν + i)n) =
∑

j

(
n

2 j + 1

)
(−1) jνn−2 j−1, (3.8)

where the real and imaginary parts are taken as if ν were real.
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Proof: Since N2 = −I2,

(νI2 + N)n = gnI2 + hnN

for gn and hn of (3.7), (3.8). So, for S n of (3.2),

S n (νI2 + N)n = cn,1I2 + cn,2N + cn,3Λ + cn,4J.

So, by (1.5), (3.4) holds. gn, hn, cn, j, c j, D, d are polynomials in ν of degree n, n − 1, n, q, q, 2q. So,
d = 0 has 2q roots ν. �

By (3.7)-(3.8), when q = 1, the c j needed for (3.5) are

c1 = b0,1 + νb1,1 − b1,2, c2 = b0,2 + νb1,2 + b1,1,

c3 = b0,3 + νb1,3 + b1,4, c4 = b0,4 + νb1,4 − b1,3.

By (3.7)-(3.8), when q = 2, the c j needed for (3.5) are

c1 = b0,1 + νb1,1 − b1,2 +
(
ν2 − 1

)
b2,1 − 2νb2,2,

c2 = b0,2 + νb1,2 + b1,1 +
(
ν2 − 1

)
b2,2 + 2νb2,1,

c3 = b0,3 + νb1,3 + b1,4 +
(
ν2 − 1

)
b2,3 + 2νb2,4,

c4 = b0,4 + νb1,4 − b1,3 +
(
ν2 − 1

)
b2,4 − 2νb2,3.

When q = 3, we add c3, j of (3.6) to c j for j = 1, 2, 3, 4.
L f = 02 can only be reduced to the form X�1 = AX if eq , 0, where en = det Tn(t) = det S n =

b2
n,1 + b2

n,2 − b2
n,3 − b2

n,4, since then we can reduce Tq(t) to I2 by multiplying by Tq(t)−1. Set

L = Tq(t)−1L =

q∑
n=0

Tn(t) (d/dt)n,

where Tn(t) = Tq(t)−1Tn(t) is a linear combination of 1, s2,t, c2,t, s4,t, c4,t.

Example 3.1. Take q = 1, S 1 = I2, S 0 = λ Λ. So, (1.2) holds with T1 = I2 and T0(t) = λR(2t). Further,

D = νI2 + λ Λ + N =

(
ν + λ −1

1 ν − λ

)
,

and d = ν2−λ2 + 1 with roots ν = ±
(
λ2 − 1

)1/2
= ν1, ν2, say. By (2.7), a = a(1) =

(
ν−λ
−1

)
implies a�1 =

(
1
0

)
,

z0 =
(
ν−λ
−1

)
and z1 =

(
t(ν−λ)+1
−t

)
; a = a(2) =

(
1
ν+λ

)
implies a�1 =

(
0
1

)
, z0 =

(
1
ν+λ

)
and z1 =

(
t

t(ν+λ)+1

)
; d = 0

implies ν = ±
(
1 − λ2

)1/2
. So, by (2.8), solutions are

f0,1 = eνt [(ν − λ)Y1 − Y2] , f0,2 = eνt [Y1 + (ν + λ)Y2] .

If d = 0 and λ = ±1, then d�1 = ν = 0 so by (2.9) and (2.10) solutions are

f0,1 = −λY1 − Y2, f0,2 = Y1 + λY2 = −λ f0,1,

f1,1 = (1 − λt)Y1 − tY2, f1,2 = tY1 + (1 + λt)Y2.
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An extension is

Example 3.2. Given scalars b0, b1, b2, we solve f�1(t) = A(t) f (t) for

A(t) =

(
b0 + b1c2,t −b2 + b1s2,t

b2 + b1s2,t b0 − b1c2,t

)
= B + b1R(2t), (3.9)

B = b0I2 + b2N =

(
b0 −b2

b2 b0

)
.

So, L f = f�1 − A(t) f . Take q = 1, S 1 = I2 and

S 0 =

(
−b0 − b1 b2

−b2 −b0 + b1

)
= −b0I2 − b1Λ − b2N = −B − b1Λ.

Then (1.4) holds with T1(t) = I2, T0(t) = −A(t). So,

D(ν) = S 0 + νI2 + N =

(
ν − b0 − b1 b2 − 1
−b2 + 1 ν − b0 + b1

)
,

and d(ν) = (ν − b0)2
− b2

1 + (b2 − 1)2 has roots

ν1 = b0 + δ1/2, ν2 = b0 − δ
1/2 (3.10)

for δ = b2
1 − (b2 − 1)2. By (2.8), if ν = ν1 or ν2, then d = 0 and solutions are

f0,1(t) = eνt [(ν − b0 + b1) Y1 + (b2 − 1) Y2] ,
f0,2(t) = eνt [(1 − b2) Y1 + (ν − b0 − b1) Y2] . (3.11)

Consider the case δ = 0. So, b2 = 1 + λb1, where λ = ±1,

f0,1(t) = b1eb0t (Y1 + λY2) , f0,2(t) = −b1eb0t (λY1 + Y2) ,
f1,1(t) = eb0t [(b1t + 1) Y1 + λb1tY2] , f1,2(t) = eb0t [−λb1tY1 + (1 − b1t) Y2] .

Let us rescale this example by transforming to T = t/τ, x(T ) = f (τT ) for τ , 0, then replacing T
by t.

Example 3.3. Set Aτ(t) = τA(τt). For A(t) of (3.9), x�1(t) = Aτ(t)x(t) has solutions f0, j(τt) for f0, j(t) of
(3.11) with ν of (3.10). If δ = 0, other solutions are f1, j(τt) for f1, j(t) of (2.9) and (2.10). We consider
two cases. The first case is that τ = 1/2. In this case,

Aτ(t) =

(
b0 + b1ct −b2 + b1st

b2 + b1st b0 − b1ct

)
/2 = (b0I2 + b2N + b1R(2t)) /2.

The second case is that τ = −1, b0 = 1/4, b2 = 1 and b1 = −3/4. Then ν1 = −1/2, ν2 = 1 and
independent solutions are

f0,1(−t) = (−3/2)et/2
(

ct

−st

)
, f0,2(−t) = (3/2)e−t

(
st

ct

)
.
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The other two f0, j are 02. In this case, Aτ(t) = −B − b1R(−2t) can be written

Aτ(t) =

(
−1 + (3/2)c2

t 1 − (3/2)ctst,

−1 − (3/2)ctst −1 + (3/2)s2
t

)
,

with period T = π. Markus and Yamabe [5] used this form of Aτ(t) but only gave the first solution
f0,1(−t). This example is quoted by Chicone [1], but again the second solution f0,2(−t) is not given.

Example 3.4. Take q = 2, S 2 = I2, S 1 = 02×2 and S 0 = diag (b0 + b1, b0 − b1) for scalars b0, b1. Then
T2 = I2, T1 = 02×2 and

T0 = b0I2 + b1R(2t) =

(
b0 + b1c2,t b1s2,t

b1s2,t b0 − b1c2,t

)
.

Then, L = I2(d/dt)2 + T0. (1.2) holds with

D = (νI2 + N)2 + S 0 =

(
ν2 − 1 + b0 + b1 −2ν

2ν ν2 − 1 + b0 − b1

)
,

d =
(
ν2 − 1 + b0

)2
− b2

1 + 4ν2 = ν4 + 2bν2 + c,

where b = b0 + 1, c = (b0 − 1)2
− b2

1. d has four roots, ν = ±ν1, ±ν2, where

ν1 =
(
−b + δ1/2

)1/2
, ν2 =

(
−b − δ1/2

)1/2
, δ = b2 − c = 4b0 + b2

1. (3.12)

So, ν2 − 1 + b0 = −2 ± δ1/2 and solutions are given by f0,1, f0,2 of (2.8) with D2,2 = ν2 − 1 + b0 − b1,
D2,1 = 2ν, D1,2 = −2ν and D1,1 = ν2 − 1 + b0 + b1. If δ of (3.12) is 0 and b , 0, then there are two
roots of multiplicity two, ν = λν0, where λ = ±1, ν0 = (−b)1/2; so other solutions are f1,1 of (2.9) with
ν = λν0,

D2,2 = −2 − b1, D2,2�1 = D2,1 = 2ν, D2,1�1 = 2, (3.13)

and f1,2 of (2.10) with ν = λν0,

D1,2 = −2ν, D1,2�1 = −2, D1,1 = b1 − 2, D1,1�1 = 2ν. (3.14)

Now suppose that b0 = −1, b1 = 2λ, where λ = ±1. Then ν = 0 has multiplicity 4. So, other solutions
are f2,1 of (2.11), (3.13) with D2,2�2 = 2, D2,1�2 = 0; f2,2 of (2.12), (3.14) with D1,2�2 = 0, D1,1�2 = 2; f3,1

of (2.13) with

z3,1 = − (2 + b1) t3 + 6λν0t2 + 6t, z3,2 = 2λν0t3 − 6t2;

and f3,2 of (2.14) with

z3,1 = 2λν0t3 + 6t2, z3,2 = (b1 − 2) t3 + 6λν0t2 + 6t.

To solve L f = g, a given function in C2, Section 5 will need its derivative, ∂t f0(t, ν) = eνtv(t, ν),
where

v(t, ν) =

2∑
j=1

a j

(
νY j + Y j�1

)
= a1 (νY1 + Y2) + a2 (νY2 − Y1) =

2∑
j=1

e jY j,
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e1 = a1ν − a2 = −D1,2ν − D1,1 = ν2 + 1 − b0 − b1,

e2 = a1 + νa2 = −D1,2 + νD1,1 = ν
(
ν2 + 1 + b0 + b1

)
.

By (2.15), L f = 02 can be written X�1 = AX, where

X =

(
f
f�1

)
, A =

(
02×2 I2

−T0 02×2

)
∈ C4×4.

Now suppose that b0, b1 are real. If δ < 0, all four roots are complex. Suppose that δ ≥ 0. Then ±ν1

are real if b ≤ δ1/2, and ±ν2 are real if δ1/2 ≤ −b. So, if b ≤ δ1/2 ≤ −b then all four roots are real.
The differential equation, L f = 02, arises in the theory of planetary perturbations with b0 = −γ/2,

b1 = −3γ/2, so that b = 1 − γ/2, c = −2γ2, δ = 9γ(γ − 8/9)/4, and γ > 0 real. So, δ ≥ 0 if and only if
γ ≥ 8/9. Also γ ≥ 1 if and only if ν2

1 ≥ 0. For γ ≥ 8/9, ν2
2 < 0. So, γ < 8/9 implies four complex roots;

8/9 ≤ γ < 1 implies four imaginary roots; 1 ≤ γ implies ν2
1 ≥ 0 > ν2

2 so that two roots are real and two
are imaginary. For large γ, ν1 and ν2 of (3.12) satisfy

ν1 = (2γ)1/2
[
1 − 5γ−1/12 + O

(
γ−2

)]
, ν2 = iγ1/2

[
1 + γ−1/6 + O

(
γ−2

)]
.

By Corollary 2.3, we have

Example 3.5. For L of Example 3.4, Lτ(t) = (d/dt)2 + τ2T0(τt), and Lτ(t)X(t) = 02 has solution
X(t) = fn, j(τt) when fn, j(t) is a solution to Example 3.4.

4. Using the Jordan form when r = s

Suppose that r = s. Then D and Tn(t) can be easily written using the Jordan form of N, in terms
of block matrices, or scalars when the Jordan form is diagonal. Suppose that N has Jordan form
N = PJP−1, where J = diag

(
J1, . . . , Jp

)
, J j = Jm j

(
λ j

)
, Jm(λ) = λIm + Um, and Um is the m × m

matrix of zeros except for ones on the first super-diagonal, that is, (Um) j,k = δk, j+1 for 1 ≤ j < m. So,
s = m1 + · · · + mp and for 0 ≤ n < m, Un

m is the m × m matrix of zeros except for ones on the nth
super-diagonal, that is,

(
Un

m
)

j,k = δk, j+n for 1 ≤ j < m − n. Also for n ≥ m, Un
m = 0m×m, and

Jm(λ)n =

min(n,m−1)∑
j=0

(
n
j

)
λn− jU j

m, (4.1)

exp {Jm(λ)t} = eλtVm(t), (4.2)

where

U0
m = Im, Vm(t) =

m−1∑
j=0

t jU j
m/ j!.

So, Vm(t) has zeros on its subdiagonals, and the elements of its jth superdiagonal are all t j/ j. That is,
Vm(t) j, j+n = t j/ j! for 1 ≤ j < m − n. For example,

U2 =

(
0 1
0 0

)
, J2(λ) =

(
λ 1
0 λ

)
, J2(λ)n =

(
λn nλn−1

0 λn

)
,
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exp {J2(λ)t} = eλtV2(t), V2(t) =

(
1 t
0 1

)
.

Partition P, P−1, S n and Tn = Tn(t) of (1.3) as m j × mk blocks, P =
(
P j,k

)
, P−1 =

(
P j,k

)
, S n =

(
S n, j,k

)
,

Tn(t) =
(
Tn(t) j,k

)
for 1 ≤ j, k ≤ p, and do similarly for D, Nn and Y = Y(t) = etN . Then

(Nn) j,k =

p∑
c=1

P j,cJn
c Pc,k, Y j,k =

p∑
c=1

P j,cetJc Pc,k,

Tn(t) j,k =

p∑
a,b=1

Y j,a(t)S n,a,bYb,k(−t) =

p∑
c,d=1

P j,cetJc Qc
d,ne−tJd Pd,k,

where

Qc
d,n =

p∑
a,b=1

Pc,aS n,a,bPb,d,

D =

q∑
n=0

S nP diag
(
Mn,1, . . . ,Mn,p

)
P−1 =

(
D j,k

)
, Mn, j = Jm j

(
ν + λ j

)n
of (4.1),

D j,k =

q∑
n=0

p∑
b,c=1

S n, j,bPb,cJmc (ν + λc)n Pc,k,

and etJc is given by (4.2) with m = mc, λ = λc. So, Tn(t) is a mixture of polynomials in t and factors
e(λc−λd)t. For example, if P = Is, then

(Nn) j,k = Jn
jδ j,k, Y j,k(t) = etJ jδ j,k, Tn(t) j,k = etJ jS n, j,ke−tJk , D j,k =

q∑
n=0

S n, j,k (ν + λk)n .

Consider the two extremes: first the one Jordan block case J = Js(λ). Then p = 1, m1 = s, P is scalar,
say 1,

N = λIs + Us, Tn(t) = Vs(t)S nVs(−t),

Tn(t) j,k =

s∑
a= j

k∑
b=1

[
ta− j/(a − j)!

]
S n,a,b (−t)k−b/(k − b)!,

D =

q∑
n=0

S nJs(ν + λ)n of (4.1).

Second the diagonal Jordan form with J = diag (λ1, . . . , λs). Then p = s, m j ≡ 1, Jc = λc,

Tn(t) j,k =

s∑
c,d=1

e(λc−λd)tP j,cQc
d,nPd,k

with all components scalar, and

D j,k =

q∑
n=0

s∑
b,c=1

S n, j,bPb,c (ν + λc)n Pc,k.
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For example, if P = Is, then

Tn(t) j,k = e(λ j−λk)tS n, j,k, D j,k =

q∑
n=0

S n, j,k (ν + λk)n .

Example 4.1. Take J = diag (λ1, λ2). So, s = 2. Set δ = λ1 − λ2. Then

Tn(t) j,k =

2∑
c,d=1

e(λc−λd)tP j,cQc
d,nPd,k =

2∑
c=1

P j,cQc
c,nPc,k + eδtP j,1Q1

2,nP2,k + e−δtP j,2Q2
1,nP1,k

and

Tn(t) = PHnP−1,

where

Hn =

(
qn,1,1 eδtqn,1,2

e−δtqn,2,1 qn,2,2

)
and qn = P−1S nP. For N of Section 3, we can take

J = diag (i,−i), P =

(
1 1
−i i

)
/
√

2, det P = i, P−1 =

(
1 i
1 −i

)
/
√

2.

In Section 3, we avoided having to use P and these eigenvalues by using N2 = −I2.

5. Solving L f = g when Tq = Is and r = s

We now give the solution of L f = g when Tq = Is and r = s. This can be written X�1 = AX + F for
X, A of (2.15) and F =

(
0′s, 0

′
s, . . . , g

′
)′ as noted on page 90 of Hale [4] for the case s = 1.

For j = 1, . . . , qr, set f j = f
(
t, ν j

)
of (2.1) if ν j are distinct. Otherwise choose f j using Theorem

2.2. Set

y(t, ν) =
(
(Ya)′, . . . ,

(
Y (νIr + N)q−1 a

)′)′
, U j = U

(
t, ν j

)
,

where

U(t, ν) =
((

eνtYa
)′
, . . . ,

(
eνtYa

)′
�q−1

)′
= eνty(t, ν).

So, U j ∈ Cqs. For example, if s = 2 and
{
ν j

}
are distinct, we can take a = a(1) or a(2) of (2.7). Now

suppose that r = s. Then U(t) = U =
(
U1, . . . ,Uqs

)
∈ Cqs×qs is a fundamental matrix solution of

X�1 = AX. That is, det U(t) , 0. Its ( j, k) element is

U j,k = eν jtyk

(
t, ν j

)
. (5.1)
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So, Ũ(t) = U(t)U(0)−1 is the principal matrix solution at 0 as it satisfies U(0) = Iqs: see, for example,
page 80 of Hale [4]. So, by the variation of constants formula, see, for example, his page 81, X�1 =

AX + F has solution

X(t) = U(t)
[
X̃(0) +

∫ t

0
U−1 F

]
, (5.2)

where X̃(0) = U(0)−1X(0). Write U−1 as a 2 × 2 block matrix with ( j, k) element U j,k ∈ C s×s. Then
U−1F =

(
U1,2

U2,2

)
f , so that L f = g has solution

f (t) =

2∑
j=1

U1, j(t)
[
X̃ j(0) +

∫ t

0
U j,2g

]
, (5.3)

the first of the two block rows of

U(t)
[
X̃(0) +

∫ t

0
Ũ2g

]
,

where
(
Ũ1, Ũ2

)
= U−1. So, the solutions (5.2) and (5.3) have qs unknowns X(0) for X of (2.15), that is,

the initial values of f and its first q − 1 derivatives.
We now illustrate a use of Floquet’s theorem. Set r = qs. Suppose that r = s,Tq = Is, and {Tn} have

period T . (This holds for Example 1.1 and Section 3 with T = π or π/τ for Example 3.4.) (2.15) puts
L f = 0s in the standard form X�1 = AX, where A is periodic. According to Floquet’s theorem (see,
for example, page 118 of Hale [4] or page 164 of Chicone [1]), since U(t) is a fundamental matrix
solution of X�1 = AX ∈ Cr×r for (X, A) of (2.15), and A has period T , there exists a constant B ∈ Cr×r

and P = P(t) with period T such that U(t) = P(t)eBt. However, Floquet’s theorem does not give P(t),
B while our method does, as we now show.

{
ν j

}
are the eigenvalues of B. Since these eigenvalues are

distinct, B has diagonal Jordan form, say QΛQ−1, where Λ = diag (ν1, . . . , νr). So,

eBt = QeΛtQ−1, eΛt = diag
(
eν1t, . . . , eνrt) , U(t) = R(t)eΛtQ−1,

where R(t) = PQ. The ( j, k) element of U(t)Q is
r∑

l=1

U j,l(t)Ql,k = R j,k(t)eνkt.

So, R j,k(t) is the coefficient of eνkt in U(t)Q. This gives R(t). Set
(
Q j,k

)
= Q−1. By (5.1), the coefficient

of eνbt in

U j,k(t) =

r∑
b=1

R j,b(t)eνbtQb,k

is δb, jx j,k(t) = R j,b(t)Qb,k. So,

x j,k(t) = yk

(
t, ν j

)
=

r∑
b=1

R j,b(t)Qb,k, x(t) = R(t)Q−1, P(t)Q = R(t) = x(t)Q.

P(t) = x(t) =
(
yk

(
t, ν j

))
is of (5.1). Also, U(t) = P(t)eBt, so that QeΛtQ−1 = eBt = UP(t)−1 = Q(t) say.

So, QeΛt = Q(t)Q. Write Q as (q1, . . . , qr). So, for all t, q j is an eigenvector of Q(t) with eigenvalue
eν jt. So, we can take q j as the eigenvector of Q(T ) with eigenvalue eν jT . So, now we have Λ, Q and B.
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