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Abstract: The aim of this work is to solve a numerical computation of the neutral fractional functional
integro-differential equation based on a new approach to the Legendre wavelet method. The concept of
fractional derivatives was examined in the sense of Caputo. The properties of the Legendre wavelet and
function approximation were employed to determine the approximate solution of a given dynamical
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1. Introduction

Fractional calculus is an extension of classical calculus that deals with arbitrary non-integer order
integrations and differentiations. In 1695, Guillaume de L’Hôpital sent a letter to Gottfried Wilhelm
Leibniz. In his message, an important question about the order of the derivative emerged: What might
be a derivative of order 1/2? Leibniz’s response: “An apparent paradox, from which one day useful
consequences will be drawn”. After this extraordinary conversation, numerous notable mathematicians
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were interested in fractional calculus, and many of them either directly or indirectly contributed
to its advancement. A wide variety of applications can be found in many fields of science and
engineering using fractional calculus. In particular, aerodynamics, biology, control theory, rheology,
diffusion equations, signal processing, and image processing fall under these categories. The readers
can see the following monographs on fractional calculus and its application [1–8]. Working with
these models and comprehending analytical solutions is quite challenging. Due to this, a number of
numerical methods have been proposed by numerous researchers: operational matrices of piecewise
constant orthogonal function [9], Chebyshev polynomials [10], Bernoulli wavelet method [11],
Adomain decomposition [12], homotopy analysis method [13], differential transform method [14],
finite difference method [15], variational iteration method [16], and one-leg-θ method [17].

Many complicated phenomena in nature and technology can be described by functional differential
equations, which have become increasingly prevalent (see [18–21]). Functional differential equations
can be used to analyze previous and current behavior being possible to use the construct models in
a variety of fields, including medicine, mechanics, biology, and economics. Differential equations
that involve both advanced and delayed arguments are referred to as neutral functional differential
equations. Because of their ability to balance past and future action in a neutral manner, they are
known as neutral. Unlike ordinary differential equations, where the derivative at a point depends only
on the values of the function at that point and earlier, in neutral functional differential equations, the
derivative depends not only on the function and its derivatives at the present time but also at some past
and future times. In real-world phenomena, neutral functional differential equations help to generalize
the formulation of any difficult problem.

The idea behind wavelets is to decompose a signal into different frequency components, allowing
for localized analysis both in time and frequency domains. The concept was pioneered by Jean Morlet
and Alex Grossmann in the year of 1981. Legendre wavelets are wavelets constructed using Legendre
polynomials as their basis functions. The Legendre polynomials are orthogonal on the interval [−1, 1],
which makes them suitable for wavelet analysis on bounded domains. By scaling and translating the
Legendre polynomials, one can generate a family of wavelet functions. Wavelet methods have attracted
considerable attention in recent years for solving differential equations as well as integral equations of
integer and non-integer order. It is highly beneficial to use the Legendre wavelets method (LWM) in
various fields due to its versatility and effectiveness in solving differential equations and analyzing
dynamic systems. Legendre wavelets often involve the development of algorithms for efficient
computation and implementation. Researchers explore techniques for fast wavelet transforms using
Legendre wavelets. Their ability to represent signals and images with localized features makes them
suitable for applications in areas such as medical imaging, remote sensing, and digital communications.
In earlier studies, many authors were involved in the field of Legendre wavelets. Antoine et al. [22]
studied wavelet transforms and their applications. Recently, Etemad et al. [23] proposed a new
fractal-fractional version of giving-up-smoking model. Most recently, Kanwal et al. [24] discussed
the dynamics of a model of polluted lakes via fractal-fractional operators with two different numerical
algorithms. Li et al. discussed the normalized ground states for Sobolev critical nonlinear Schrödinger
equation in the L2-supercritical case and mass critical growth in [25, 26]. Meng et al. [27] addressed
the LWM for solving fractional integro-differential equations. Mohammadi et al. [28] studied a new
Legendre wavelet operational matrix of derivatives and its applications in solving the singular ordinary
differential equations. Rahimkhani et al. [29] discussed a numerical solution of fractional delay
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differential equations by using generalized fractional-order Bernoulli wavelet. Rehman et al. [30]
investigated the Legendre wavelet method for solving fractional differential equations. Yi et al. [31]
studied the LWM for the numerical solution of fractional integro-differential equations with weakly
singular kernel. We discuss the new technique for solving the numerical computation of neutral
fractional functional integro-differential equations based on LWM. As a fact, prior studies did not
examine this idea, which prompted us to conduct extensive research and write the present manuscript.
Hence, we considered the following form of neutral fractional functional integro-differential equations:

Dθ(%(t) − κ(t, %t)) = χ(t, %t,

∫ t

0
ξ(t, s, %s)ds), t ∈ I := [0, 1]. (1.1)

%(t) = φ(t), t ∈ B := (−r, 0].

Let X be a Hilbert space. Dθ denotes Caputo fractional derivative of order 0 < θ < 1. Let %(t) be
a state variable in X. The neutral term κ : I × B → X is given continuous function. The delay term
%t ∈ B, is defined by %t(s) = %(t + s), −r < s ≤ 0 and ’r’ is a positive constant. Let the functions
χ : I × B × X → X and ξ : I × X × B → X be given continuous, where χ represents the function
of three variables and ξ represents an integral involving a function over the interval [0, 1]. Further, the
initial condition %0 = φ = {φ(s) : −r < s ≤ 0} is considered to be a continuous function.

As a result of studying our proposed method, we have found the following characteristics to be most
significant:

(1) Function approximation, unit step function, Laplace transform method, and Legendre polynomial
are used to obtain the approximate solution of our given dynamical system. The main benefit
of the suggested work is to reduce the error estimation as well as the complexity of solving the
numerical computations.

(2) This numerical method provides a means to approximate solutions to complex models, even in
cases where analytical solutions are infeasible, and it offers flexibility in modeling different types
of systems. It helps to represent the solution to the dynamical system as a series expansion using
Legendre wavelets and it helps to identify the error estimation and convergence analysis to assess
the accuracy and reliability of numerical solutions. It allows for the validation and verification of
working models by comparing numerical results with experimental data.

(3) The Legendre wavelets are orthogonal functions defined on a bounded interval, making them
suitable for approximating functions defined on a finite domain and substituting the series
expansion of the solution into the given dynamical equations. This step transforms the differential
equations into a system of algebraic equations involving the coefficients of the Legendre wavelet
expansion.

(4) The novelty of this work is solving the numerical computation of neutral fractional functional
integro-differential equations based on our proposed technique. This technique evolves from
another type of Legendre polynomial and is helpful to reduce the error estimation of our problem
when compared with previous research studies [32–39]. We also discuss how several numerical
examples are used to enhance the effectiveness of our proposed method. This could include the
absolute errors, exact solution, and approximate solution of our given problem in the time domain.
We present the graphical representation of the outputs.

We present this manuscript in the following manner: In Section 2, we provide the system
description, basic definition of the Legendre polynomial, fractional derivatives and their properties.
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In Section 3, we discuss the primary definitions of wavelets, Legendre wavelets, and function
approximation. In Section 4, we estimate the numerical computation of the neutral fractional functional
integro-differential equation based on our new technique. In Section 5, we examine the error estimation
and convergence analysis of the truncated Legendre wavelet expansions based on the Caputo fractional
derivative. In Section 6, we discuss the numerical examples and graphical illustrations for our proposed
method. In Section 7, we discuss the results and discussion of our findings. Additionally, in Section 8,
we provide the conclusion of this manuscript.

2. Preliminaries and notations

Definition 2.1 ( [40]). The Riemann-Liouville fractional integral of order θ > 0 and ϕ : R+ → Rn is
defined by

Iθ0+ϕ(t) =
1

Γ(θ)

∫ t

0

ϕ(s)
(t − s)1−θ ds, t > 0.

Definition 2.2 ( [40]). The Caputo fractional derivative of order θ > 0 is described as:

Dθ
0+ϕ(t) =

1
Γ(ρ − θ)

∫ t

0

ϕ(ρ)(s)
(t − s)θ−ρ+1 ds, t > 0, ρ − 1 < θ < ρ, ρ ∈ N.

Definition 2.3 ( [41]). (Bessel’s inequality) Let X be a Hilbert space and suppose that {e1, e2, ....} is an
orthonormal sequence in X. Then, for any x in X, one has

∞∑
k=1

|< x, ek >| ≤ ‖x‖2,

where, < . > denotes inner product in the Hilbert space X.

Definition 2.4 ( [42]). (Legendre polynomial) The Legendre polynomial of degree δ is defined in the
following form:

Pδ(t) =
1
2δ

δ∑
ζ=0

(
δ

ζ

)2

(t − 1)δ−ζ(t + 1)ζ , where δ ∈ Z+,

(
δ

ζ

)
=

δ!
ζ!(δ − ζ)!

. (2.1)

Proposition 1 ( [43]). The Riemann-Liouville fractional integral and Caputo fractional derivative are
connected by the following relation:

(A1) The operators Iθ and Dθ are linear.
(A2) Dθ ∗ Iθϕ(t) = ϕ(t).
(A3) Iθ ∗ Dθϕ(t) = ϕ(t) −

∑ρ−1
i=0 ϕ

(i)(0) ti
i! .

3. Legendre wavelet

Wavelets are a family of functions acquired from a single function through scaling (represented by
index σ) and translation (represented by index β). The description of the continuous wavelet Ψ, defined
and given by [43],

Ψσ,β(t) = |σ|−
1
2 Ψ

( t − β
σ

)
, σ, β ∈ R, σ , 0.
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If we restrict the indexes σ and β to discrete values as σ = σ−ω0 , β = ηβ0σ
−ω
0 , σ0, θ0 > 0 and η, ω are

positive integer, we have the following family of discrete wavelets Ψ, defined and given by [43],

Ψη,ω(t) = |σ0|
η
2 Ψ(ση

0t − ωβ0). (3.1)

Then, Eq (3.1) forms a wavelet basis for L2(R). The Legendre wavelets Ψβ,δ(t) = Ψ(η, β, δ, t) have
four arguments, β = 1, 2, 3, ..., 2η−1, η can assume any positive integer, δ is the degree of Legendre
polynomial, δ = 0, 1, 2, 3, ...,K − 1, β is the translation index, and t is the normalized time. They are
defined on the interval [0, 1] and given by [44]

Ψβ,δ(t) =

2
η
2

√
δ + 1

2Pδ(2
ηt − 2β + 1), 2β−2

2η ≤ t < 2β
2η .

0, otherwise.
(3.2)

Where the coefficient
√
δ + 1

2 is orthonormality, and Pδ is the Legendre polynomial of degree δ. A
function ϕ(t) ∈ L2[0, 1] may be expanded by the Legendre wavelet series in the form of

ϕ(t) =

∞∑
β=1

∞∑
δ=0

cβ,δΨβ,δ. (3.3)

If the infinite series Eq (3.3) is truncated, then it can be written as

ϕ2η−1,K (t) '
2ω−1∑
β=1

K−1∑
δ=0

cβ,δΨβ,δ = CT Ψ(t), (3.4)

where, C and Ψ are 2η−1K × 1 matrices given by

C = [c10, c11, ..c1K−1, c20, c21, ...c2K−1, ......c2η−10, c2η−11, ..., c2η−1K−1]T .

Ψ = [Ψ10,Ψ11, ..Ψ1K−1,Ψ20,Ψ21, ...Ψ2K−1, ......Ψ2η−10,Ψ2η−11, ...,Ψ2η−1K−1]T .

4. A new approach to solve numerical computation

In this clause, the Riemann-Liouvile fractional integral is computed making use of the Legendre
wavelet. Let Λµ represent the unit step function demonstrated as follows:

Λµ(t) =

1 i f t ≥ µ.

0 i f t < µ.

Legendre wavelet is represented in terms of the unit step function and can be expressed as follows:

Ψβ,δ(t) =
(
Λ 2β−2

2η
(t) − Λ 2β

2η
(t)

)
2
η
2

√
δ +

1
2
Pδ(2ηt − 2β + 1).

Considering the Laplace transform following property,

L{Λµ(t)ϕ(t)} = e−µsL{ϕ(t + µ)}.
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We obtain,

L{Ψβ,δ(t)} = 2
η
2

√
δ +

1
2

(
e−

2β−2
2η sL

{
Pδ

(
2η

(
t +

2β − 2
2η

)
− 2β + 1

)}
−e−

2β
2η sL

{
Pδ

(
2η

(
t +

2β
2η

)
− 2β + 1

)})
= 2

η
2

√
δ +

1
2

(
e−

2β−2
2η sL

{
Pδ

(
2ηt − 1

)}
−e−

2β
2η sL

{
Pδ

(
2ηt + 1

)})
. (4.1)

Now, we consider

Pδ(2ηt − 1) =
1
2δ

δ∑
ζ=0

(
δ

ζ

)2

(2ηt − 2)δ−ζ(2ηt)ζ

=
1
2δ

δ∑
ζ=0

(
δ

ζ

)2

×

δ−ζ∑
$=0

(
δ − ζ

$

)
(2ηt)δ−ζ−$(−2)$(2ηt)ζ

=
1
2δ

δ∑
ζ=0

δ−ζ∑
$=0

(
δ

ζ

)2(
δ − ζ

$

)
2η(δ−$)(−2)$tδ−$.

By using the Laplace transform, we obtain

L{Pδ(2ηt − 1)} =
1
2δ

δ∑
ζ=0

δ−ζ∑
$=0

(
δ

ζ

)2(
δ − ζ

$

)
2η(δ−$) (−2)$(δ −$)!

sδ−$+1 . (4.2)

Similarly, we get

Pδ(2ηt + 1) =
1
2δ

δ∑
ζ=0

(
δ

ζ

)2

(2ηt)δ−ζ(2ηt + 2)ζ

=
1
2δ

δ∑
ζ=0

ζ∑
$=0

(
δ

ζ

)2(
ζ

$

)
2η(δ−$)2$tδ−$.

L{Pδ(2ηt + 1)} =
1
2δ

δ∑
ζ=0

ζ∑
$=0

(
δ

ζ

)2(
ζ

$

)
2η(δ−$) (2)$(δ −$)!

sδ−$+1 . (4.3)

Substituting the Eqs (4.2) and (4.3) in (4.1), we have

L{Ψβ,δ(t)} = 2
η
2−δ

√
δ +

1
2

δ∑
ζ=0

(
δ

ζ

)2[
e−

2β−2
2η s

δ−ζ∑
$=0

(
δ − ζ

$

)
2η(δ−$) ×

(−2)$(δ −$)!
sδ−$+1

−e−
2β
2η s

ζ∑
$=0

(
ζ

$

)
2η(δ−$) ×

(2)$(δ −$)!
sδ−$+1

]
. (4.4)
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Now, we compute the Riemann-Liouville fractional integral in terms of the Legendre wavelet,

L{IθΨβ,δ(t)} =
1

Γ(θ)
L{tθ−1} × L{Ψβ,δ(t)}

=
1

(θ − 1)!
(θ − 1)!

sθ
L{Ψβ,δ(t)}

=
1
sθ
L{Ψβ,δ(t)}. (4.5)

Applying inverse Laplace transform to Eq (4.5), then we get

IθΨβ,δ(t) =
(
2
η
2−δ

√
δ +

1
2

δ∑
ζ=0

(
δ

ζ

)2[
Λ 2β−2

2η

δ−ζ∑
$=0

(
δ − ζ

$

)
2η(δ−$)(δ −$)!

×
(−2)$

(
t − 2β−2

2η

)δ−$+θ

Γ(δ −$ + θ + 1)
− Λ 2β

2η

ζ∑
$=0

(
ζ

$

)
2η(δ−$)(δ −$)!

×
(2)$

(
t − 2β

2η

)δ−$+θ

Γ(δ −$ + θ + 1)

])
. (4.6)

Using the Eq (4.6), we compute the approximate solution of Eq (1.1).

Dθ(%(t) − κ(t, %t) ≈ CT Ψ(t).

where Ψ(t) =
{
Ψβ,δ(t), 1 ≤ β ≤ 2η−1, 0 ≤ δ ≤ K − 1

}T
.

Let, Ψ̃(t) =
{
IθΨβ,δ(t), 1 ≤ β ≤ 2η−1, 0 ≤ δ ≤ K − 1

}T
.

From Proposition 1, we have

%(t) ≈

CT Ψ̃(t) + κ(t, %t) +
∑n−1
σ=0 %

(σ)(0) tσ
σ! , t ∈ [0, 1],

φ(t), t ∈ B.

5. Error analysis

In this section, we compute the error estimation and convergence analysis of the given dynamical
system (1.1) together with the truncated Legendre wavelet Eq (3.4).

Lemma 5.1 ( [42]). The orthogonal properties of the Legendre polynomial are defined as∫ 1

−1
Pδ(z)Pθ(z)dz =

0, i f δ , θ,
2

2δ+1 , i f δ = θ,

where δ and θ are degrees of the Legendre polynomial.

Remark 5.2 ( [42]). (2δ + 1)Pδ = d(Pδ+1 −Pδ−1).
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Theorem 5.3. The function ϕ ∈ L2[0, 1] is continuous such that |Dθϕ(t)| is bounded with second
derivative for all t ∈ [0, 1], then we have the following estimation:

‖Dθϕ(t) − Dθϕ2η−1,K (t)‖22 ≤
16L
25η+1

[
4K2 + 4K + 9

(2K + 1)2(2K + 5)(2K − 3)(2K + 3)(2K − 1)

]
.

Proof. Let Dθϕ(t) be a continuous function in the interval [0, 1], and since the Legendre wavelets are
orthonormal, then we have

‖Dθϕ(t) − Dθϕ2η−1,K (t)‖22 = ‖

2η−1∑
β=1

∞∑
δ=K

cβ,δΨβ,δ(t)‖22

=

〈2η−1∑
β=1

∞∑
δ=K

cβ,δΨβ,δ(t),
2η−1∑
β=1

∞∑
δ=K

cβ,δΨβ,δ(t)
〉

=

2η−1∑
β=1

∞∑
δ=K

∣∣∣cβ,δ∣∣∣2 ∥∥∥Ψβ,δ(t)
∥∥∥2
.

By utilizing the orthogonal properties of the Legendre wavelet, then we attain the following form

‖Dθϕ(t) − Dθϕ2η−1,K (t)‖22 =

2η−1∑
β=1

∞∑
δ=K

∣∣∣cβ,δ∣∣∣2 (5.1)

where

cβ,δ =< Dθϕ(t),Ψβ,δ(t) >=

∫ 1

0
Dθϕ(t)Ψβ,δ(t)dt

and < . > denotes inner product space of L2[0, 1], then we can obtain

cβ,δ =

∫ 1

0
Dθϕ(t)Ψβ,δ(t)dt =

∫ 2β
2η

2β−2
2η

Dθϕ(t)2
η
2

√
δ +

1
2
Pδ(2ηt − 2β + 1)dt.

Using a change of variable put s = (2ηt − 2β + 1), we have

cβ,δ = 2−
η
2

√
δ +

1
2

∫ 1

−1
Dθϕ

( s + 2β − 1
2η

)
Pδ(s)ds.

By using Lemma 5.1, Remark 5.2, and integration by parts, then we get

cβ,δ = 2−
η
2

√
δ +

1
2

∫ 1

−1
Dθϕ

( s + 2β − 1
2η

)d (Pδ+1(s) −Pδ−1(s))
2δ + 1

ds

= −

(
1

23η+1(2δ + 1)

) 1
2
∫ 1

−1
Dθ+1ϕ

( s + 2β − 1
2η

)
(Pδ+1(s) −Pδ−1(s))ds.

Again by using Lemma 5.1, Remark 5.2, and integration by parts, then we obtain
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cβ,δ =

(
1

25η+1(2δ + 1)

) 1
2
∫ 1

−1
Dθ+2ϕ

(
s + 2β − 1

2η

)
×

(
Pδ+2(s) −Pδ(s)

2δ + 3
−
Pδ(s) −Pδ−2(s)

2δ − 1

)
ds,

|cβ,δ| =
∣∣∣∣( 1

25η+1(2δ + 1)

) 1
2

∫ 1

−1
Lds∫ 1

−1

(Pδ+2(s) −Pδ(s)
2δ + 3

−
Pδ(s) −Pδ−2(s)

2δ − 1

)
ds

∣∣∣∣
≤

∣∣∣∣( 1
25η+1(2δ + 1)

) 1
2
∣∣∣∣ ∫ 1

−1
Lds∫ 1

−1

∣∣∣∣(Pδ+2(s) −Pδ(s)
2δ + 3

−
Pδ(s) −Pδ−2(s)

2δ − 1

)∣∣∣∣ds,

|cβ,δ|2 ≤

(
2L

25η+1(2δ + 1)

)
∫ 1

−1

∣∣∣∣∣∣
(
Pδ+2(s) −Pδ(s)

2δ + 3
−
Pδ(s) −Pδ−2(s)

2δ − 1

)∣∣∣∣∣∣2 ds

=
16L

25η+1(2δ + 1)2

[
4δ2 + 4δ + 9

(2δ + 3)(2δ + 5)(2δ − 1)(2δ − 3)

]
,

‖Dθϕ(t) − Dθϕ2η−1,K (t)‖22 =

2η−1∑
β=1

∞∑
δ=K

|cβ,δ|2 ≤
16L

25η+1(2δ + 1)2

[
4δ2 + 4δ + 9

(2δ + 3)(2δ + 5)(2δ − 1)(2δ − 3)

]
,

‖Dθϕ(t) − Dθϕ2η−1,K (t)‖22 ≤
16L
25η+1

[
4K2 + 4K + 9

(2K + 1)2(2K + 5)(2K − 3)(2K + 3)(2K − 1)

]
, (5.2)

where L =
∣∣∣∣Dθ+2ϕ

(
s+2β−1

2η

)∣∣∣∣ . From the above inequality (5.2), we can conclude that the function
Dθϕ2η−1,K (t)→ Dθϕ(t) in L2[0, 1] as η or K → ∞. �

Note: From Theorem 5.3, we observed that the error analysis of the solution of the neutral
fractional functional integro-differential equation can be reduced to the error analysis of the function
approximation. In the following theorem, we prove the convergence of the function approximation.

Theorem 5.4. For each η ∈ Z+ and the function Dθϕ2η−1,K converges to Dθϕ(t) as K → ∞ in L2[0, 1].

Proof. Initially, let us assume K ∗ > K and, using Theorem 5.1, then we obtain,

‖Dθϕ2η−1,K∗(t) − Dθϕ2η−1,K (t)‖2L2[0,1] = ‖Dθϕ2η−1,K∗(t) − Dθϕ(t) + Dθϕ(t) − Dθϕ2η−1,K (t)‖2L2[0,1]

≤ ‖Dθϕ2η−1,K∗(t) − Dθϕ(t)‖2L2[0,1]

+‖Dθϕ(t) − Dθϕ2η−1,K (t)‖2L2[0,1]

=

2η−1∑
β=1

∞∑
δ=K∗

∣∣∣cβ,δ∣∣∣2 +

2η−1∑
β=1

∞∑
δ=K

∣∣∣cβ,δ∣∣∣2
AIMS Mathematics Volume 9, Issue 6, 14288–14309.
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=

2η−1∑
β=1

∞∑
δ=K∗

∣∣∣∣〈Dθϕ(t),Ψβ,δ

〉∣∣∣∣2 +

2η−1∑
β=1

∞∑
δ=K

∣∣∣∣〈Dθϕ(t),Ψβ,δ

〉∣∣∣∣2
≤ 2‖ϕ‖2 < ∞, ( f rom Bessel′s inequality).

Therefore, Dθϕ2η−1,K (t)→ Dθϕ∗(t) in L2[0, 1]. Since it is a Cauchy sequence, now we demonstrate that
Dθϕ∗(t) = Dθϕ(t) for any indices m, n we possess,〈

Dθϕ∗(t) − Dθϕ(t),Ψm,n(t)
〉

L2[0,1]
=

〈
Dθϕ∗(t),Ψm,n(t)

〉
L2[0,1]

−
〈
Dθϕ(t),Ψm,n(t)

〉
L2[0,1]

=

〈2η−1∑
β=1

K−1∑
δ=0

cβ,δΨβ,δ

∞∑
δ=K

cβ,δΨβ,δ,Ψm,n

〉
L2[0,1]

− cm,n

=

〈
lim
K→∞

2η−1∑
β=1

K∑
δ=0

cβ,δΨβ,δ,Ψm,n

〉
L2[0,1]

− cm,n

= lim
K→∞

cm,n − cm,n

= 0.

Therefore Dθϕ∗(t) − Dθϕ(t) = 0. Hence the function Dθϕ2η−1,K (t)→ Dθϕ(t) as K → ∞. �

Remark 5.5. Theorem 5.3 stipulates that the error bound of the solution can be obtained if one is able
to bound the second derivative of the solution over the interval [0, 1]. Theorem 5.4 indicates that the
error always tends to zero in the case that a bound for the second derivative of the solution cannot be
found.

6. Numerical and graphical illustration

Example 6.1. Consider the fractional differential equation of order θ ∈ (2, 3] is defined as:

Dθ%(t) + %(t − 0.3) = −%(t) + e−t+0.3 +

∫ 1

0
sin(2πt)dt, t ∈ [0, 1].

%(t) = e−t, t < 0. (6.1)
%(0) = −%

′

(0) = %
′′

(0) = 1.

The exact solution for Eq (6.1) is %(t) = e−t, when θ = 3. In Table 1, compare the values of the
present method and previous methods in [29, 43]. Table 2 explores the numerical results for Eq (6.1).
Figures 1 and 2 represent the exact solution, approximate solution, and absolute error of our given
problem with the parameters η = 2 and K = 7.

Table 1. Comparison between the exact solution of our present method and methods in [29,
43] with η = 2 and K = 7.

t Present method Bernoulli [29] LWM [43]
0.2 0.81873 0.8187 0.818731
0.4 0.67032 0.4067 0.406703
0.6 0.54881 0.6054 0.605488
0.8 0.44933 0.4493 0.449329
1 0.36788 0.3688 0.368794
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Table 2. Numerical results for Example 6.1 with η = 2 and K = 7.

t Exact
Approximate solution
for η = 2 and K = 7

Absolute error

0 1 1 0
0.1 0.904840000000000 0.904794000000000 4.599999999999049e-05
0.2 0.818730000000000 0.818793000000000 6.300000000003525e-05
0.3 0.740820000000000 0.740792000000000 2.800000000002800e-05
0.4 0.670320000000000 0.670329000000000 8.999999999925734e-06
0.5 0.606530000000000 0.606529000000000 1.000000000028756e-06
0.6 0.548810000000000 0.548809000000000 1.000000000028756e-06
0.7 0.496590000000000 0.496589000000000 9.999000000000000e-07
0.8 0.449330000000000 0.449329000000000 1.000000000028756e-07
0.9 0.406570000000000 0.406569000000000 9.999999999732445e-07
1 0.367880000000000 0.367879000000000 9.999900000000000e-07
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Figure 1. The illustration compares the solutions of Example 6.1.
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Figure 2. The graph represents the absolute error of Example 6.1.

Example 6.2. Consider the initial value problem of the Caputo fractional derivative with higher order
(1, 2]:

Dθ%(t) −
7
2
%(t) = −%

( t
4

)
+ 2, t ∈ [0, 1]. (6.2)

%(0) = 0.
%′(0) = 0.
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The exact solution for Eq (6.2) is %(t) = 2t2, when θ = 2. Table 3 explores the numerical results of
Eq (6.2) using the parameter values η = 1 and K = 7. Figures 3 and 4 represent the solution and the
absolute error of our given problem with the parameters η = 1 and K = 7.

Table 3. Numerical results for Example 6.2 with η = 1 and K = 7.

t Exact
Approximate solution
for η = 1 and K = 7

Absolute error

0 0 4.971002329224e-12 4.971002329224510e-12
0.1 0.020000000000000 0.019999999999950 5.000166947155549e-14
0.2 0.080000000000000 0.079999999999957 4.300726441641700e-14
0.3 0.180000000000000 0.179999999999957 4.299338662860919e-14
0.4 0.320000000000000 0.319999999999950 5.001554725936330e-14
0.5 0.500000000000000 0.499999999995029 4.971023592759138e-12
0.6 0.720000000000000 0.719999999999999 9.992007221626409e-16
0.7 0.980000000000000 0.979999999999999 9.992007221626409e-16
0.8 1.280000000000000 1.279999999999999 1.110223024625157e-15
0.9 1.620000000000000 1.619999999999999 1.110223024625157e-15
1 2.000000000000000 1.999999999999999 1.110223024625157e-15
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Figure 3. The illustration compares the solutions of Example 6.2.
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Figure 4. The graph represents the absolute error of Example 6.2.

Example 6.3 ( [14]). Consider the initial value problem of nonlinear fractional differential equation
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with higher order (1, 2]:

Dθ%(t) = 1 − 2%2
( t
2

)
t ∈ [0, 1]. (6.3)

%(0) = 1.
%′(0) = 0.

The exact solution for Eq (6.3) is %(t) = cos(t), when θ = 2. Table 4 explores numerical results for
Eq (6.3) using the parameter values η = 2 and K = 8. Figures 5 and 6 represent the solution and the
absolute error of our given problem with the parameters η = 2 and K = 8.

Table 4. Numerical results for Example 6.3 with η = 2 and K = 8.

t Exact
Approximate solution
for η = 2 and K = 8

Absolute error

0 1 0.999999999999750 2.50022225145585e-13
0.1 0.995000000000000 0.995009999999975 9.99999997497447e-06
0.2 0.980070000000000 0.980119999999975 4.99999999750145e-05
0.3 0.955340000000000 0.955333999999998 6.00000000194889e-06
0.4 0.921060000000000 0.921119999999975 5.99999999749690e-05
0.5 0.877580000000000 0.877579999991422 8.57802717746381e-12
0.6 0.825340000000000 0.825339999999975 2.49800180540660e-14
0.7 0.764840000000000 0.764839999999976 2.39808173319034e-14
0.8 0.696710000000000 0.696709999999976 2.40918396343659e-14
0.9 0.621610000000000 0.621609999999975 2.49800180540660e-14
1 0.540300000000000 0.540299999991422 8.57802717746381e-12
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Figure 5. The illustration compares the solutions of Example 6.3.
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Figure 6. The graph represents the absolute error of Example 6.3.
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Example 6.4 ( [43]). Consider the initial value problem of fractional differential equation with
proportional delay.

Dθ%(t) = −%(t) +
1
10
%

(
4
5

t
)

+
1
2

Dθ%

(
4
5

t
)

+

(
8

25
t −

1
2

)
e−

4
5 t + e−t t ∈ [0, 1].

%(0) = 0. (6.4)

The exact solution for Eq (6.4) is %(t) = te−t, when θ = 1. In Table 5, we provide a comparison
of error estimation between our present method and methods in [17, 19, 45] with step size h = 0.01.
Table 6 explores the numerical results for Eq (6.4) with η = 2 and K = 6. Figures 7 and 8 represent
the solution and absolute error of our given problem with the parameters η = 2 and K = 6.

Table 5. Comparison of error estimation between our present method and other methods
with step size h = 0.01.

t
One-leg
θ-method [17]

Variational
iteration
method [19]

Rung-Kutta
method [45]

Present
method

0.1 4.65e-03 1.30e-03 8.68e-04 1.99e-05
0.3 2.57e-02 2.63e-03 1.90e-03 4.99e-05
0.5 4.43e-02 2.83e-03 2.28e-03 2.76e-12
0.7 5.31e-02 2.39e-03 2.27e-03 3.99e-15
0.9 5.35e-02 1.64e-03 2.03e-03 4.40e-14

Table 6. Numerical results for Example 6.4 with η = 2 and K = 6.

t Exact
Approximate solution
for η = 2 and K = 6

Absolute error

0 0 0 0
0.1 0.090480000000000 0.090499999999970 1.99999999699885e-05
0.2 0.163750000000000 0.163799999999960 4.99999999599987e-05
0.3 0.222250000000000 0.222299999999990 4.99999999900025e-05
0.4 0.268130000000000 0.268129999999999 9.99200722162641e-16
0.5 0.303270000000000 0.303269999997240 2.75995892806691e-12
0.6 0.329290000000000 0.329289999999956 4.40203429263875e-14
0.7 0.347610000000000 0.347609999999996 3.99680288865056e-15
0.8 0.359460000000000 0.359459999999996 3.99680288865056e-15
0.9 0.365910000000000 0.365909999999956 4.40203429263875e-14
1 0.367880000000000 0.367879999997240 2.75995892806691e-12
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Time interval 't'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

m
p

ar
is

o
n

 b
et

w
ee

n
 e

x
ac

t 
so

lu
ti

o
n

an
d

 a
p

p
ro

x
im

at
e 

so
lu

ti
o

n
w

it
h

 η
=

2
 a

n
d

 K
=

6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Exact solution

Approximate solution

Figure 7. The illustration compares the solutions of Example 6.4.
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Figure 8. The graph represents the absolute error of Example 6.4.

7. Results and discussion

In this section, we present the results of applying the Legendre wavelet method to solve the neutral
fractional functional integro-differential Eq (1.1). We discuss the accuracy, efficiency, and applicability
of the proposed technique, along with comparisons with existing methods.

(1) We investigated the performance of the proposed method in several dynamical systems under
different initial conditions and analyzed how these errors change with given parameters (see
Examples 6.1–6.4). In the suggested method, the parameter scaling ‘η’ and translation ‘K’
were kept constant primarily for simplicity and computational efficiency. Legendre wavelets
are constructed from Legendre polynomials, which have orthogonal properties. By keeping
the translation and scaling parameters constant, the resulting wavelet basis functions remain
orthogonal to each other.

(2) Additionally, the computational efficiency of the proposed technique was compared with other
numerical methods such as the one-leg-θ method [17], the variational iteration method [19], the
Bernoulli method [29], the Legendre wavelet method [43], and the Rung-Kutta method [45].

(3) We evaluated the efficiency of the Legendre wavelet method in terms of error estimations. We
also examined the advantages and limitations of the proposed approach relative to other methods,
considering factors such as exact solutions, approximate solutions, and absolute errors.

(4) Table 1 compares our proposed method’s exact solution with other numerical techniques. The
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output of the present method is closely related to other numerical techniques such as the Bernoulli
method [29] and the Legendre wavelet method [43]. Tables 2–4 and 6 showed the absolute error of
our proposed technique with different parameters using Legendre polynomials, Theorem 5.3, and
MATLAB software R2014. The corresponding MATLAB code for our numerical computation is
given in Appendices Al and A2. This approach, based on the numerical and graphical findings,
has the following characteristics: The error estimation is very low compared with other techniques
(see Table 5). Our analytical and numerical solutions are relatively identical when using the
present method, which also reduces the complexity of solving the given system. According to the
above observation, the suggested work has demonstrated great effectiveness and reliability.

(5) This comprehensive analysis of the proposed technique addresses its accuracy, efficiency,
applicability, and comparative performance relative to existing methods. By using this method,
readers will be able to comprehend the contributions and implications of the research findings on
a more profound level.

8. Conclusions

In this manuscript, we proposed a new technique to solve the neutral fractional functional integro-
differential equation in the sense of the Caputo fractional derivative. The numerical computation
is obtained from our proposed technique based on the Legendre polynomial and the Legendre
wavelet. The convergence analysis is obtained from Bessel’s inequality. Our findings highlight
several key insights into the performance and applicability of the proposed technique. First,
we have shown that the Legendre wavelet method offers a promising framework for accurately
approximating solutions to neutral fractional functional integro-differential equations. Furthermore,
our computational experiments have provided valuable insights into the behavior and performance
of the proposed technique. Based on our observations, the method is effective in handling large-
scale and computationally demanding problems since it has desirable convergence features and
computational efficiency. Our study contributes to the existing literature by introducing a novel
technique for solving numerical computations of a given dynamical system based on the Legendre
wavelet method. By addressing important theoretical and practical challenges, our findings enhance
our understanding of fractional calculus and computational mathematics, paving the way for further
research and applications in this exciting and rapidly evolving field. Interpretation and validation of
numerical results obtained using this proposed work pose challenges. It would be difficult to verify the
accuracy of the solutions or to assess their physical relevance, especially in the absence of analytical
solutions or experimental data for comparison. The applicability of this proposed method is limited to
certain types of problems or equations. It may not be suitable for all classes of neutral fractional
functional integro-differential equations, particularly those with highly irregular or discontinuous
solutions. Future research efforts are needed to address the identified limitations and improve the
robustness and applicability of the technique.
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Appendix

This section provides the Matlab code for our numerical computation.

A1: calculating exact solution

c l c ;
c l e a r ;
c l o s e a l l ;

% The i n p u t s

h =0 . 0 0 1 ;
t ( 1 ) = 0 ;
t f i n a l =1;

%I n i t i a l c o n d i t i o n s

y ( 0 ) = 0 ;
y ’ ( 0 ) = 0 ;
nu =2;
t f i n a l =2;
t = t ( 1 ) : h : t f i n a l ;

N= c e i l ( ( t f i n a l − t ( 1 ) / h ) ) ;
f o r t = −0 :0 .1 :1

v =1;

%Exac t S o l u t i o n

%Example 6 . 1 :
Exac t=exp (− t )
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%Example 6 . 2 :
Exac t =2* t . ˆ 2

%example 6 . 3 :
Exac t=cos ( t )

%Example 6 . 4 :
Exac t= t * exp (− t )
V=Exac t ;

f p r i n t f ( ’ \ n %1.5 f ’ , V ) ;
end

A2: calculating error estimation and approximate solution

f u n c t i o n [ y ] =L e g e n d r e w a v e l e t s ( n ,m, t )
%Usage : LEGENDRE WAVELETS( n , m , t )

% Arguments ( i n p u t ) :
n : D i l a t i o n p a r a m e t e r o f t h e w a v e l e t ( i n t e g e r p o s i t i v e ) .

% m : T r a n s l a t i o n p a r m e t e r o f t h e w a v e l e t and t h e o r d e r o f t h e
l e g e n d r e p o l y n o m i a l ( i n t e g e r non−n e g a t i v e ) .

% t : n o r m a l i z e d t ime ( r e a l p o s i t i v e ) .

% Arguments ( Outpu t ) :
y : Legendre w a v e l e t .

i f ( n>0) && (m>=0)
%Checking t h e r a n g e of n and m.

f o r i =0: log2 ( n )
i f ( ( 2 ˆ i ) <= n ) && ( n <= ( 2 ˆ ( i + 1 ) ) )
k= i +2;

b r e a k
end

k= i +2;
% F i n d i n g k based on n ( n = 1 , 2 , . . . 2 ˆ k −1 ) .
end
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n h a t =(2* n ) −1;
% D e f i n i n g n h a t based on ’n ’ .
j 0 = ( ( n h a t − 1 ) / ( 2 ˆ k ) ) ;
j 1 = ( ( n h a t + 1 ) / ( 2 ˆ k ) ) ;

% F u n c t i o n d e f i n e d l i m i t s j 0 and j 1 .

f o r t = 0 : 0 . 1 : 1
L=39.0625
L ˆ ( 1 / 2 ) = 6 .2500

C { n*m}=16*L / 2 ˆ ( ( 5 * k + 1 ) / 2 ) ) * ( s q r t (4*mˆ2+4*m+ 9 ) / ( 2 *m+1 ) * ( ( 2 *m+ 3 ) ˆ 1 / 2 )

* ( ( 2 *m+ 5 ) ˆ 1 / 2 ) * ( ( 2 *m− 1 ) ˆ 1 / 2 ) * ( ( 2 *m− 3 ) ˆ 1 / 2 ) )

B=(m, ( ( ( 2 ˆ k ) . * t )− n h a t ) ) ) . * ( h e a v i s i d e ( t − j 0 ) ) .

* ( h e a v i s i d e ( j1 − t ) ) ;

c h i { n*m}= abs ( ( s q r t (m+ ( 1 / 2 ) ) ) * ( 2 ˆ ( k / 2 ) )

* L e g e n d r e r e c u r s i v e f o r m u l a (B ) ;

% D e f i n i n g t h e w a v e l e t
E r r o r=C { n*m}
F = c h i { n*m}
end ;

p l o t ( t , F , ’* b ’ , ’ LineWidth ’ , 0 . 1 )
e l s e
d i s p ( ’ E r r o r a s t h e v a l u e o f n c a n n o t be l e s s t h a n or e q u a l t o z e r o
o r v a l u e o f m c a n n o t be l e s s t h a n zero ’ ) ;
% R e t u r n i n g e r r o r f o r i n v a l i d v a l u e s o f ’n ’ and ’m’
end
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