Research article Special Issues

New technique for solving the numerical computation of neutral fractional functional integro-differential equation based on the Legendre wavelet method

  • Received: 15 February 2024 Revised: 04 April 2024 Accepted: 08 April 2024 Published: 19 April 2024
  • MSC : 42C10, 34K37, 34K40

  • The aim of this work is to solve a numerical computation of the neutral fractional functional integro-differential equation based on a new approach to the Legendre wavelet method. The concept of fractional derivatives was examined in the sense of Caputo. The properties of the Legendre wavelet and function approximation were employed to determine the approximate solution of a given dynamical system. Moreover, the error estimations and convergence analysis of the truncated Legendre wavelet expansion for the proposed problem were discussed. The validity and applicability of this proposed technique to numerical computation were shown by illustrative examples. Eventually, the results of this technique demonstrate its great effectiveness and reliability.

    Citation: Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Fahad Sameer Alshammari. New technique for solving the numerical computation of neutral fractional functional integro-differential equation based on the Legendre wavelet method[J]. AIMS Mathematics, 2024, 9(6): 14288-14309. doi: 10.3934/math.2024694

    Related Papers:

  • The aim of this work is to solve a numerical computation of the neutral fractional functional integro-differential equation based on a new approach to the Legendre wavelet method. The concept of fractional derivatives was examined in the sense of Caputo. The properties of the Legendre wavelet and function approximation were employed to determine the approximate solution of a given dynamical system. Moreover, the error estimations and convergence analysis of the truncated Legendre wavelet expansion for the proposed problem were discussed. The validity and applicability of this proposed technique to numerical computation were shown by illustrative examples. Eventually, the results of this technique demonstrate its great effectiveness and reliability.



    加载中


    [1] A. Akg$\ddot{u}$l, S. H. A. Khoshnaw, Application of fractional derivative on non-linear biochemical reaction models, Int. J. Intell. Networks, 1 (2020), 52–58. https://doi.org/10.1016/j.ijin.2020.05.001 doi: 10.1016/j.ijin.2020.05.001
    [2] İ. Avcı, A. Hussain, T. Kanwal, Investigating the impact of memory effects on computer virus population dynamics: a fractal-fractional approach with numerical analysis, Chaos Soliton. Fract., 174 (2023), 113845. https://doi.org/10.1016/j.chaos.2023.113845 doi: 10.1016/j.chaos.2023.113845
    [3] R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724
    [4] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779
    [5] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
    [6] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2006), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
    [7] N. S. Papageorgiou, J. Zhang, W. Zhang, Solutions with sign information for noncoercive double phase equations, J. Geom. Anal., 34 (2024), 14. https://doi.org/10.1007/s12220-023-01463-y doi: 10.1007/s12220-023-01463-y
    [8] I. Podlubny, Fractional differential equation: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Vol. 340, 1999.
    [9] E. Babolian, A. S. Shamloo, Numerical solution of Volterra integral and integro-differential equations of convolution type by using operational matrices of piecewise constant orthogonal functions, J. Comput. Appl. Math., 214 (2008), 495–508. https://doi.org/10.1016/j.cam.2007.03.007 doi: 10.1016/j.cam.2007.03.007
    [10] A. H. Bhrawy, M. M. Tharwat, A. Yildirim, A new formula for fractional integrals of Chebyshev polynomials: application for solving multi-term fractional differential equations, Appl. Math. Model., 37 (2013), 4245–4252. https://doi.org/10.1016/j.apm.2012.08.022 doi: 10.1016/j.apm.2012.08.022
    [11] D. Chouchan, V. Mishra, H. M. Srivastava, Bernoulli wavelet method for numerical solution of anomalous infiltration and diffusion modeling by nonlinear fractional differential equations of variable order, Results Appl. Math., 10 (2021), 100146. https://doi.org/10.1016/j.rinam.2021.100146 doi: 10.1016/j.rinam.2021.100146
    [12] V. Daftardar-Gejji, H. Jafari, Solving a multi-order fractional differential equation using Adomian decomposition, Appl. Math. Comput., 189 (2007), 541–548. https://doi.org/10.1016/j.amc.2006.11.129 doi: 10.1016/j.amc.2006.11.129
    [13] M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differ. Equations, 26 (2010), 448–479. https://doi.org/10.1002/num.20460 doi: 10.1002/num.20460
    [14] V. S. Ert$\ddot{u}$rk, S. Momani, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math., 215 (2008), 142–151. https://doi.org/10.1016/j.cam.2007.03.029 doi: 10.1016/j.cam.2007.03.029
    [15] M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80–90. https://doi.org/10.1016/j.apnum.2005.02.008 doi: 10.1016/j.apnum.2005.02.008
    [16] Z. M. Odibat, S. Momani, Applications of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 27–34. https://doi.org/10.1515/IJNSNS.2006.7.1.27 doi: 10.1515/IJNSNS.2006.7.1.27
    [17] W. S. Wang, S. F. Li, On the one-leg $\theta$-methods for solving nonlinear neutral functional differential equations, Appl. Math. Comput., 193 (2007), 285–301. https://doi.org/10.1016/j.amc.2007.03.064 doi: 10.1016/j.amc.2007.03.064
    [18] M. Bohner, O. Tunç, C. Tunç, Qualitative analysis of Caputo fractional integro-differential equations with constant delays, Comp. Appl. Math., 40 (2021), 214. https://doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
    [19] X. Chen, L. Wang, The variational iteration method for solving a neutral functional-differential equations with proportional delays, Comput. Appl. Math., 59 (2008), 2696–2702. https://doi.org/10.1016/j.camwa.2010.01.037 doi: 10.1016/j.camwa.2010.01.037
    [20] M. S. Hafshejani, S. K. Vanani, J. S. Hafshejani, Numerical solution of delay differential equations using Legendre wavelet method, World Appl. Sci. J., 13 (2011), 27–33.
    [21] O. Tunç, C. Tunç, Solution estimates to Caputo proportional fractional derivative delay integro-differential equations, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 12. https://doi.org/10.1007/s13398-022-01345-y doi: 10.1007/s13398-022-01345-y
    [22] J. P. Antoine, Wavelet transforms and their applications, Phys. Today, 56 (2003), 68. https://doi.org/10.1063/1.1580056 doi: 10.1063/1.1580056
    [23] S. Etemad, A. Shikongo, K. M. Owolabi, B. Tellab, İ. Avcı, S. Rezapour, et al., A new fractal-fractional version of giving up smoking model: application of Lagrangian piece-wise interpolation along with asymptotical stability, Mathematics, 10 (2022), 4369. https://doi.org/10.3390/math10224369 doi: 10.3390/math10224369
    [24] T. Kanwal, A. Hussain, İ. Avcı, S. Etemad, S. Rezapour, D. F. M. Torres, Dynamics of a model of polluted lakes via fractal-fractional operators with two different numerical algorithms, Chaos Soliton. Fract., 181 (2024), 114653. https://doi.org/10.1016/j.chaos.2024.114653 doi: 10.1016/j.chaos.2024.114653
    [25] Q. Li, W. Zou, Normalized ground states for Sobolev critical nonlinear Schr$\ddot{o}$dinger equation in the $L^ 2$-supercritical case, Discrete Contin. Dyn. Syst., 44 (2024), 205–227. https://doi.org/10.3934/dcds.2023101 doi: 10.3934/dcds.2023101
    [26] Q. Li, V. D. R$\check{a}$dulescu, W. Zhang, Normalized ground states for the Sobolev critical Schr$\ddot{o}$dinger equation with at least mass critical growth, Nonlinearity, 37 (2024), 025018. https://doi.org/10.1088/1361-6544/ad1b8b doi: 10.1088/1361-6544/ad1b8b
    [27] Z. Meng, L. Wang, H. Li, W. Zhang, Legendre wavelets method for solving fractional integro-differential equations, Int. J. Comput. Math., 92 (2014), 1275–1291. https://doi.org/10.1080/00207160.2014.932909 doi: 10.1080/00207160.2014.932909
    [28] F. Mohammadi, M. M. Hossein, A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations, J. Franklin Inst., 348 (2011), 1787–1796. https://doi.org/10.1016/j.jfranklin.2011.04.017 doi: 10.1016/j.jfranklin.2011.04.017
    [29] P. Rahimkhani, Y. Ordokhani, E. Babolian, A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations, Numer. Algor., 74 (2017), 223–245. https://doi.org/10.1007/s11075-016-0146-3 doi: 10.1007/s11075-016-0146-3
    [30] M. ur Rehman, R. Ali Khan, The Legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4163–4173. https://doi.org/10.1016/j.cnsns.2011.01.014 doi: 10.1016/j.cnsns.2011.01.014
    [31] M. Yi, L. Wang, J. Huang, Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel, Appl. Math. Model., 40 (2016), 3422–3437. https://doi.org/10.1016/j.apm.2015.10.009 doi: 10.1016/j.apm.2015.10.009
    [32] D. Abbaszadeh, M. Tavassoli Kajani, M. Momeni, M. Zahraei, M. Maleki, Solving fractional Fredholm integro-differential equations using Legendre wavelets, Appl. Numer. Math., 166 (2021), 168–185. https://doi.org/10.1016/j.apnum.2021.04.008 doi: 10.1016/j.apnum.2021.04.008
    [33] I. A. Bhat, L. N. Mishra, V. N. Mishra, C. Tunç, O. Tunç, Precision and efficiency of an interpolation approach to weakly singular integral equations, Int. J. Numer. Methods Heat Fluid Flow, 34 (2024), 1479–1499. https://doi.org/10.1108/HFF-09-2023-0553 doi: 10.1108/HFF-09-2023-0553
    [34] R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calculus Appl. Anal., 12 (2009), 299–318.
    [35] H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani, C. M. Khalique, Applications of Legendre wavelets for solving fractional differential equations, Comput. Math. Appl., 62 (2011), 1038–1045. https://doi.org/10.1016/j.camwa.2011.04.024 doi: 10.1016/j.camwa.2011.04.024
    [36] K. Muthuselvan, B. Sundaravadivoo, Analyze existence, uniqueness and controllability of impulsive fractional functional differential equations, Adv. Stud.: Euro-Tbilisi Math. J., 10 (2022), 171–190.
    [37] K. Muthuselvan, B. Sundaravadivoo, S. Alsaeed, K. S. Nisar, New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition, AIMS Math., 8 (2023), 17154–17170. https://doi.org/10.3934/math.2023876 doi: 10.3934/math.2023876
    [38] K. Muthuselvan, B. Sundaravadivoo, K. S. Nisar, S. R. Munjam, W. Albalawi, A. H. Abdel-Aty, Results on nonlocal controllability for impulsive fractional functional integro-differential equations via degree theory, Results Phys., 51 (2023), 106698. https://doi.org/10.1016/j.rinp.2023.106698 doi: 10.1016/j.rinp.2023.106698
    [39] P. Rahimkhani, Y. Ordokhani, E. Babolian, Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 309 (2017), 493–510. https://doi.org/10.1016/j.cam.2016.06.005 doi: 10.1016/j.cam.2016.06.005
    [40] Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, 2 Eds., World Scientific, 2016. https://doi.org/10.1142/10238
    [41] K. Yoshida, Functional analysis, Berlin: Springer-Verlag, 1966. https://doi.org/10.1007/978-3-642-61859-8
    [42] N. H. Shah, Ordinary and partial differential equations: theory and applications, PHI Learning Private Limited, 2015.
    [43] B. Yuttanan, M. Razzaghi, T. N. Vo, Legendre wavelet method for fractional delay differential equations, Appl. Numer. Math., 168 (2021), 127–142. https://doi.org/10.1016/j.apnum.2021.05.024 doi: 10.1016/j.apnum.2021.05.024
    [44] M. Razzaghi, S. Yousefi, Legendre wavelets direct method for variational problems, Math. Comput. Simul., 53 (2000), 185–192. https://doi.org/10.1016/S0378-4754(00)00170-1 doi: 10.1016/S0378-4754(00)00170-1
    [45] A. Bellen, M. Zennaro, Numerical methods for delay differential equations, Numerical Mathematics and Scientific Computation, Oxford: Oxford Academic, 2013. https://doi.org/10.1093/acprof: oso/9780198506546.001.0001
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(328) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog