Processing math: 80%
Research article Special Issues

A novel high accurate numerical approach for the time-delay optimal control problems with delay on both state and control variables

  • Received: 10 December 2021 Revised: 10 February 2022 Accepted: 22 February 2022 Published: 17 March 2022
  • MSC : 65M70, 49J15, 90C30

  • In this study, we intend to present a numerical method with highly accurate to solve the time-delay optimal control problems with delay on both the state and control variables. These problems can be seen in many sciences such as medicine, biology, chemistry, engineering, etc. Most of the methods used to work out time delay optimal control problems have high complexity and cost of computing. We extend a direct Legendre-Gauss-Lobatto spectral collocation method for numerically solving the issues mentioned above, which have some difficulties with other methods. The simple structure, convergence, and high accuracy of our approach are the advantages that distinguish it from different processes. At first, by replacing the delay functions of state and control variables in the dynamical method, we propose an equivalent system. Then discretizing the problem at the collocation points, we achieve a nonlinear programming problem. We can solve this discrete problem to obtain the approximate solutions for the main problem. Moreover, we prove the gained approximate solutions convergent to the exact optimal solutions when the number of collocation points increases. Finally, we show the capability and the superiority of the presented method by solving some numeral examples and comparing the results with those of others.

    Citation: Mehrnoosh Hedayati, Hojjat Ahsani Tehrani, Alireza Fakharzadeh Jahromi, Mohammad Hadi Noori Skandari, Dumitru Baleanu. A novel high accurate numerical approach for the time-delay optimal control problems with delay on both state and control variables[J]. AIMS Mathematics, 2022, 7(6): 9789-9808. doi: 10.3934/math.2022545

    Related Papers:

    [1] Tareq M. Al-shami, Zanyar A. Ameen, A. A. Azzam, Mohammed E. El-Shafei . Soft separation axioms via soft topological operators. AIMS Mathematics, 2022, 7(8): 15107-15119. doi: 10.3934/math.2022828
    [2] Orhan Göçür . Amply soft set and its topologies: AS and PAS topologies. AIMS Mathematics, 2021, 6(4): 3121-3141. doi: 10.3934/math.2021189
    [3] G. Muhiuddin, Ahsan Mahboob . Int-soft ideals over the soft sets in ordered semigroups. AIMS Mathematics, 2020, 5(3): 2412-2423. doi: 10.3934/math.2020159
    [4] Rehab Alharbi, S. E. Abbas, E. El-Sanowsy, H. M. Khiamy, K. A. Aldwoah, Ismail Ibedou . New soft rough approximations via ideals and its applications. AIMS Mathematics, 2024, 9(4): 9884-9910. doi: 10.3934/math.2024484
    [5] Tareq M. Al-shami, Salem Saleh, Alaa M. Abd El-latif, Abdelwaheb Mhemdi . Novel categories of spaces in the frame of fuzzy soft topologies. AIMS Mathematics, 2024, 9(3): 6305-6320. doi: 10.3934/math.2024307
    [6] Dina Abuzaid, Samer Al-Ghour . Supra soft Omega-open sets and supra soft Omega-regularity. AIMS Mathematics, 2025, 10(3): 6636-6651. doi: 10.3934/math.2025303
    [7] Samer Al-Ghour, Hanan Al-Saadi . Soft weakly connected sets and soft weakly connected components. AIMS Mathematics, 2024, 9(1): 1562-1575. doi: 10.3934/math.2024077
    [8] Tareq M. Al-shami, Abdelwaheb Mhemdi, Radwan Abu-Gdairi, Mohammed E. El-Shafei . Compactness and connectedness via the class of soft somewhat open sets. AIMS Mathematics, 2023, 8(1): 815-840. doi: 10.3934/math.2023040
    [9] Tareq M. Al-shami, El-Sayed A. Abo-Tabl . Soft α-separation axioms and α-fixed soft points. AIMS Mathematics, 2021, 6(6): 5675-5694. doi: 10.3934/math.2021335
    [10] Dina Abuzaid, Samer Al Ghour . Three new soft separation axioms in soft topological spaces. AIMS Mathematics, 2024, 9(2): 4632-4648. doi: 10.3934/math.2024223
  • In this study, we intend to present a numerical method with highly accurate to solve the time-delay optimal control problems with delay on both the state and control variables. These problems can be seen in many sciences such as medicine, biology, chemistry, engineering, etc. Most of the methods used to work out time delay optimal control problems have high complexity and cost of computing. We extend a direct Legendre-Gauss-Lobatto spectral collocation method for numerically solving the issues mentioned above, which have some difficulties with other methods. The simple structure, convergence, and high accuracy of our approach are the advantages that distinguish it from different processes. At first, by replacing the delay functions of state and control variables in the dynamical method, we propose an equivalent system. Then discretizing the problem at the collocation points, we achieve a nonlinear programming problem. We can solve this discrete problem to obtain the approximate solutions for the main problem. Moreover, we prove the gained approximate solutions convergent to the exact optimal solutions when the number of collocation points increases. Finally, we show the capability and the superiority of the presented method by solving some numeral examples and comparing the results with those of others.



    The paper [1] by Pawlak was the first article focused on the rough area between the interior set A and the closure set ¯A of a subset A in a universal set X. This idea led to many applications in decision theory. The theory of rough sets is constructed using the equivalence classes as its building blocks.

    The most efficacious tools to study the generalization of rough set theory are the neighborhood systems. The main idea in this theory is the upper and lower approximations that have been defined using different types of neighborhoods instead of equivalence classes such as left and right neighborhoods [2,3,4,5], minimal left neighborhoods [6] and minimal right neighborhoods [7], and the intersection of minimal left and right neighborhoods [8]. Afterwards, the approximations by minimal right neighborhoods which are determined by reflexive relations that form the base of the topological space defined in [9]. In 2018, Dai et al. [10] presented new kind of neighborhoods, namely the maximal right neighborhoods which were determined by similarity relations and have been used to propose three new kinds of approximations. Dai et al.'s approximations [10] differed from Abo-Tabl's approximations [9] in that the corresponding upper and lower approximations, boundary regions, accuracy measures, and roughness measures in two types of Dai et al.'s approximations [10] had a monotonicity. Later on, Al-shami [11] embraced a new type of neighborhood systems namely, the intersection of maximal right and left neighborhoods, and then used this type to present new approximations. These approximations improved the accuracy measures more than Dai et al.'s approximations [10]. Al-shami's [11] accuracy measures preserved the monotonic property under any arbitrary relation. The paper [12], by Molodtsov, was the first article that defined the notion "soft set", and it has many applications in uncertainty area or ambiguity decision. A theoretical research on soft set theory was given in [13] by Maji et al. The paper [14] by Ali et al. proposed many soft set-theoretical notions such as union, intersection, difference and complement. [15,16,17,18,19,20] objected to developing the theory and the applications of soft sets. In [21], the authors introduced the soft ideal notion. It is a completely new approach for modeling vagueness and uncertainty by reducing the boundary region and increasing the accuracy of a rough set which helped scholars to solve many real-life problems [4,22,23,24,25]. Recently, many extensions of the classical rough set approximations have been applied to provide new rough paradigms using certain topological structures and concepts like subset neighborhoods, containment neighborhoods, and maximal and minimal neighborhoods to deal with rough set notions and address some real-life problems [2,4,26,27,28]. Numerous researchers have recently examined some topological concepts, including continuity, separation axioms, closure spaces, and connectedness in ideal approximation spaces [29,30,31]. Ordinary rough sets were defined using an equivalence relation R on X, and produced two approximations, one is lower and second is upper. The space (X,R) is named approximation space. In the soft case, soft roughness used soft relations [32]. Some researchers transferred the common definitions in set-topology to soft set-topology, depending on that soft topology is an extension to the usual topology as explained in [15]. Many researchers objected to the basics of set-topology and subsequently the well-known embedding theorems but in point of view of soft set-topology with some real-life applications (see [33,34,35,36,37,38]). This paper used the notion of soft binary relations to ensure that the soft interior and soft closure in approximation spaces utilizing soft ideal to generate soft ideal approximation topological spaces based on soft minimal neighborhoods. We illustrated that soft rough approximations [17] are special cases of the current soft ideal approximations. Soft accumulation points, soft exterior sets, soft dense sets, and soft nowhere dense sets with respect to these spaces were defined and studied, and we gave some examples. We introduce and study soft ideal accumulation points in such spaces under a soft ideal defined on the given soft ideal. Soft separation axioms with respect to these soft ideal approximation spaces are reformulated via soft relational concepts and compared with examples to show their implications. In addition, we reformulate and study soft connectedness in these soft ideal approximation spaces. Finally, we defined soft boundary region and soft accuracy measure with respect to our soft ideal approximation spaces. We added two real life examples to illustrate the importance of the results obtained in this paper.

    This paper is divided into 6 sections beyond the introduction and the preliminaries. Section 3 defined the soft approximation spaces using a soft ideal. Section 4 is the main section of the manuscript and displays the properties of soft sets in the soft ideal approximation spaces. It has been generated using the concepts of R<x>R, soft neighborhoods and soft ideals. We study the main properties in soft ideal approximation spaces which are generalizations of the same properties of ideal approximation spaces given by Abbas et al. [31] and provide various illustrative examples. Section 5 introduced soft lower separation axioms via soft binary relations and soft ideal as a generalization of lower separation axioms given in [31]. We scrutinized its essential characterizations of some of its relationships associated with the soft ideal closure operators. Some illustrative examples are given. Section 6 reformulated and studied soft connectedness in [31] with respect to these soft ideal approximation spaces. Some examples are submitted to explain the definitions. Section 7 is devoted to comparing between the current purposed methods in Definitions 3.4–3.6 and to demonstrate that the method given in Definition 3.6 is the best in terms of developing the soft approximation operators and the values of soft accuracy. That is, the third approach in Definition 3.6 produces soft accuracy measures of soft subsets higher than their counterparts displayed in previous method 2.4 in [17]. Moreover, we applied these approaches to handle real-life problems. Section 8 is the conclusion.

    Through this paper, X stands for the universal set of objects, E denotes the set of parameters, LE denotes for a soft ideal, RE as a soft binary relation, P(X) represents all subsets of X, and SS(X) refers to the set of all soft subsets of X. All basic notions and notations of soft sets are found in [12,13,15,39,40].

    If (F,E) is a soft set of X and xX, then xˇ(F,E) whenever xF(e) for each eE. A soft set (F,E) of X with F(e)={x} for each eE is called a singleton soft set or a soft point and it is represented by xE or (x,E). Let (F1,E),(F2,E)ˇSS(X)E. Then, (F1,E) is a soft subset of (F2,E), represented by (F1,E)(F2,E), if F1(e)F2(e),eE. In that case, (F1,E) is called a soft subset of (F2,E) and (F2,E) is said to be a soft supset of (F1,E), (F2,E)(F1,E). Two soft subset (F1,E) and (F2,E) over X are called equal if (F1,E) is soft subset of (F2,E) and (F1,E) is soft supset of (F2,E). A soft set (F,E) over X is called a NULL soft set written as Φ if for each eE,F(e)=ϕ. Let A be a non-empty subset of X, then ˜AE or ˜A represents the absolute soft set (A,E) of X in which A(e)=A, for each eE. The soft intersection (resp. soft union) of (F1,E) and (F2,E) over X denoted by (F1F2,E) (resp. (F1F2,E)) and defined as (F1F2)(e)=F1(e)F2(e) (resp. (F1F2)(e)=F1(e)F2(e)) for each eE. Complementing a soft set (F,E) is represented by (F,E)c and it is defined as (F,E)c=(Fc,E) where Fc:EP(X) is a mapping defined by Fc(e)=XF(e) for all eE, and Fc is then a soft complement function of F.

    Definition 2.1. [32] Let (R,E)=RE be a soft set of X×X, that is R:EP(X×X). Then, RE is said to be a soft binary relation of X. RE is a collection of parameterized binary relations of X, from that R(e) is a binary relation on X for all parameters eE. The set of all soft binary relations of X is denoted by SBr(X).

    Definition 2.2. [15] Let ˜τ be a collection of soft sets over a universe X with a fixed set of parameters E. Then, ˜τSS(X)E is called a soft topology on X if

    (1)˜X,ΦEˇ˜τ,

    (2) the intersection of any two soft sets in ˜τ belongs to ˜τ,

    (2) the union of any number of soft sets in in ˜τ belongs to ˜τ.

    The triplet (X,˜τ,E) is called a soft topological space over X.

    Definition 2.3. [28] A mapping Cl:SS(X)ESS(X)E is called a soft closure operator on X if it satisfies these properties for every (F,E),(G,E)ˇSS(X)E:

    (1) Cl(Φ)=Φ,

    (2) (F,E)Cl(F,E),

    (3) Cl[(F,E)(G,E)]=Cl(F,E)Cl(G,E),

    (4) Cl(Cl(F,E))=Cl(F,E).

    Definition 2.4. [17] Let R:EP(X1×X2) and AX2. Then, the sets R_A(e),¯RA(e) could be defined by

    R_A(e)={xX1:ϕxR(e)A},¯RA(e)={xX1:xR(e)Aϕ}

    where xR(e)={yX2:(x,y)R(e)}. Moreover, R_:EP(X1) and ¯R:EP(X1) and we say (X1,X2,R) a generalized soft approximation space.

    Definition 2.5. [21] Let LE be a non-empty family of soft sets of X. Then, LESS(X)E is said to be a soft ideal on X if the following properties are fulfilled:

    (1)ΦˇLE,

    (2) (F,E)ˇLE and (G,E)(F,E) imply (G,E)ˇLE,

    (3) (F,E),(G,E)ˇLE imply (F,E)(G,E)ˇLE.

    In this section, we define the soft approximation spaces using soft ideals.

    Definition 3.1. Let RE be a soft binary relation of X and (x,y)X×X. Then, (x,y)ˇR whenever (x,y)R(e) for each eE.

    Definition 3.2. Let RE be a soft binary relation of X. Then, the soft afterset of xˇ˜X is xR={yˇ˜X:(x,y)ˇR}. Also, the soft foreset of xˇ˜X is Rx={yˇ˜X:(y,x)ˇR}.

    Definition 3.3. Let RE be a soft binary relation over X. Then, a soft set <x>R:EP(X) is defined by

    <x>R={xyR(yR)ify:xˇyR,Φo.w.

    Also, R<x>: EP(X) is the intersection of all foresets containing x, that is,

    R<x>={xyR(Ry)ify:xˇRy,Φo.w.

    Also, R<x>R=R<x><x>R.

    Lemma 3.1. Let RE be a soft binary relation over X. Then,

    (1) If xˇ<y>R, then <x>R⊑<y>R.

    (2) If xˇR<y>R, then R<x>RR<y>R.

    Proof. (1) Let zˇ<x>R=xˇwR(wR). Then, z is contained in any wR which contain x, and since x is contained in any uR which contains y, we have zˇ<y>R. Hence, <x>R⊑<y>R.

    (2) Straightforward from part (1).

    Definition 3.4. Let RE be a soft binary relation of X. For a soft set (F,E)ˇSS(X)E, the soft lower approximation Apr_1S(F,E) and the soft upper approximation ¯Apr1S(F,E) are defined by:

    Apr_1S(F,E)={xˇ(F,E): <x>R(F,E)}, (3.1)
    ¯Apr1S(F,E)=(F,E){xˇ˜X: <x>R(F,E)Φ}. (3.2)

    Theorem 3.1. Let (F,E),(G,E)ˇSS(X)E. The soft upper approximation defined by Eq (3.2) has the following properties:

    (1) ¯Apr1S(Φ)=Φ and ¯Apr1S(˜X)=˜X,

    (2) (F,E)¯Apr1S(F,E),

    (3) (F,E)(G,E)¯Apr1S(F,E)¯Apr1S(G,E),

    (4) ¯Apr1S[(F,E)(G,E)]¯Apr1S(F,E)¯Apr1S(G,E),

    (5) ¯Apr1S[(F,E)(G,E)]=¯Apr1S(F,E)¯Apr1S(G,E),

    (6) ¯Apr1S(¯Apr1S(F,E))=¯Apr1S(F,E),

    (7) ¯Apr1S(F,E)=[Apr_1S(F,E)c]c.

    Proof. (1),(2) It is clear from Definition 3.4.

    (3) Let xˇ¯Apr1S[(F,E). Then, <x>R(F,E)Φ. Since (F,E)(G,E), <x>R(G,E)Φ. Therefore, xˇ¯Apr1S(G,E). Hence, ¯Apr1S(F,E)¯Apr1S(G,E).

    (4) Immediately by part (3).

    (5) ¯Apr1S[(F,E)(G,E)]=[(F,E)(G,E)]{xˇ˜X: <x>R[(F,E)(G,E)]Φ}. Then,

    ¯Apr1S[(F,E)(G,E)]=[(F,E){xˇ˜X: <x>R(F,E)Φ}][(G,E){xˇ˜X: <x>R(G,E)Φ}]. Hence, ¯Apr1S[(F,E)(G,E)]=¯Apr1S((F,E))¯Apr1S((G,E)).

    (6) From part (2), we have ¯Apr1S(F,E)¯Apr1S(¯Apr1S(F,E)).

    Conversely, let xˇ¯Apr1S(¯Apr1S(F,E)). Then, <x>R¯Apr1S(F,E)Φ. Thus, there exists yˇ<x>R¯Apr1S(F,E). That means <y>R⊑<x>R (by Lemma 3.1 part (1)) and <x>R(F,E)Φ. Hence, xˇ¯Apr1S(F,E). This completes the proof.

    (7)

    [Apr_1S(F,E)c]c=[(F,E)c{xˇ˜X:<x>R(F,E)c}]c=(F,E){xˇ˜X:<x>R(F,E)Φ}=¯Apr1S(F,E).

    Example 3.1. Let X={a,b,c,d}, E={e1,e2} and

    RE={(e1,{(a,a),(a,b),(b,d),(c,d),(d,c),(d,d)),(e2,{(a,a),(a,b),(a,c),(b,d),(b,c),(c,d),(d,c),(d,d),(d,b))}}. Then, we have

    <a>R=<b>R={(e1,{a,b}),(e2,{a,b})},<c>R={(e1,{c,d}),(e2,{c,d})},

    <d>R={(e1,{d}),(e2,{d})}. Suppose (F1,E)={(e1,{a,c}),(e2,{a,c})} and

    (F2,E)={(e1,{a,d}),(e2,{a,d})}. Therefore,

    ¯Apr1S(F1,E)=(F,E){xˇ˜X:<x>R(F,E)Φ}={(e1,{a,b,c}),(e2,{a,b,c})}, ¯Apr1S(F2,E)=˜X and ¯Apr1S[(F1,E)(F2,E)]={(e1,{a,b}),(e2,{a,b})}. Hence, ¯Apr1S[(F1,E)(F2,E)]¯Apr1S(F1,E)¯Apr1S(F2,E).

    Corollary 3.1. Let RE be a soft binary relation of X. Then, the soft operator ¯Apr1S:SS(X)ESS(X)E is said to be a soft closure operator and (X,¯Apr1S) is standing for a soft closure space. Moreover, it induces a soft topology on X written as ˜τ1S and defined by ˜τ1S={(F,E)ˇSS(X)E:¯Apr1S(F,E)c=(F,E)c}.

    Theorem 3.2. Let (F,E),(G,E)ˇSS(X)E. The soft lower approximation defined by Eq (3.1) has the following properties:

    (1) Apr_1S(Φ)=Φ and Apr_1S(˜X)=˜X,

    (2) Apr_1S(F,E)(F,E),

    (3) (F,E)(G,E)Apr_1S(F,E)Apr_1S(G,E),

    (4) Apr_1S[(F,E)(G,E)]=Apr_1S(F,E)Apr_1S(G,E),

    (5) Apr_1S[(F,E)(G,E)]Apr_1S(F,E)Apr_1S(G,E),

    (6) Apr_1S(Apr_1S(F,E))=Apr_1S(F,E),

    (7) Apr_1S(F,E)=[¯Apr1S(F,E)c]c.

    Proof. It is the same as given in Theorem 3.1.

    Note that the equality in Theorem 3.2 part (5) did not hold in general (see Example 3.1).

    Take (F1,E)={(e1,{b,c}),(e2,{b,c})} and (F2,E)={(e1,{b,d}),(e2,{b,d})}. Then,

    Apr_1S(F1,E)={xˇ(F1,E):<x>R(F1,E)}=Φ, Apr_1S(F2,E)={(e1,{d}),(e2,{d})} and

    Apr_1S[(F1,E)(F2,E)]={(e1,{c,d}),(e2,{c,d})}, which means that

    Apr_1S[(F,E)(G,E)]Apr_1S(F,E)Apr_1S(G,E).

    Definition 3.5. Let RE be a soft binary relation over X and LE a soft ideal on X. For any soft set (F,E)ˇSS(X)E, the soft lower approximation and the soft upper approximation of (F,E) by LE, denoted by Apr_2S(F,E) and ¯Apr2S(F,E) are defined by:

    Apr_2S(F,E)={xˇ(F,E):<x>R(F,E)cˇLE}, (3.3)
    ¯Apr2S(F,E)=(F,E){xˇ˜X:<x>R(F,E)ˇLE}. (3.4)

    Theorem 3.3. Let (F,E),(G,E)ˇSS(X)E. The soft upper approximation defined by Eq (3.4) has the following properties:

    (1) ¯Apr2S(Φ)=Φ and ¯Apr2S(˜X)=˜X,

    (2) (F,E)¯Apr2S(F,E),

    (3) (F,E)(G,E)¯Apr2S(F,E)¯Apr2S(G,E),

    (4) ¯Apr2S[(F,E)(G,E)]¯Apr2S(F,E)¯Apr2S(G,E),

    (5) ¯Apr2S[(F,E)(G,E)]=¯Apr2S(F,E)¯Apr2S(G,E),

    (6) ¯Apr2S(¯Apr2S(F,E))=¯Apr2S(F,E),

    (7) ¯Apr2S(F,E)=[Apr_2S(F,E)c]c.

    Proof. (1),(2) Direct from Definition 3.5.

    (3) Let xˇ¯Apr2S[(F,E). Thus, <x>R(F,E)ˇLE. Since (F,E)(G,E) and LE is a soft ideal, <x>R(G,E)ˇLE. Therefore, xˇ¯Apr2S(G,E). Hence, ¯Apr2S(F,E)¯Apr2S(G,E).

    (4) Straightforward by part (3).

    (5) ¯Apr2S[(F,E)(G,E)]=[(F,E)(G,E)]{xˇ˜X:<x>R[(F,E)(G,E)]ˇLE}. Then, ¯Apr2S[(F,E)(G,E)]=[(F,E){xˇ˜X:<x>R(F,E)ˇLE}][(G,E){xˇ˜X:<x>R(G,E)ˇLE}]. Hence, ¯Apr2S[(F,E)(G,E)]=¯Apr2S((F,E))¯Apr2S((G,E)).

    (6) From part (2), we have ¯Apr2S(F,E)¯Apr2S(¯Apr2S(F,E)).

    Conversely, let xˇ¯Apr2S(¯Apr2S(F,E)). Then, <x>R¯Apr2S(F,E)ˇLE. Therefore, <x>R¯Apr1S(F,E)Φ. Thus, there exists yˇ<x>R¯Apr2S(F,E). That means <y>R⊑<x>R (by Lemma 3.1 part (1)) and <y>R(F,E)ˇLE. Then, <x>R(F,E)ˇLE. Hence, xˇ¯Apr2S(F,E). This completes the proof.

    (7)

    [Apr_2S(F,E)c]c=[(F,E)c{xˇ˜X:<x>R(F,E)ˇLE}]c=(F,E){xˇ˜X:<x>R(F,E)ˇLE}=¯Apr2S(F,E).

    Corollary 3.2. Let RE be a soft binary relation over X and LE be a soft ideal on X. Then, the soft operator ¯Apr2S:SS(X)ESS(X)E is said to be a soft closure operator and (X,¯Apr2S) is standing for a soft closure space. Moreover, it induces a soft topology on X written as ˜τ2S and defined by ˜τ2S={(F,E)ˇSS(X)E:¯Apr2S(F,E)c=(F,E)c}.

    Theorem 3.4. Let (F,E),(G,E)ˇSS(X)E. The soft lower approximation defined by Eq (3.3) has the following properties:

    (1) Apr_2S(Φ)=Φ and Apr_2S(˜X)=˜X,

    (2) Apr_2S(F,E)(F,E),

    (3) (F,E)(G,E)Apr_2S(F,E)Apr_2S(G,E),

    (4) Apr_2S[(F,E)(G,E)]=Apr_2S(F,E)Apr_2S(G,E),

    (5) Apr_2S[(F,E)(G,E)]Apr_2S(F,E)Apr_2S(G,E),

    (6) Apr_2S(Apr_2S(F,E))=Apr_2S(F,E),

    (7) Apr_2S(F,E)=[¯Apr2S(F,E)c]c.

    Proof. It is similar to that was given in Theorem 3.3.

    Definition 3.6. Let RE be a soft binary relation over X and LE be a soft ideal on X. For any soft set (F,E)ˇSS(X)E, the soft lower approximation and soft upper approximation of (F,E) by LE, denoted by Apr_3S(F,E) and ¯Apr3S(F,E) are defined by:

    Apr_3S(F,E)={xˇ(F,E):R<x>R(F,E)cˇLE}, (3.5)
    ¯Apr3S(F,E)=(F,E){xˇ˜X:R<x>R(F,E)ˇLE}. (3.6)

    Theorem 3.5. Let (F,E),(G,E)ˇSS(X)E. The soft upper approximation defined by Eq (3.6) has the following properties:

    (1) ¯Apr3S(Φ)=Φ and ¯Apr3S(˜X)=˜X,

    (2) (F,E)¯Apr3S(F,E),

    (3) (F,E)(G,E)¯Apr3S(F,E)¯Apr3S(G,E),

    (4) ¯Apr3S[(F,E)(G,E)]¯Apr3S(F,E)¯Apr3S(G,E),

    (5) ¯Apr3S[(F,E)(G,E)]=¯Apr3S(F,E)¯Apr3S(G,E),

    (6) ¯Apr3S(¯Apr3S(F,E))=¯Apr3S(F,E),

    (7) ¯Apr3S(F,E)=[Apr_3S(F,E)c]c.

    Proof. It is clear from Theorem 3.3.

    Corollary 3.3. Let RE be a soft binary relation over X and LE be a soft ideal on X. Then, the soft operator ¯Apr3S:SS(X)ESS(X)E is said to be a soft closure operator and (X,¯Apr3S) is standing for a soft closure space. In addition, (X,RE,LE) is said to be a soft ideal approximation space. Moreover, it induces a soft topology on X written as ˜τ3S and defined by ˜τ3S={(F,E)ˇSS(X)E:¯Apr3S(F,E)c=(F,E)c}. It is clear that ˜τ1S˜τ2S˜τ3S.

    Theorem 3.6. Let (F,E),(G,E)ˇSS(X)E. The soft lower approximation defined by Eq (3.5) has the following properties:

    (1) Apr_3S(Φ)=Φ and Apr_3S(˜X)=˜X,

    (2) Apr_3S(F,E)(F,E),

    (3) (F,E)(G,E)Apr_3S(F,E)Apr_3S(G,E),

    (4) Apr_3S[(F,E)(G,E)]=Apr_3S(F,E)Apr_3S(G,E),

    (5) Apr_3S[(F,E)(G,E)]Apr_3S(F,E)Apr_3S(G,E),

    (6) Apr_3S(Apr_3S(F,E))=Apr_3S(F,E),

    (7) Apr_3S(F,E)=[¯Apr3S(F,E)c]c.

    Corollary 3.4. Let RE be a soft binary relation over X, (F,E)ˇSS(X)E and LE be a soft ideal on X. Then,

    Apr_1S(F,E)Apr_2S(F,E)Apr_3S(F,E)(F,E)¯Apr3S(F,E)¯Apr2S(F,E)¯Apr1S(F,E).

    Proof. Direct from Definitions 3.4–3.6, using Lemma 3.1.

    We dedicate this is the main section of the manuscript to display the properties of soft sets in the soft ideal approximation spaces. It has been generated using the concepts of R<x>R, soft neighborhoods and soft ideals. We study the main properties in soft ideal approximation spaces which are generalizations of the same properties of ideal approximation spaces given by Abbas et al. in [31] and provide various illustrative examples.

    Lemma 4.1. Let (X,RE,LE) is be a soft ideal approximation space. Then,

    (1) Apr_1S(<x>R)=<x>R,

    (2) Apr_2S(<x>R)=<x>R,

    (3) Apr_3S(R<x>R)=R<x>R.

    Proof. We will ensure that item (1) and the other items will be similar. From Theorem 3.3 part (3), it is clear that Apr_2S(<x>R)⊑<x>R.

    Conversely, we will ensure that <x>RApr_2S(<x>R). Let yˇ<x>R. Then, by Lemma 3.1 part(1), <y>R⊑<x>R. Thus, <y>R(<x>R)c=Φ. So, <y>R(<x>R)cˇLE. Hence, yˇApr_2S(<x>R). Thus, <x>RApr_2S(<x>R).

    Proposition 4.1. Let (X,RE,LE) be a soft ideal approximation space. For xyˇ˜X,

    (1) xˇ¯Apr1S(yE) iff <x>RyEΦ and xˇ¯Apr1S(yE) iff <x>RyE=Φ,

    (2) xˇ¯Apr2S(yE) iff <x>RyEˇLE and xˇ¯Apr2S(yE) iff <x>RyEˇLE,

    (3) xˇ¯Apr3S(yE) iff R<x>RyEˇLE and xˇ¯Apr3S(yE) iff R<x>RyEˇLE.

    Proof. We will prove the second statement and the others will be similar. Let xˇ¯Apr2S(yE). Then,

    xˇ[yE{zˇ˜X: <z>RyEˇLE}]. Thus, <x>RyEˇLE. Conversely, let <x>RyEˇLE. Then, by Definition 3.6, xˇ¯Apr2S(yE).

    Proposition 4.2. Let (X,RE,LE) be a soft ideal approximation space and <x>RˇLE. Then,

    (1) Apr_1S(xE)=xE=¯Apr1S(xE),

    (2) Apr_2S(xE)=xE=¯Apr2S(xE),

    (3) Apr_3S(xE)=xE=¯Apr3S(xE).

    Proof. We will prove that the second statement and the others will be similar. Let <x>RˇLE. Then, <x>R[xE]cˇLE. Thus, xˇApr_2S(xE). So, Apr_2S(xE)=xE. Also, <x>RˇLE induces that <x>RyEˇLE for all yˇX. Hence, ¯Apr2S(xE)=xE.

    Theorem 4.1. Let (X,RE,LE) be a soft ideal approximation space and xˇ˜X,(F,E)ˇSS(X)E.

    If <x>R(F,E)ˇLE, then

    (1) <x>R¯Apr1S(F,E)=Φ,

    (2) <x>R¯Apr2S(F,E)ˇLE,

    (3) R<x>R¯Apr3S(F,E)ˇLE.

    Proof. We will prove the second part and the others will be similar. Suppose <x>R(F,E)ˇLE. It is clear that [<x>RxE](F,E)ˇLE. Then, xˇDS(F,E). Thus, <x>RDS(F,E)=Φ. So,

    <x>RDS(F,E)ˇLE. Hence, [<x>R(F,E)DS(F,E)]ˇLE. Therefore,

    <x>R¯Apr2S(F,E)ˇLE.

    Definition 4.1. Let (X,RE,LE) be a soft ideal approximation space and (F,E)ˇSS(X)E. The soft exterior of (F,E) is ExtiS(F,E)=Apr_iS(F,E)c, i{1,2,3}.

    Lemma 4.2. Let (X,RE,LE) be a soft ideal approximation space and (F,E),(G,E)ˇSS(X)E. For i{1,2,3}, we have

    (1) ExtiS(Φ)=˜X and ExtiS(˜X)=Φ,

    (2) ExtiS(F,E)(F,E)c,

    (3) (F,E)(G,E)ExtiS(F,E)ExtiS(G,E),

    (4) ExtiS[(F,E)(G,E)]=ExtiS(G,E)ExtiS(F,E),

    (5) Apr_iS(F,E)=ExtiS[ExtiS(F,E)],

    (6) ExtiS(F,E)=ExtiS([ExtiS(F,E)]c).

    Proof. Straightforward from Theorems 3.2, 3.4, and 3.6.

    Definition 4.2. Let (X,RE,LE) be a soft ideal approximation space and (F,E)ˇSS(X)E. Then, a soft point xEˇSS(X)E is called:

    (i) A soft accumulation point of (F,E) if (<x>RxE)(F,E)Φ.

    The set of all soft ideal accumulation points of (F,E) is written as DS(F,E), that is,

    DS(F,E)={xEˇSS(X)E : (<x>RxE)(F,E)Φ}.

    (ii) A -soft ideal accumulation point of (F,E) if (<x>RxE)(F,E)ˇLE.

    The set of all -soft ideal accumulation points of (F,E) is written as DS(F,E), that is,

    DS(F,E)={xEˇSS(X)E : (<x>RxE)(F,E)ˇLE}.

    (iii) A -soft ideal accumulation point of (F,E) if (R<x>RxE)(F,E)ˇLE.

    The set of all -soft ideal accumulation points of (F,E) is written as DS(F,E), that is,

    DS(F,E)={xEˇSS(X)E : (R<x>RxE)(F,E)ˇLE}.

    Lemma 4.3. Let (X,RE,LE) be a soft ideal approximation space and (F,E)ˇSS(X)E. Then,

    (1) ¯Apr1S(F,E)=(F,E)DS(F,E),

    (2) ¯Apr1S(F,E)=(F,E) iff DS(F,E)(F,E),

    (3) ¯Apr2S(F,E)=(F,E)DS(F,E),

    (4) ¯Apr2S(F,E)=(F,E) iff DS(F,E)(F,E),

    (5) ¯Apr3S(F,E)=(F,E)DS(F,E),

    (6) ¯Apr3S(F,E)=(F,E) iff DS(F,E)(F,E).

    Proof. We will prove that the third and forth statements and the others will be similar.

    (3) Let xˇ¯Apr2S(F,E). Then, xˇ[(F,E){yEˇSS(X)E : <y>R(F,E)ˇLE}]. Then, we have either xˇ(F,E), that is,

    xˇ(F,E)DS(F,E) (4.1)

    or xˇ(F,E). So, xˇ{yEˇSS(X)E:<y>R(F,E)ˇLE}. In the latter case, we have (<x>RxE)(F,E)ˇLE. Hence, xˇDS(F,E), that is,

    xˇ(F,E)DS(F,E). (4.2)

    From Eqs (4.1) and (4.2), ¯Apr2S(F,E)(F,E)DS(F,E). Conversely, let xˇ(F,E)DS(F,E). Then, we have either xˇ(F,E), that is,

    xˇ¯Apr2S(F,E) (4.3)

    or xˇ(F,E). Thus, xˇDS(F,E). So (<x>RxE)(F,E)ˇLE. Hence, xˇ¯Apr2S(F,E), that is,

    xˇ¯Apr2S(F,E). (4.4)

    From Eqs (4.3) and (4.4), (F,E)DS(F,E)¯Apr2S(F,E).

    Therefore, ¯Apr2S(F,E)=(F,E)DS(F,E).

    (4) Let xˇ(F,E), that is, xˇ¯Apr2S(F,E). Then, <x>R(F,E)ˇLE. Thus,

    (<x>RxE)(F,E)ˇLE and xˇDS(F,E). Conversely, let DS(F,E)(F,E). Then, by part (1), DS(F,E)(F,E)=¯Apr2S(F,E)=(F,E).

    Lemma 4.4. Let (X,RE,LE) be a soft ideal approximation space and (F,E),(G,E)ˇSS(X)E. Then,

    (1) if (F,E)(G,E), then DS(F,E)DS(G,E) and DS(F,E)DS(G,E),

    (2) DS[(F,E)(G,E)]=DS(F,E)DS(F,E) and DS[(F,E)(G,E)]=DS(F,E)DS(F,E),

    (3) DS[(F,E)(G,E)]DS(F,E)DS(F,E) and DS[(F,E)(G,E)]DS(F,E)DS(F,E),

    (4) DS[(F,E)DS(F,E)](F,E)DS(F,E) and DS[(F,E)DS(F,E)](F,E)DS(F,E).

    Proof. (1) Suppose (F,E)(G,E) and let xˇDS(F,E). Then, [<x>RxE](F,E)ˇLE. Thus, [<x>RxE](G,E)ˇLE. So, xˇDS(G,E). The second part is easily proved.

    (2) Since (F,E)(F,E)(G,E) and (G,E)(F,E)(G,E), by part (1), we have DS(F,E)DS(G,E)DS(F,E)(G,E)).

    Conversely, let xˇ(DS(F,E)DS(G,E). Then, xˇDS(F,E) and xˇDS(G,E). Thus, (<x>RxE)(F,E)ˇLE and (<x>RxE)(G,E)ˇLE. So, (<x>RxE)(F,E)(G,E))ˇLE. Hence, xˇDS[(F,E)(G,E)]. The proof of the second part is similar.

    (3) Similar to part (2).

    (4) Let xˇ(F,E)DS(F,E). It is obvious that xˇ(F,E) and (<x>RxE)(F,E)ˇLE. Then, <x>R(F,E)ˇLE. Thus, xˇ¯Apr2S(F,E). So, xˇ¯Apr2S(¯Apr2S(F,E)). Hence, xˇDS(¯Apr2S(F,E))=DS(F,E)DS(F,E)). Therefore, DS(F,E)DS(F,E)(F,E)DS(F,E). The proof of the second part is similar.

    Corollary 4.1. Let (X,RE,LE) be any soft ideal approximation space and (F,E)ˇSS(X)E. Then,

    DS(F,E)DS(F,E)DS(F,E).

    Proof. Let xˇDS(F,E). Then, (<x>RxE)(F,E)=Φ. Thus, (<x>RxE)(F,E)ˇLE. So, xˇDS(F,E) and (R<x>RxE)(F,E)ˇLE, where R<x>R⊑<x>R. Hence, xˇDS(F,E). Therefore, DS(F,E)DS(F,E)DS(F,E).

    Remark 4.1. The converse of the previous result is not true.

    Example 4.1. Let X={a,b,c} associated with a set of parameters E={e1,e2}. Let RE be a soft relation of X and LE be a soft ideal on X, defined respectively by:

    R={(e1,{(a,a),(a,b),(a,c),(b,b),(b,c),(c,c)}),(e2,{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,b),
    (c,c)})}

    LE={Φ,(F1,E),(F2,E),(F3,E)} where,

    (F1,E)={(e1,{c}),(e2,ϕ)},(F2,E)={(e1,ϕ),(e2,{c})},(F3,E)={(e1,{c}),(e2,{c})}.

    Then, <a>R={(e1,{a,b,c}),(e2,{a,b,c})},<b>R={(e1,{b,c}),(e2,{b,c})},

    <c>R=cE. Also, R<a>=aE,R<b>={(e1,{a,b}),(e2,{a,b})},R<c>=<a>R. Thus, R<a>R=aE,R<b>R=bE,R<c>R=cE. Suppose (F,E)={(e1,{b,c}),(e2,{b,c})}. Then, we have:

    (<a>RaE)(F,E)=(F,E)Φ,
    (<b>RbE)(F,E)=cEΦ,
    (<c>RcE)(F,E)=Φ.

    Thus, aˇDS(F,E),bˇDS(F,E),cˇDS(F,E). So, DS(F,E)={(e1,{a,b}),(e2,{a,b})}. On the other hand, we get:

    (<a>RaE)(F,E)=(F,E)ˇLE,
    (<b>RbE)(F,E)=(F3,E)ˇLE,
    (<c>RcE)(F,E)=ΦˇLE.

    Thus, aˇDS(F,E),bˇDS(F,E),cˇDS(F,E). Hence, DS(F,E)=aE. Also, we have:

    (R<a>RaE)(F,E)=ΦˇLE,
    (R<b>RbE)(F,E)=ΦˇLE,
    (R<c>RcE)(F,E)=ΦˇLE.

    Then, aˇDS(F,E),bˇDS(F,E),cˇDS(F,E). Thus, DS(F,E)=Φ. So, DS(F,E)DS(F,E)DS(F,E).

    Definition 4.3. Let (X,RE,LE) be any soft ideal approximation space and (F,E)ˇSS(X)E. Then, (F,E) is said to be:

    (i) soft dense if ¯Apr1S(F,E)=˜X,

    (ii) -soft ideal dense if ¯Apr2S(F,E)=˜X,

    (iii) -soft ideal dense if ¯Apr3S(F,E)=˜X,

    (iv) soft nowhere dense if Apr_1S(¯Apr1S(F,E))=Φ,

    (v) -soft ideal nowhere dense if Apr_1S(¯Apr2S(F,E))=Φ,

    (vi) -soft ideal nowhere dense if Apr_1S(¯Apr3S(F,E))=Φ.

    Corollary 4.2. Let (X,RE,LE) be any soft ideal approximation space and (F,E)ˇSS(X)E. Then,

    (1) -soft ideal dense -soft ideal dense soft dense,

    (2) soft nowhere dense -soft ideal nowhere dense -soft ideal nowhere dense.

    Proof. Immediately from Definition 4.3 and part (3) of Theorem 3.5.

    Example 4.2. Let X={a,b,c}, E={e1,e2},

    RE={(e1,{(a,a),(a,b),(b,b),(b,c),(c,c),(d,d),(d,b)),(e2,{(a,a),(a,b),(a,c),(b,b),(b,c),(c,c),(d,d),(d,b))}} and LE={Φ,(F1,E),(F2,E),(F3,E)}, where

    (F1,E)={(e1,{a}),(e2,ϕ)},(F2,E)={(e1,ϕ),(e2,{a})},(F3,E)={(e1,{a}),(e2,{a})}.

    Therefore, we have <a>R={(e1,{a,b}),(e2,{a,b})},<b>R={(e1,{b}),(e2,{b})},<c>R={(e1,{c}),(e2,{c})},<d>R={(e1,{b,d}),(e2,{b,d})}. Also, R<a>={(e1,{a}),(e2,{a})},R<b>={(e1,{b}),(e2,{b})},R<c>={(e1,{b,c}),(e2,{b,c})}R<d>={(e1,{d}),(e2,{d})}. Thus, R<a>R={(e1,{a}),(e2,{a})},R<b>R={(e1,{b}),(e2,{b})},R<c>R={(e1,{c}),(e2,{c})}R<d>R={(e1,{d}),(e2,{d})}. Suppose (F,E)={(e1,{b,c}),(e2,{b,c})}. Then, ¯Apr2S(F,E)=(F,E){xˇ˜X:<x>R(F,E)ˇLE}=˜X. Also, ¯Apr3S(F,E)=(F,E){xˇ˜X:R<x>R(F,E)ˇLE}=(F,E)˜X. Hence, (F,E) is -soft ideal dense but not -soft ideal dense.

    Corollary 4.3. Let (X,RE,LE) be any soft ideal approximation space and (F,E)ˇSS(X)E. Then,

    (1) If (F,E) is soft dense, then [¯Apr1S(F,E)]c is soft nowhere dense.

    (2) If (F,E) is -soft ideal dense, then [¯Apr2S(F,E)]c is -soft ideal nowhere dense.

    (3) If (F,E) is -soft ideal dense, then [¯Apr3S(F,E)]c is -nowhere dense.

    Proof. (1) Suppose (F,E) is soft dense. Then, ¯Apr1S(F,E)=˜X. Thus, [¯Apr1S(F,E)]c=Φ and

    ¯Apr1S[(¯Apr1S(F,E))c]=Φ. So, Apr_1S[¯Apr1S(¯Apr1S(F,E))c)]=Φ. Hence,

    [¯Apr1S(F,E)]c is nowhere soft dense.

    (2) Suppose (F,E) is -soft ideal dense. Then, ¯Apr2S(F,E)=˜X. Thus, [¯Apr2S(F,E)]c=Φ. So,

    ¯Apr2S[(¯Apr2S(F,E))c]=Φ and Apr_1S[¯Apr2S((¯Apr2S(F,E))c)]=Φ. Hence,

    [¯Apr2S(F,E)]c is -soft ideal nowhere dense.

    (3) Similar to part (2).

    In this section, we introduce soft lower separation axioms via soft binary relations and soft ideal as a generalization of lower separation axioms given in [31]. We scrutinize its essential characterizations and infer some of its relationships associated with the soft ideal closure operators. Some illustrative examples are given. In an approximation space (X,R) where R is an equivalence relation on X, a general topology is generated by the lower approximations L(A) or the upper approximations U(A) of any subset as follows. τR={AX: A=L(A)} or τR={AX: Ac=U(Ac)}. In the soft case, it is an extension of the same definitions.

    Definition 5.1. (1) A soft approximation space (X,RE) is said to be a soft-T0 space if xyˇ˜X, there exists (F,E)ˇSS(X)E such that

    xˇApr_1S(F,E),yˇ(F,E)oryˇApr_1S(F,E),xˇ(F,E).

    (2) A soft ideal approximation space (X,RE,LE) is said to be a soft-T0 space if xyˇ˜X, there exists (F,E)ˇSS(X)E such that

    xˇApr_2S(F,E),yˇ(F,E)oryˇApr_2S(F,E),xˇ(F,E).

    (3) A soft ideal approximation space (X,RE,LE) is said to be a soft-T0 space if xyˇ˜X, there exists (F,E)ˇSS(X)E such that

    xˇApr_3S(F,E),yˇ(F,E)oryˇApr_3S(F,E),xˇ(F,E).

    Proposition 5.1. For a soft ideal approximation space (X,RE,LE), these properties are equivalent:

    (1) ˜X is a soft-T0 space.

    (2) ¯Apr2S(xE)¯Apr2S(yE) for all xyˇ˜X.

    Proof.

    (1)(2): For each xyˇ˜X, by part (1), there exists (F,E)ˇSS(X)E such that xˇApr_2S(F,E), yˇ(F,E). Thus, <x>R(F,E)cˇLE, yˇ(F,E)c. So, <x>RyEˇLE and by Proposition 4.1 part (1), xˇ¯Apr2S(yE). Similarly, we can prove that yˇ¯Apr2S(xE). Therefore, ¯Apr2S(xE)¯Apr2S(yE).

    (2)(1): Suppose part (2) holds and let xyˇ˜X. Then, xˇ¯Apr2S(yE) or yˇ¯Apr2S(xE). By Proposition 4.1 part (2), <x>RyEˇLE or <y>RxEˇLE. Thus, [xˇApr_2S(yE)c,yˇ(yE)c] or [yˇApr_2S(xE)c,xˇ(xE)c]. Therefore, ˜X is soft-T0 space.

    Corollary 5.1. For a soft approximation space (X,RE), these properties are equivalent:

    (1)˜X is a soft-T0 space.

    (2)¯Apr1S(xE)¯Apr1S(yE) for each xyˇ˜X.

    Corollary 5.2. For a soft ideal approximation space (X,RE,LE), these properties are equivalent:

    (1) ˜X is a soft-T0 space.

    (2) ¯Apr3S(xE)¯Apr3S(yE) for all xyˇ˜X.

    Definition 5.2. (1) A soft approximation space (X,RE) is said to be a soft-T1 space if xyˇ˜X, there exist (F,E),(G,E)ˇSS(X)E such that

    xˇApr_1S(F,E),yˇ(F,E)andyˇApr_1S(G,E),xˇ(G,E).

    (2) A soft ideal approximation space (X,RE,LE) is said to be a soft-T1 space if xyˇ˜X, there exist (F,E),(G,E)ˇSS(X)E such that

    xˇApr_2S(F,E),yˇ(F,E)andyˇApr_2S(G,E),xˇ(G,E).

    (3) A soft ideal approximation space (X,RE,LE) is said to be a soft-T1 space if xyˇ˜X, there exist (F,E),(G,E)ˇSS(X)E such that

    xˇApr_3S(F,E),yˇ(F,E)andyˇApr_3S(G,E),xˇ(G,E).

    Proposition 5.2. For a soft ideal approximation space (X,RE,LE), these properties are equivalent:

    (1) ˜X is a soft-T1 space.

    (2) ¯Apr2S(xE)=xE for all xˇ˜X.

    (3) DS(xE)=Φ for each xˇ˜X.

    Proof. (1) (2): Suppose (X,RE,LE) is a soft-T1 space and let xˇ˜X. Thus, for yˇ˜XxE,xy and (F,E)ˇSS(X)E such that yˇApr_2S(F,E),xˇ(F,E). Thus, <y>R(F,E)cˇLE,xˇ(F,E)c. So, <y>RxEˇLE, that is, yˇ¯Apr2S(xE). Hence, ¯Apr2S(xE)=xE.

    (2) (3): Suppose part (2) holds and let xˇ˜X. Then, ¯Apr2S(xE)=xEDSxE but xˇDSxE. Thus, DSxE=Φ.

    (3) (1): Suppose part (3) holds and xyˇ˜X. By part (3), DSxE=DSyE=Φ. Thus, ¯Apr2S(xE)=xE and ¯Apr2S(yE)=yE, that is, Apr_2S(xE)c=(xE)c and Apr_2S(yE)c=(yE)c. So, there exist (xE)c and (yE)cˇSS(X)E such that yˇApr_2S(xE)c,xˇ(xE)candxˇApr_2S(yE)c,yˇ(yE)c. Therefore, ˜X is a soft-T1 space.

    Corollary 5.3. For a soft approximation space (X,RE), these properties are equivalent:

    (1) ˜X is a soft-T1 space.

    (2) ¯Apr1S(xE)=xE for all xˇ˜X.

    (3) DS(xE)=Φ for each xˇ˜X.

    Corollary 5.4. For a soft ideal approximation space (X,RE,LE), these properties are equivalent:

    (1) ˜X is a soft-T1 space.

    (2) ¯Apr3S(xE)=xE for all xˇ˜X.

    (3) DS(xE)=Φ for each xˇ˜X.

    Definition 5.3. (1) A soft approximation space (X,RE) is said to be a soft-R0 space if,

    for all xyˇ˜X,

    ¯Apr1S(xE)=¯Apr1S(yE)or¯Apr1S(xE)¯Apr1S(yE)=Φ.

    (2) A soft ideal approximation space (X,RE,LE) is said to be a soft-R0 space if, for all xyˇ˜X,

    ¯Apr2S(xE)=¯Apr2S(yE)or¯Apr2S(xE)¯Apr2S(yE)=Φ.

    (3) A soft ideal approximation space (X,RE,LE) is said to be a soft-R0 space if, for all xyˇ˜X,

    ¯Apr3S(xE)=¯Apr3S(yE)or¯Apr3S(xE)¯Apr3S(yE)=Φ.

    Proposition 5.3. For a soft ideal approximation space (X,RE,LE), these properties are equivalent:

    (1) ˜X is a soft-R0 space,

    (2) if xˇ¯Apr2S(yE), then yˇ¯Apr2S(xE) for all xyˇ˜X.

    Proof.

    (1) (2): Suppose statement (1) holds, and let xy be two soft points in (X,RE,LE). Then, ¯Apr2S(xE)=¯Apr2S(yE) or ¯Apr2S(xE)¯Apr2S(yE)=Φ.

    If ¯Apr2S(xE)=¯Apr2S(yE), then yˇ¯Apr2S(xE) and xˇ¯Apr2S(yE).

    If ¯Apr2S(xE)¯Apr2S(yE)=Φ, then xE¯Apr2S(yE)=Φ and yE¯Apr2S(xE)=Φ. Thus, xˇ¯Apr2S(yE) and yˇ¯Apr2S(xE)). So, xˇ¯Apr2S(yE) and yˇ¯Apr2S(xE). Hence, in either case, statement (2) holds.

    (2) (1): Suppose that statement (2) holds and let xyˇ˜X. Then, we have

    either[xˇ¯Apr2S(yE)andyˇ¯Apr2S(xE)]or[xˇ¯Apr2S(yE)andyˇ¯Apr2S(xE)].

    If xˇ¯Apr2S(yE)andyˇ¯Apr2S(xE), then

    ¯Apr2S(xE)=¯Apr2S(yE). (5.1)

    If xˇ¯Apr2S(yE)andyˇ¯Apr2S(xE), then

    ¯Apr2S(xE)¯Apr2S(yE)=Φ. (5.2)

    From (5.1) and (5.2), the proof is complete.

    Corollary 5.5. For a soft approximation space (X,RE), these properties are equivalent:

    (1) ˜X is a soft-R0 space,

    (2) if xˇ<y>R, then yˇ<x>R for any xyˇ˜X.

    Corollary 5.6. For a soft ideal approximation space (X,RE,LE), these properties are equivalent:

    (1) ˜X is a soft-R0 space,

    (2) if xˇ¯Apr3S(yE), then yˇ¯Apr3S(xE) for all xyˇ˜X.

    Definition 5.4. (1) A soft approximation space (X,RE) is said to be a soft-T2 space if xyˇ˜X, there exist (F,E),(G,E)ˇSS(X)E such that

    xˇApr_1S(F,E),yˇApr_1S(G,E)and(F,E)(G,E)=Φ.

    (2) A soft ideal approximation space (X,RE,LE) is said to be a soft-T2 space if xyˇ˜X, there exist (F,E),(G,E)ˇSS(X)E such that

    xˇApr_2S(F,E),yˇApr_2S(G,E)and(F,E)(G,E)=Φ.

    (3) A soft ideal approximation space (X,RE,LE) is said to be a soft-T2 space if xyˇ˜X, there exist (F,E),(G,E)ˇSS(X)E such that

    xˇApr_3S(F,E),yˇApr_3S(G,E),and(F,E)(G,E)=Φ.

    Theorem 5.1. For a soft ideal approximation space (X,RE,LE), these properties are equivalent:

    (1) ˜X is a soft-T2 space,

    (2) (F,E)ˇSS(X)E:xˇApr_2S(F,E),yˇ[¯Apr2S(F,E)]c for any xyˇ˜X.

    Proof. (1) (2): Suppose ˜X is a soft-T2 space and let xyˇ˜X. Then, there exist

    (F,E),(G,E)ˇSS(X)E such that xˇApr_2S(F,E),yˇApr_2S(G,E) and (F,E)(G,E)=Φ. Thus, <y>R(G,E)cˇLE and (F,E)(G,E)c. So [<y>RxE](F,E)ˇLE, that is, yˇDS(F,E). Hence, Apr_2S(G,E)DS(F,E)=Φ and Apr_2S(G,E)(F,E)=Φ, that is, Apr_2S(G,E)¯Apr2S(F,E)=Φ. Therefore, xˇApr_2S(F,E),yˇApr_2S(G,E)[¯Apr2S(F,E)]c.

    (2) (1): Suppose part (2) holds and let xyˇ˜X. Then, there exists (F,E)ˇSS(X)E such that xˇApr_2S(F,E),yˇ[¯Apr2S(F,E)]c. Let (G,E)=[¯Apr2S(F,E)]c. Then, (G,E)=Apr_2S(F,E)c (from Theorem 3.3 part (7)) and so Apr_2S(G,E)=Apr_2S[Apr_2S(F,E)c]=Apr_2S(F,E)c=(G,E). Also, (F,E)(G,E)=(F,E)Apr_2S(F,E)c(F,E)(F,E)c=Φ. Hence, ˜X is a soft-T2 space.

    Corollary 5.7. For a soft approximation space (X,RE), these properties are equivalent:

    (1) ˜X is a soft-T2 space,

    (2) (F,E)ˇSS(X)E:xˇApr_1S(F,E),yˇ[¯Apr1S(F,E)]c for all xyˇ˜X.

    Corollary 5.8. For a soft ideal approximation space (X,RE,LE), these properties are equivalent:

    (1) ˜X is a soft-T2 space,

    (2) (F,E)ˇSS(X)E:xˇApr_3S(F,E),yˇ[¯Apr3S(F,E)]c for all xyˇ˜X.

    Corollary 5.9. For a soft ideal approximation space (X,RE,LE), these conditions hold:

    (1) soft-T1 = soft-R0 + soft-T0,

    (2) soft-T1 = soft-R0 + soft-T0,

    (3) soft-T1 = soft-R0 + soft-T0.

    Proof. Straightforward from Definition 5.3, Propositions 5.1 and 5.2, and Corollaries 5.1–5.4.

    Remark 5.1. From Definitions 5.1, 5.2, and 5.4 we have the following implication.

    Example 5.1 (1) Let X=Z with E={e1,e2} and R:EP(Z×Z) be a soft relation over Z×Z defined by R(e1)=Z×Z, R(e2)=N×N and LE={(F,E)ˇSS(X)E:(F,E)  is  a  finite  soft  set}. Thus,

    Apr_1S(F,E)={(F,E)if(F,E)cˇLE,Φotherwise.

    Thus, xyˇ˜Z, we have:

    xˇApr_1S(yE)c=(yE)c,yˇ(yE)candyˇApr_1S(xE)c=(xE)c,xˇ(xE)c.

    So, ˜Z is a soft-T1 space. But ˜Z is not a soft-T2 space, since if xˇApr_1S(F,E),yˇApr_1S(G,E) and (F,E)(G,E)=Φ, then Apr_1S(F,E)Apr_1S(G,E)=Φ and Apr_1S(F,E)[Apr_1S(G,E)]c which is impossible because Apr_1S(F,E) is infinite soft set and [Apr_1S(G,E)]c is finite soft set.

    (2) From part (1), we have

    Apr_2S(F,E)=Apr_3S(F,E)={(F,E)if(F,E)cˇLE,Φotherwise.

    Then, xyˇ˜Z, we have:

    xˇApr_2S(yE)c=(yE)c,yˇ(yE)candyˇApr_2S(xE)c=(xE)c,xˇ(xE)c.
    xˇApr_3S(yE)c=(yE)c,yˇ(yE)candyˇApr_3S(xE)c=(xE)c,xˇ(xE)c.

    Hence, ˜Z is soft-T1 and soft-T1. However, ˜Z is neither soft-T2 space nor soft-T2. By the same way, any one can add examples to show that the above implication is not reversible.

    Definition 5.5. Let (X,RE) and (Y,(R2)H) be two soft approximation spaces and let LE a soft ideal on X. Then,

    (1) a function fρϱ:SS(X)ESS(Y)H is said to be soft continuous if (Apr_1S)E[f1ρϱ(G,H)]f1ρϱ[(Apr_1S)H(G,H)], that is, (¯Apr1S)E[f1ρϱ(G,H)]f1ρϱ[(¯Apr1S)H(G,H)] for all (G,H)ˇSS(Y)H.

    (2) A function fρϱ:SS(X)ESS(Y)H is said to be -soft continuous if (Apr_2S)E[f1ρϱ(G,H)]f1ρϱ[(Apr_1S)H(G,H)], that is, (¯Apr2S)E[f1ρϱ(G,H)]f1ρϱ[(¯Apr1S)H(G,H)] for all (G,H)ˇSS(Y)H.

    (1) A function fρϱ:SS(X)ESS(Y)H is said to be -soft continuous if (Apr_3S)E[f1ρϱ(G,H)]f1ρϱ[(Apr_1S)H(G,H)], that is, (¯Apr3S)E[f1ρϱ(G,H)]f1ρϱ[(¯Apr1S)H(G,H)] for all (G,H)ˇSS(Y)H.

    Remark 5.2. From Corollary 3.4, we have the following implications:

    Soft continuous * -soft continuous ** -soft continuous.

    Example 5.2. Let X={a,b,c} associated with the parameters E={e1,e2}. Let (R1)E be a soft relation of X, and LE be a soft ideal on X, defined respectively by:

    (R1)E={(e1,{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,c)}),(e2,{(a,a),(a,b),(a,c),(b,b),(b,c)})},

    LE={Φ,(F1,E),(F2,E),(F3,E),(F4,E),(F5,E),(F6,E),(F7,E),(F8,E),(F9,E),(F10,E),(F11,E),(F12,E),(F13,E),(F14,E)(F15,E)}

    where

    (F1,E)={(e1,{b}),(e2,ϕ)},(F2,E)={(e1,{c}),(e2,ϕ)},(F3,E)={(e1,{b,c}),(e2,ϕ)},
    (F4,E)={(e1,ϕ),(e2,{b})},(F5,E)={(e1,ϕ),(e2,{c})},(F6,E)={(e1,ϕ),(e2,{b,c})},
    (F7,E)={(e1,{b}),(e2,{b})},(F8,E)={(e1,{b}),(e2,{c})},(F9,E)={(e1,{b}),(e2,{b,c})},
    (F10,E)={(e1,{c}),(e2,{b})},(F11,E)={(e1,{c}),(e2,{c})},(F12,E)={(e1,{c}),(e2,{b,c})},
    (F13,E)={(e1,{b,c}),(e2,{b})},(F14,E)={(e1,{b,c}),(e2,{c})},
    (F15,E)={(e1,{b,c}),(e2,{b,c})}.

    Then, <a>R1={(e1,{a,b,c}),(e2,{a,b,c})},<b>R1={(e1,{b,c}),(e2,{b,c})}=<c>R1. Also, R1<a>=aE,R1<b>={(e1,{a,b}),(e2,{a,b})},R1<c>=Φ. Thus, R1<a>R1=aE,R1<b>R1=bE,R1<c>R1=Φ. On the other hand, let Y={u,v,w} associated with the parameters H={h1,h2}. Let (R2)H be a soft relation over Y defined by:

    (R2)H={(h1,{(u,u),(u,v),(v,u),(v,v),(v,w),(w,u),(w,w)}),(h2,{(u,u),(u,v),(v,u),(v,v),

    (w,w)})}. Then, <u>R2={(h1,{u,v}),(h2,{u,v})}=<v>R2,<w>R2=wH. Also, R2<u>={(h1,{u,v}),(h2,{u,v})}=R2<v>,R2<w>=wH. Thus,

    R2<u>R2={(h1,{u,v}),(h2,{u,v})}=R2<v>R2,R2<w>R2=wH. Now, define the function fρϱ:SS(X)ESS(Y)H, where ρ:EH is a function defined by ρ(e1)=h1,ρ(e2)=h2 and ϱ:XY is a function defined by ϱ(a)=ϱ(b)=u,ϱ(c)=w. By calculating (Apr_2S)E[f1ρϱ(G,H)] and f1ρϱ[(Apr_1S)H(G,H)] of a soft set (G,H)ˇSS(Y)H, it is clear that fρϱ is * -soft continuous. However, fρϱ is not soft continuous, where

    (Apr_1S)E[f1ρϱ(wH)]=Φf1ρϱ[(Apr_1S)H(wH)]=cE.

    Theorem 5.2. Let fρϱ:SS(X)ESS(Y)H be an injective soft continuous function. Then,

    (X,(R1)E,LE) is a soft Ti-space if (Y,(R2)H) is a soft-Ti space for i{0,1,2}.

    Proof. Suppose (Y,(R2)H) is a soft-Ti space for i{0,1,2} and let x1x2 in ˜X. For i=2, since fρϱ is injective, fρϱ(x1,E)fρϱ(x2,E) ˇSS(Y)H. Then, by the hypothesis, there exist (G1,H),(G2,H)ˇSS(Y)H such that fρϱ(x1,E)(Apr_1S)H(G1,H),fρϱ(x2,E)(Apr_1S)H(G2,H)) and (G1,H)(G2,H)=ΦH, that is, x1ˇf1ρϱ[(Apr_1S)H(G1,H)],x2ˇf1ρϱ[(Apr_1S)H(G2,H)] and

    f1ρϱ(G1,H)f1ρϱ(G2,H)=ΦH.

    Since fρϱ is soft continuous, x1ˇ(Apr_1S)E[f1ρϱ(G1,H)],x2ˇ(Apr_1S)E[f1ρϱ(G2,H)]. Thus, x1ˇ(Apr_2S)E[f1ρϱ(G1,H)],x2ˇ(Apr_2S)E[f1ρϱ(G2,H)] that is there exist

    (F1,E)=f1ρϱ(G1,H),(F2,E)=f1ρϱ(G2,H)ˇSS(X)E such that x1ˇ(Apr_2S)E(F1,E),x2ˇ(Apr_2S)E(F2,E) and (F1,E)(F2,E)=ΦE. So, (X,RE,LE) is a soft T2 space. For i{0,1} the proofs are similar.

    Corollary 5.10. Let fρϱ:SS(X)ESS(Y)H be an injective soft continuous function. Thus, (X,RE) is a soft Ti-space if (Y,(R2)H) is a soft-Ti space for i{0,1,2}.

    Corollary 5.11. Let fρϱ:SS(X)ESS(Y)H be an injective soft continuous function. Then, (X,RE,LE) is a soft Ti-space if (Y,(R2)H) is a soft-Ti space for i{0,1,2}.

    In this section, We reformulate and study soft connectedness in [31] with respect to these soft ideal approximation spaces. Some examples are submitted to explain the definitions.

    Definition 6.1. Let (X,RE) be a soft approximation space. Then,

    (1) (F,E),(G,E)ˇSS(X)E are called soft separated sets if ¯Apr1S(F,E)(G,E)=(F,E)¯Apr1S(G,E)=Φ.

    (2) ˜AˇSS(X)E is said to be a soft disconnected set if there exist soft separated sets (F,E),(G,E)ˇSS(X)E such that ˜A(F,E)(G,E). ˜A is said to be soft connected if it is not soft disconnected.

    (3) (X,RE) is said to be a soft disconnected space if there exist soft separated sets (F,E),(G,E)ˇSS(X)E such that (F,E)(G,E)=˜X. (X,RE) is said to be a soft connected space if it is not soft disconnected space.

    Definition 6.2. Let (X,RE,LE) be a soft ideal approximation space. Then,

    (1)(F,E),(G,E)ˇSS(X)E are called - soft separated (resp. - soft separated) sets if ¯Apr2S(F,E)(G,E)=(F,E)¯Apr2S(G,E)=Φ (resp. ¯Apr3S(F,E)(G,E)=(F,E)¯Apr3S(G,E)=Φ).

    (2) ˜AˇSS(X)E is called a -soft disconnected (resp. -soft disconnected) set if there exist -soft separated (resp. -soft separated) sets (F,E),(G,E)ˇSS(X)E such that ˜A(F,E)(G,E). ˜A is said to be -soft connected (resp. -soft connected) if it is not -soft disconnected (resp. -soft disconnected).

    (3) (X,RE,LE) is called a -soft disconnected (resp. -soft disconnected) space if there exist -soft separated (resp. -soft separated) sets (F,E),(G,E)ˇSS(X)E such that (F,E)(G,E)=˜X. (X,RE,LE) is called a -soft connected (resp. -soft connected) space if it is not a -soft disconnected (resp. -soft disconnected) space.

    Remark 6.1. The following implications are correct:

    soft separated * -soft separated ** -soft separated,

    and so

     ** -soft connected * -soft connectedsoft connected.

    Example 6.1. Let X={a,b,c} associated with a set of parameters E={e1,e2}. Let RE be a soft relation over X defined by:

    RE={(e1,{(a,a),(a,b),(a,c),,(b,a),(b,b),(b,c),(c,c)}),(e2,{(a,a),(a,b),(a,c),(b,b),(b,c)})}

    Then, <a>R={(e1,{a,b,c}),(e2,{a,b,c})},<b>R={(e1,{b,c}),(e2,{b,c})},<c>R={(e1,{b,c}),(e2,{b,c})}. Also, R<a>=aE,R<b>={(e1,{a,b}),(e2,{a,b})},R<c>=Φ. Thus, R<a>R=aE,R<b>R=bE,R<c>R=Φ.

    (1) Let LE be a soft ideal on X defined by:

    LE={Φ,(F1,E),(F2,E),(F3,E),(F4,E),(F5,E),(F6,E)}

    where

    (F1,E)={(e1,{b}),(e2,ϕ)},(F2,E)={(e1,ϕ),(e2,{b})},(F3,E)={(e1,{c}),(e2,ϕ)},
    (F4,E)={(e1,ϕ),(e2,{c})},(F5,E)={(e1,{b}),(e2,{c})},(F6,E)={(e1,{b,c}),(e2,{b,c})}.

    Then, we have

    ¯Apr1SbE=¯Apr1ScE=¯Apr1S(~{b,c}E)=¯Apr1S(~{a,b}E)=¯Apr1S(~{a,c}E)=˜X,¯Apr1SaE=aE.

    Thus, (X,RE) is a soft connected space. However, we get

    ˜X=aE~{b,c}E,¯Apr2SaE~{b,c}E=aE¯Apr2S(~{b,c}E)=Φ.

    So, (X,RE,LE) is not a -soft connected space.

    (2) Consider LE={Φ,(F1,E),(F2,E),(F3,E)} where

    (F1,E)={(e1,{a}),(e2,ϕ)},(F2,E)={(e1,ϕ),(e2,{a})},(F3,E)={(e1,{a}),(e2,{a})}.

    Then, we get

    ¯Apr2SbE=¯Apr2ScE=¯Apr2S(~{b,c}E)=¯Apr2S(~{a,b}E)=¯Apr2S(~{a,c}E)=˜X,¯Apr2SaE=aE.

    Thus, (X,RE,LE) is a -soft connected space. However, we have

    ˜X=aE~{b,c}E,¯Apr3SaE~{b,c}E=aE¯Apr3S(~{b,c}E)=Φ.

    So, (X,RE,LE) is not a -soft connected space.

    Proposition 6.1. Let (X,RE,LE) be a soft ideal approximation space. Then, these properties are equivalent:

    (1) (X,RE,LE) is -soft connected,

    (2) for each (F,E),(G,E)ˇSS(X)E with (F,E)(G,E)=Φ,Apr_2S(F,E)=(F,E),Apr_2S(G,E)=(G,E) and (F,E)(G,E)=˜X, (F,E)=Φ or (G,E)=Φ,

    (3) for each (F,E),(G,E)ˇSS(X)E with (F,E)(G,E)=Φ,¯Apr2S(F,E)=(F,E),¯Apr2S(G,E)=(G,E) and (F,E)(G,E)=˜X, (F,E)=Φ or (G,E)=Φ.

    Proof. (1) (2): Suppose part (1) holds and let (F,E),(G,E)ˇSS(X)E with Apr_2S(F,E)=(F,E),

    Apr_2S(G,E)=(G,E) such that (F,E)(G,E)=Φ and (F,E)(G,E)=˜X. Then,

    ¯Apr2S(F,E)¯Apr2S(G,E)c=[Apr_2S(G,E)]c=(G,E)c,
    ¯Apr2S(G,E)¯Apr2S(F,E)c=[Apr_2S(F,E)]c=(F,E)c.

    Thus, ¯Apr2S(F,E)(G,E)=(F,E)¯Apr2S(G,E)=Φ. So, (F,E),(G,E) are -soft separated sets. Since (F,E)(G,E)=˜X, (F,E)=Φ or (G,E)=Φ by part (1).

    (2) (3) and (3)(1) Clear.

    Corollary 6.1. Let (X,RE) be a soft approximation space. Then, these properties are equivalent:

    (1) (X,RE) is soft connected,

    (2) for each (F,E),(G,E)ˇSS(X)E with (F,E)(G,E)=Φ,Apr_1S(F,E)=(F,E),Apr_1S(G,E)=(G,E) and (F,E)(G,E)=˜X, (F,E)=Φ or (G,E)=Φ,

    (3) for each (F,E),(G,E)ˇSS(X)E with (F,E)(G,E)=Φ,¯Apr1S(F,E)=(F,E),¯Apr1S(G,E)=(G,E) and (F,E)(G,E)=˜X, (F,E)=Φ or (G,E)=Φ.

    Corollary 6.2. Let (X,RE,LE) be a soft ideal approximation space. Then, these properties are equivalent:

    (1) (X,RE,LE) is -soft connected.

    (2) For each (F,E),(G,E)ˇSS(X)E with (F,E)(G,E)=Φ,Apr_3S(F,E)=(F,E),Apr_3S(G,E)=(G,E) and (F,E)(G,E)=˜X, (F,E)=Φ or (G,E)=Φ.

    (3) For each (F,E),(G,E)ˇSS(X)E with (F,E)(G,E)=Φ,¯Apr3S(F,E)=(F,E),¯Apr3S(G,E)=(G,E) and (F,E)(G,E)=˜X, (F,E)=Φ or (G,E)=Φ.

    Theorem 6.1. Let (X,RE,LE) be a soft ideal approximation space and (F,E)ˇSS(X)E be -soft connected. If (F1,E),(F2,E)ˇSS(X)E are -soft separated sets with (F,E)(F1,E)(F2,E), then either (F,E)(F1,E) or (F,E)(F2,E).

    Proof. Suppose (F1,E),(F2,E) are -soft separated sets with (F,E)(F1,E)(F2,E). Then, we have

    ¯Apr2S(F1,E)(F2,E)=(F1,E)¯Apr2S(F2,E)=Φ,(F,E)=[(F,E)(F1,E)][(F,E)(F2,E)].

    On the other hand, we get

    ¯Apr2S[(F,E)(F1,E)][(F,E)(F2,E)]¯Apr2S(F,E)¯Apr2S(F1,E)[(F,E)(F2,E)]=¯Apr2S(F,E)(F,E)¯Apr2S(F1,E)(F2,E)=(F,E)Φ=Φ. Also,

    ¯Apr2S[(F,E)(F2,E)][(F,E)(F1,E)]¯Apr2S(F,E)¯Apr2S(F2,E)[(F,E)(F1,E)]=¯Apr2S(F,E)(F,E)¯Apr2S(F2,E)(F1,E)=(F,E)Φ=Φ. Thus, [(F,E)(F1,E)] and [(F,E)(F2,E)] are -soft separated sets with (F,E)=[(F,E)(F1,E)][(F,E)(F2,E)]. However, (F,E) is -soft connected, which implies that (F,E)(F1,E) or (F,E)(F2,E).

    Corollary 6.3. Let (X,RE) be a soft approximation space and (F,E)ˇSS(X)E be soft connected. If (F1,E),(F2,E)ˇSS(X)E are soft separated sets with (F,E)(F1,E)(F2,E), then either (F,E)(F1,E) or (F,E)(F2,E).

    Corollary 6.4. Let (X,RE,LE) be a soft ideal approximation space and (F,E)ˇSS(X)E be -soft connected. If (F1,E),(F2,E)ˇSS(X)E are -soft separated sets with (F,E)(F1,E)(F2,E), then either (F,E)(F1,E) or (F,E)(F2,E).

    Theorem 6.2. Let fρϱ:(X,RE,LE)(Y,(R2)H) be a -soft continuous function. Then,

    fρϱ(F,E)ˇSS(Y)H is a soft connected set if (F,E)ˇSS(X)E is -soft connected.

    Proof. Assume that (F,E) is -soft connected in (X,RE,LE). Suppose that fρϱ(F,E) is soft disconnected. Thus, there exist two soft separated sets (G1,H),(G2,H)ˇSS(Y)H with fρϱ(F,E)(G1,H)(G2,H), that is, (¯Apr1S)H(G1,H)(G2,H)=(G1,H)(¯Apr1S)H(G2,H)=Φ. Since fρϱ is -soft continuous, (F,E)f1ρϱ(G1,H)f1ρϱ(G2,H). Thus, we have

    (¯Apr2S)E[f1ρϱ(G1,H)]f1ρϱ(G2,H)f1ρϱ[(¯Apr1S)H(G1,H)]f1ρϱ(G2,H)

    =f1ρϱ[(¯Apr1S)H(G1,H)(G2,H)]=f1ρϱ(Φ)=Φ. Also, we have

    (¯Apr2S)E[f1ρϱ(G2,H)]f1ρϱ(G1,H)f1ρϱ[(¯Apr1S)H(G2,H)]f1ρϱ(G1,H)

    =f1ρϱ[(¯Apr1S)H(G2,H)(G1,H)]=f1ρϱ(Φ)=Φ.

    So, f1ρϱ(G1,H) and f1ρϱ(G2,H) are -soft separated sets in (X,RE,LE), that is,

    (F,E)f1ρϱ(G1,H)f1ρϱ(G2,H). Hence, (F,E) is -soft disconnected, which contradicts that (F,E) is -soft connected. Therefore, fρϱ(F,E) is a soft connected set in (Y,(R2)H).

    Corollary 6.5. Let fρϱ:(X,RE)(Y,(R2)H) be a soft continuous function. Then, fρϱ(F,E)ˇSS(Y)H is soft connected set, if (F,E)ˇSS(X)E is soft connected.

    Corollary 6.6. Let fρϱ:(X,RE,LE)(Y,(R2)H) be a -soft continuous function. Then,

    fρϱ(F,E)ˇSS(Y)H is soft connected set if (F,E)ˇSS(X)E is -soft connected.

    Herein, we first compare the current purposed methods in Definitions 3.4–3.6 and demonstrate that the method given in Definition 3.6 is the best in terms of developing the soft approximation operators and the values of soft accuracy. Then, we clarify that the third approach in Definition 3.6 produces soft accuracy measures of soft subsets higher than their counterparts displayed in the previous method 2.4 in [17]. Moreover, we applied these approaches to handle real-life problems.

    Definition 7.1. Let (X,RE,LE) be a soft ideal approximation space. Then, the soft boundary region BndiS(F,E) of a soft set (F,E)ˇSS(X)E and the soft accuracy measure AcciS(F,E) of an absolute soft set (F,E)ˇSS(X)E, i{1,2,3} with respect to the soft binary relation RE are defined respectively by:

    BndiS(F,E)=¯ApriS(F,E)Apr_iS(F,E),AcciS(F,E)=|Apr_iS(F,E)||¯ApriS(F,E)|,i{1,2,3}

    where (F,E)Φ. Note that |˜AE|=|A| denotes the cardinality of set AX.

    Proposition 7.1. Let (X,RE,LE) be a soft ideal approximation space and (F,E)ˇSS(X)E. Then,

    (1) Bnd3S(F,E)Bnd2S(F,E)Bnd1S(F,E).

    (2) Acc1S(F,E)Acc2S(F,E)Acc3S(F,E).

    Proof. (1) Let xˇBnd3S(F,E)=¯Apr3S(F,E)Apr_3S(F,E). Then, from Corollary 3.4, we have

    xˇ¯Apr2S(F,E)Apr_2S(F,E)=Bnd2S(F,E). Again, by Corollary 3.4,

    if xˇBnd2S(F,E)=¯Apr2S(F,E)Apr_2S(F,E), then xˇ¯Apr1S(F,E)Apr_1S(F,E)=Bnd1S(F,E). Hence, Bnd3S(F,E)Bnd2S(F,E)Bnd1S(F,E).

    (2) From Corollary 3.4, we have

    Acc1S(F,E)=|Apr_1S(F,E)||¯Apr1S(F,E)||Apr_2S(F,E)||¯Apr2S(F,E)|=Acc2S(F,E)|Apr_1S(F,E)||¯Apr1S(F,E)|=Acc1S(F,E).

    Proposition 7.2. Let (X,RE,(L1)E) and (X,RE,(L2)E) be soft ideal approximation spaces such that (L1)E(L2)E. Thus, for each (F,E)ˇSS(X)E we have

    (1) (Apr_2S)(L1)E(F,E)(Apr_2S)(L2)E(F,E).

    (2) (¯Apr2S)(L2)E(F,E)(¯Apr2S)(L1)E(F,E).

    (3) (Bnd2S)(L2)E(F,E)(Bnd2S)(L1)E(F,E).

    (4) (Acc2S)(L1)E(F,E)(Acc2S)(L2)E(F,E).

    Proof.

    (1) Let xˇ(Apr_2S)(L1)E(F,E). Then, <x>R(F,E)cˇ(L1)E. Since (L1)E(L2)E. Thus, <x>R(F,E)cˇ(L2)E. Therefore, xˇ(Apr_2S)(L2)E(F,E). Hence, (Apr_2S)(L1)E(F,E)(Apr_2S)(L2)E(F,E).

    (2) Let xˇ(¯Apr2S)(L2)E(F,E). Then, <x>R(F,E)cˇ(L2)E. Since (L1)E(L2)E. Thus, <x>R(F,E)cˇ(L1)E. Therefore, xˇ(¯Apr2S)(L1)E(F,E). Hence, (¯Apr2S)(L2)E(F,E)(¯Apr2S)(L1)E(F,E).

    (3), (4): It is immediately obtained by parts (1) and (2).

    Corollary 7.1. Let (X,RE,(L1)E), and (X,RE,(L2)E) be soft ideal approximation spaces such that (L1)E(L2)E. Thus, for each (F,E)ˇSS(X)E we have

    (1) (Apr_3S)(L1)E(F,E)(Apr_3S)(L2)E(F,E).

    (2)(¯Apr3S)(L2)E(F,E)(¯Apr3S)(L1)E(F,E).

    (3) (Bnd3S)(L2)E(F,E)(Bnd3S)(L1)E(F,E).

    (4)(Acc3S)(L1)E(F,E)(Acc3S)(L2)E(F,E).

    Remark 7.1. Proposition 7.2 shows that the soft boundary region of a soft set (F,E)ˇSS(X)E decreases as the soft ideal increases as illustrated in the next example.

    Example 7.1. Let X={a,b,c} associated with a set of parameters E={e1,e2}. Let RE be a soft relation over X. Let (L1)E, (L2)E be soft ideals on X, defined respectively by:

    RE={(e1,{(a,a),(a,b),(a,c),(b,b),(b,c)}),(e2,{(a,a),(a,c),(b,a),(b,b),(b,c)})}
    (L1)E={Φ,{(e1,{a}),(e2,ϕ)}}
    (L2)E=SS({a,c})E={(F,E):(F,E) is a soft set over {a,c}}.

    Therefore, <a>R={(e1,{a}),(e2,{a})},<b>R={(e1,{b,c}),(e2,{b,c})}=<c>R.

    Let (F,E)={(e1,{c}),(e2,ϕ)}. Then,

    (Bnd2S)(L1)E(F,E)=(¯Apr2S)(L1)E(F,E)(Apr_2S)(L1)E(F,E)=(~{b,c})EΦ=(~{b,c})E.

    Also

    (Bnd2S)(L2)E(F,E)=(¯Apr2S)(L2)E(F,E)(Apr_2S)(L2)E(F,E)={(e1,{c}),(e2,ϕ)}Φ
    ={(e1,{c}),(e2,Φ)}.

    It is clear that (Bnd2S)(L2)E(F,E)(Bnd2S)(L1)E(F,E).

    Remark 7.2. From Proposition 5.2, one can deduce that Definition 3.6 improves the soft boundary region which means decreasing for a soft set (F,E)ˇSS(X)E, and improves the soft accuracy measure which means increasing for that soft set (F,E)ˇSS(X)E by increasing the soft lower approximation and decreasing the soft upper approximation in comparison to the methods in Definitions 3.4, 3.5, and Definition 2.4 in [17]. So, the suggested method in Definition 3.6 is more accurate in decision-making. As a special case:

    (1) If RE is soft symmetric relation, then the soft approximations in Definition 3.6 coincide with the soft approximations in Definition 3.5.

    (2) If LE=Φ and RE is soft symmetric relation, then the soft approximations in Definition 3.5 coincide with the soft approximations in Definition 3.5.

    (3) If LE=Φ, E={e} and RE is soft reflexive and soft transitive relation, then the soft approximations in Definition 3.6 coincide with the previous soft approximations in [17].

    Example 7.2. Selection of a house:

    Considering X={x1,x2,x3,x4,x5,x6} is a collection of six houses where H={expensive, beautiful, cheap, in green surroundings, wooden modern, in good repair, in bad repair} be a set of parameters.

    Suppose Mr.Z wants to purchase a house on the following parametric set E= {beautiful, cheap, in green surroundings, wooden, in good repair}. Consider E={e1,e2,e3,e4,e5}.

    Define a soft equivalence relation R:EP(X×X). The soft equivalence classes for each eE are obtained as follows:

    ForR(e1):are{x1,x3},{x2,x4,x5,x6}.ForR(e2):are{x1,x2,x4,x5},{x3},{x6}.
    ForR(e3):are{x1,x2,x4,x5,x6},{x3}.ForR(e4):are{x1,x3,x6},{x2,x4,x5}.
    ForR(e5):is{x1,x2,x3,x4,x5,x6}.

    Therefore, R<x1>R=(~{x1})E,R<x2>R=R<x4>R=R<x5>R=(~{x2,x4,x5})E,R<x3>R=(~{x3})E,R<x6>R=(~{x6})E. Consider LE=SS({x1,x3,x5})E={(F,E):(F,E) is a soft set over {x1,x3,x5}} be a soft ideal over X. The soft representation of the equivalence relation RE is explained in Table 1. In Table 2, the soft approximations, soft boundary region, and soft accuracy measure of a soft set (F,E)ˇSS(X)E by using our suggested method in Definition 3.6. This method is the best tool to help Mr.Z in his decision-making about selecting the house that is most suitable to his choice of parameters. For example, take (~{x2,x3,x4})E, then from Table 2, the soft lower and soft upper approximations, soft boundary region, and soft accuracy measure are (~{x3})E, (~{x2,x3,x4,x5})E, (~{x2,x4,x5})E, and 1/4, respectively. One can see that Mr.Z will decide to buy the house x3 according to his choice parameters in E.

    Table 1.  Soft equivalence relation representation of houses under consideration.
    e1 e2 e3 e4 e5
    (x1,x1) 1 1 1 1 1
    (x1,x2) 0 1 1 0 1
    (x1,x3) 1 0 0 1 1
    (x1,x4) 0 1 1 0 1
    (x1,x5) 0 1 1 0 1
    (x1,x6) 0 0 1 1 1
    (x2,x1) 0 1 1 0 1
    (x2,x2) 1 1 1 1 1
    (x2,x3) 0 0 0 0 1
    (x2,x4) 1 1 1 1 1
    (x2,x5) 1 1 1 1 1
    (x2,x6) 1 0 1 0 1
    (x3,x1) 1 0 0 1 1
    (x3,x2) 0 0 0 0 1
    (x3,x3) 1 1 1 1 1
    (x3,x4) 0 0 0 0 1
    (x3,x5) 0 0 0 0 1
    (x3,x6) 0 0 0 1 1
    (x4,x1) 0 1 1 0 1
    (x4,x2) 1 1 1 1 1
    (x4,x3) 0 0 0 0 1
    (x4,x4) 1 1 1 1 1
    (x4,x5) 1 1 1 1 1
    (x4,x6) 1 0 1 0 1
    (x5,x1) 0 1 1 0 1
    (x5,x2) 1 1 1 1 1
    (x5,x3) 0 0 0 0 1
    (x5,x4) 1 1 1 1 1
    (x5,x5) 1 1 1 1 1
    (x5,x6) 1 0 1 0 1
    (x6,x1) 0 0 1 1 1
    (x6,x2) 1 0 1 0 1
    (x6,x3) 0 0 0 1 1
    (x6,x4) 1 0 1 0 1
    (x6,x5) 1 0 1 0 1
    (x6,x6) 1 1 1 1 1

     | Show Table
    DownLoad: CSV
    Table 2.  Soft approximations, soft boundary region and soft accuracy measure of a soft set(F,E)ˇSS(X)E of Definition 3.6.
    (F,E)ˇSS(X)E Apr_3S(F,E) ¯Apr3S(F,E) Bnd3S(F,E) Acc3S(F,E)
    (~{x1,x2,x3})E (~{x1,x3})E (~{x1,x2,x3,x4,x5})E (~{x2,x4,x5})E 2/5
    (~{x1,x3,x4})E (~{x1,x3})E (~{x1,x2,x3,x4,x5})E (~{x2,x4,x5})E 2/5
    (~{x1,x2,x5})E (~{x1})E (~{x1,x2,x4,x5})E (~{x2,x4,x5})E 1/4
    (~{x1,x3,x6})E (~{x1,x3,x6})E (~{x1,x3,x6})E Φ 1
    (~{x1,x4,x6})E (~{x1,x6})E (~{x1,x2,x4,x5,x6})E (~{x2,x4,x5})E 2/5
    (~{x2,x3,x4})E (~{x3})E (~{x2,x3,x4,x5})E (~{x2,x4,x5})E 1/4
    (~{x2,x3,x5})E (~{x3})E (~{x2,x3,x4,x5})E (~{x2,x4,x5})E 1/4
    (~{x2,x4,x5})E (~{x2,x4,x5})E (~{x2,x4,x5})E Φ 1
    (~{x2,x4,x6})E (~{x2,x4,x6})E (~{x2,x4,x6})E Φ 1
    (~{x2,x5,x6})E (~{x6})E (~{x2,x4,x5,x6})E (~{x2,x4,x5})E 1/4
    (~{x3,x4,x5})E (~{x3})E (~{x2,x3,x4,x5})E (~{x2,x4,x5})E 1/4
    (~{x4,x5,x6})E (~{x6})E (~{x2,x4,x5,x6})E (~{x2,x4,x5})E 1/4
    (~{x1,x2,x3,x4})E (~{x1,x2,x3,x4})E (~{x1,x2,x3,x4,x5})E (~{x5})E 4/5
    (~{x1,x2,x5,x6})E (~{x1,x6})E (~{x1,x2,x4,x5,x6})E (~{x2,x4,x5})E 2/5
    (~{x1,x3,x4,x5})E (~{x1,x3})E (~{x1,x2,x3,x4,x5})E (~{x2,x4,x5})E 2/5
    (~{x1,x4,x5,x6})E (~{x1,x6})E (~{x1,x2,x4,x5,x6})E (~{x2,x4,x5})E 2/5
    (~{x2,x3,x4,x5})E (~{x2,x3,x4,x5})E (~{x2,x3,x4,x5})E Φ 1
    (~{x2,x4,x5,x6})E (~{x2,x4,x5,x6})E (~{x2,x4,x5,x6})E Φ 1
    (~{x1,x2,x3,x4,x5})E (~{x1,x2,x3,x4,x5})E (~{x1,x2,x3,x4,x5})E Φ 1
    (~{x1,x2,x3,x4,x6})E (~{x1,x2,x3,x4,x6})E (~{x1,x2,x3,x4,x6})E Φ 1
    (~{x1,x3,x4,x5,x6})E (~{x1,x3,x6})E ˜X (~{x4,x5})E 1/2
    (~{x2,x3,x4,x5,x6})E (~{x2,x3,x4,x5,x6})E (~{x2,x3,x4,x5,x6})E Φ 1

     | Show Table
    DownLoad: CSV

    Example 7.3. Selection of a car:

    Suppose a person Mr.Z wants to buy a car from the alternatives x1,x2,x3,x4,x5,x6,x7,x8,x9,x10. Let X={x1,x2,x3,x4,x5,x6,x7,x8,x9,x10} be the universe of ten different cars and let E={e1,e2,e3} be the set of attributes, where e_1 refers to price, e_2 refers to color, and e_3 refers to car brands.

    The parameters are characterized as follows:

    The price of a car includes under 30 lacs, between 31 and 35 lacs, and between 36 and 40 lacs.

    The car brand includes Honda Accord, Audi, Mercedes Benz, and BMW.

    The color of a car includes black, white, and silver.

    Define a soft equivalence relation R : E \longrightarrow P(X \times X) for each e \in E which describes the advantages of the car for which the person Mr.Z will buy. The soft equivalence classes for each e \in E are obtained as follows:

    {For } R(e_1): { are } \{x_{1}, x_{10}\}, \{x_2, x_4, x_6, x_7\}, \{x_3, x_5, x_8, x_9\} ,

    which means that the price of cars x_1 and x_{10} is under 30 lacs; the price of cars x_2, x_4, x_6 , and x_7 is between 31 and 35 lacs; and the price of cars x_3, x_5, x_8 , and x_9 is between 36 and 40 lacs.

    {For } R(e_2): { are } \{x_1\}, \{x_2\}, \{x_3, x_4, x_5, x_7, x_8, x_9, x_{10}\}, \{x_6\},

    which represents that the brand of car x_1 is Honda Accord; the brand of car x_2 is Audi; the brand of cars x_3, x_4, x_5, x_7, x_8, x_9, and x_{10} is Mercedes Benz; and the brand of car x_6 is BMW. For R(e_3) : are \{x_{10}\}, \{x_6\}, \{x_1, x_2, x_3, x_4, x_5, x_7, x_8, x_9\}, which represents that the color of cars x_1, x_2, x_3, x_4, x_5, x_7, x_8, and x_9 is black; the color of car x_{10} is white; and the color of car x_6 is silver.

    Therefore, R < x_1 > R = (\widetilde{\{x_1\}})_E, \; R < x_2 > R = (\widetilde{\{x_2\}})_E, \; R < x_6 > R = (\widetilde{\{x_6\}})_E, \; R < x_{10} > R = (\widetilde{\{x_{10}\}})_E, \; R < x_4 > R = R < x_7 > R = (\widetilde{\{x_4, x_7\}})_E, \; R < x_3 > R = R < x_5 > R = R < x_8 > R = R < x_9 > R = (\widetilde{\{x_3, x_5, x_8, x_9\}})_E.

    Consequently, anyone can offer a soft ideal to extend an example similar to the one in Table 2 to help Mr.Z in his decision-making about selecting the car that is most suitable according to the given parameters.

    For example, let {\mathcal{L}_E} = SS(\{x_2, x_6, x_{10}\})_E = \{(F, E): (F, E) \text{ is a soft set over } \{x_2, x_6, x_{10}\}\} be a soft ideal over X and (F, E) = (\widetilde{\{x_1, x_4, x_8\}})_E\; \check{\in }\; SS(X)_E consisting of these cars which are most acceptable for Mr.Z. Thus, \underline{Apr}_S^3(F, E) = (\widetilde{\{x_1\}})_E, \overline{Apr}_S^3(F, E) = (\widetilde{\{x_1, x_3, x_4, x_5, x_7, x_8, x_9\}})_E,

    Bnd_S^3(F, E) = (\widetilde{\{x_3, x_4, x_5, x_7, x_8, x_9\}})_E and Acc_S^3(F, E) = 1/7. Mr.Z will buy the car x_1 which is under 30 lacs, a Honda Accord, and is white.

    This paper introduced new soft closure operators based on soft ideals, defining soft topological spaces. To that end, soft accumulation points, soft subspaces, and soft lower separation axioms of such spaces are defined and studied. Moreover, soft connectedness in these spaces is defined, which enables us to make more generalizations and studies. The obtained results are newly presented and could enrich soft topology theory. Finally, applications in multi criteria group decision making by using our methods to present the importance of our soft ideals approximations have been presented.

    As it is well-known that the soft interior and soft closure topological operators behave similarly to the lower and upper soft approximations. So, in forthcoming works, we plan to study the counterparts of these models via topological structures. In addition, we will benefit from the hybridization of rough set theory with some approaches, such as fuzzy sets and soft fuzzy sets, to introduce these approximation spaces via these hybridized frames and show their role in efficiently dealing with uncertain knowledge.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deputy-ship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP-2024.

    The authors declare that they have no conflicts of interest.



    [1] J. G. Milton, Time delays and the control of biological systems: An overview, J. Int. Fed. Autom. Control, 48 (2015), 87–92. https://doi.org/10.1016/j.ifacol.2015.09.358 doi: 10.1016/j.ifacol.2015.09.358
    [2] L. Wu, H. K. Lam, Y. Zhao, Z. Shu, Time-delay systems and their applications in engineering, J. Math. Probl. Eng., 2014, 1–3. http://dx.doi.org/10.1155/2015/246351
    [3] M. A. R. AboShady, M. A. Hindy, H. Shatla, R. Elsagher, M. S. AbdelMoteleb, Novel transport delay problem solutions for gas plant inlet pressure control, J. Electr. Syst. Inform. Technol., 1 (2014), 150–165. https://doi.org/10.1016/j.jesit.2014.07.006 doi: 10.1016/j.jesit.2014.07.006
    [4] E. K. Boukas, Z. K. Liu, Deterministic and stochastic time-delay systems, Boston, MA: Birkhäuser, 2002.
    [5] E. Witrant, E. Fridman, O. Sename, L. Dugard, Recent results on time-delay systems, Springer International, 2016.
    [6] V. B. Kolmanovskii, A. D. Myshkis, Introduction to the theory and applications of functional differential equations, NewYork: Kluwer, 1999.
    [7] M. M. Zavarei, M. Jamshidi, Time-delay systems: Analysis, optimization and applications, Amsterdam, The Netherlands: North Holland, 1987.
    [8] W. H. Kwon, P. Park, Stabilizing and optimizing control for time-delay systems, Springer International, 2019. https://doi.org/10.1007/978-3-319-92704-6
    [9] O. Santos, S. Mondie, On the optimal control of time delay systems: A complete type functionals approach, IEEE Conf. Decis. Control, 2007, 6035–6040. https://doi.org/10.1109/CDC.2007.4434086
    [10] H. R. Sharif, M. A. Vali, M. Samavat, A. A. Gharavisi, A new algorithm for optimal control of time-delay systems, J. Appl. Math. Sci., 5 (2011), 595–606.
    [11] S. Dadebo, R. Luus, Optimal control of time-delay systems by dynamic programming, J. Optim. Control Appl. Method., 13 (1992), 29–41.
    [12] K. Inoue, H. Akashi, K. Ogino, Y. Sawaragi, Sensitivity approaches to optimization of linear systems with time delay, J. Autom., 7 (1971), 671–679. https://doi.org/10.1016/0005-1098(71)90005-7 doi: 10.1016/0005-1098(71)90005-7
    [13] T. Guinn, Reduction of delayed optimal control problems to nondelayed problems, J. Optim. Theor. Appl., 18 (1976), 371–377.
    [14] M. Basin, J. R. Gonzalez, Optimal control for linear systems with multiple time delays in control input, IEEE T. Autom. Contr., 51 (2006), 91–97.
    [15] C. Wu, K. L. Teo, R. Li, Y. Zhao, Optimal control of switched systems with time delay, J. Appl. Math. Lett., 19 (2006), 1062–1067.
    [16] M. Jamshidi, C. M. Wang, A computational algorithm for large-scale nonlinear time-delay systems, IEEE Trans. Syst. Man Cy., 1 (1984), 2–9.
    [17] H. R. Marzban, M. Shahsiah, Solution of piecewise constant delay systems using hybrid of block-pulse and Chebyshev polynomials, J. Optim. Control Appl. Method., 32 (2011), 647–659.
    [18] A. H. Borzabadi, S. Asadi, A wavelet collocation method for optimal control of non-linear time-delay systems via Haar wavelets, J. Math. Control Inform., 32 (2015), 41–54. https://doi.org/10.1093/imamci/dnt032. doi: 10.1093/imamci/dnt032
    [19] A. J. Koshkouei, M. H. Farahi, K. J. Burnham, An almost optimal control design method for nonlinear time-delay systems, Int. J. Control, 85 (2012), 147–158. http://dx.doi.org/10.1080/00207179.2011.641158 doi: 10.1080/00207179.2011.641158
    [20] A. Nazemi, M. Mansoori, Solving optimal control problems of the time-delayed systems by Haar wavelet, J. Vib. Control, 22 (2016), 2657–2670. http://dx.doi.org/10.1177/1077546314550698 doi: 10.1177/1077546314550698
    [21] D. Y. Sun, T. C. Huang, The solutions of time-delayed optimal control problems by the use of modified line-up competition algorithm, J. Taiwan Inst. Chem. E., 41 (2010), 54–64. https://doi.org/10.1016/j.jtice.2009.04.013. doi: 10.1016/j.jtice.2009.04.013
    [22] H. J. Kushner, D. I. Barnea, On the control of a linear functional-differential equation with quadratic cost, SIAM J. Control, 8 (1970), 257–272.
    [23] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral method in fluid dynamics, Springer, New York, 1988.
    [24] P. Lu, H. Sun, B. Tsai, Closed-loop endoatmospheric ascent guidance, J. Guid. Control Dynam., 26 (2003), 283–294. https://doi.org/10.2514/2.5045 doi: 10.2514/2.5045
    [25] R. E. Stevens, W. Wiesel, Large time scale optimal control of an electrodynamic tether satellite, J. Guid. Control Dynam., 32 (2008), 1716–1727. https://doi.org/10.2514/1.34897 doi: 10.2514/1.34897
    [26] P. Wiliams, B. Lansdorp, W. Ockels, Optimal crosswind towing and power generation with tethered kites, J. Guid. Control Dynam., 31 (2008), 81–93. https://doi.org/10.2514/1.30089 doi: 10.2514/1.30089
    [27] F. Fahroo, I. M. Ross, Costate estimation by a Lagrange pseudospectral, J. Guid. Control Dynam., 24 (2001), 270–277. https://doi.org/10.2514/2.4709
    [28] G. Xiao, Z. Ming, Direct trajectory optimization based on a mapped Chebyshev pseudospectral method, J. Aeronautics, 26 (2013), 401–412. https://doi.org/10.1016/j.cja.2013.02.018 doi: 10.1016/j.cja.2013.02.018
    [29] L. D. Berkovitz, Optimal control theory, New York: Springer, 1974.
    [30] A. D. Ioffe, V. M. Tichomirov, Theory of extremal problems, Amsterdam, The Netherlands: North Holland, 1979.
    [31] H. O. Fattorini, Infinite dimensional optimization and control theory, UK: Cambridge Univ. Press, 1999.
    [32] I. M. Ross, Q. Gong, W. Kang, A pseudospectral method for the optimal control of constrained feedback linearizable systems, IEEE T. Autom. Contr., 51 (2006), 1115–1129. https://doi.org/10.1109/TAC.2006.878570
    [33] J. Shen, T. Tang, L. Wang, Spectral methods: Algorithms, analysis and applications, Springer, 41 (2011).
    [34] B. Fornberg, A practical guide to pseudospectral methods, Cambridge University Press, 1998.
    [35] Q. Gong, I. M. Ross, W. Kang, F. Fahroo, Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control, J. Comput. Optim. Appl., 41 (2008), 307–335. https://doi.org/10.1007/s10589-007-9102-4 doi: 10.1007/s10589-007-9102-4
    [36] M. Dadkhah, M. H. Farahi, Numerical solution of time delay optimal control problems by hybrid of block-pulse functions and Bernstein polynomials, IMA J. Math. Control I., 35 (2018), 451–477. https://doi.org/10.1093/imamci/dnw057 doi: 10.1093/imamci/dnw057
    [37] S. Effati, S. A. Rakhshan, S. Saqi, Formulation of Euler-Lagrange equations for multidelay fractional optimal control problem, J. Comput. Nonlinear Dynam., 13 (2018), 1–10. https://doi.org/10.1115/1.4039900 doi: 10.1115/1.4039900
    [38] A. Nazemi, M. M. Shabani, Numerical solution of the time-delayed optimal control problems with hybrid functions, IMA J. Math. Control I., 32 (2015), 623–638. https://doi.org/10.1093/imamci/dnu012 doi: 10.1093/imamci/dnu012
    [39] K. L. Teo, K. H. Wong, D. J. Clements, Optimal control computation for nonlinear time-lag systems with linear terminal constraints, J. Optim. Theor. Appl., 44 (1984), 509–526.
    [40] A. Y. Lee, Numerical solution of time-delayed optimal control problems with terminal inequality constraints, J. Control Appl. Method., 14 (1993), 203–210.
    [41] S. Hosseinpour, A. Nazemi, E. Tohidi, Müntz-Legendre spectral collocation method for solving delay fractional optimal control problems, J. Comput. Appl. Math., 351 (2019), 344–363. https://doi.org/10.1016/j.cam.2018.10.058 doi: 10.1016/j.cam.2018.10.058
    [42] K. H. Wong, D. J. Clements, K. L. Teo, Optimal control computation for nonlinear time-lag systems, J. Optim., 47 (1985), 91–107.
  • This article has been cited by:

    1. Rehab Alharbi, S. E. Abbas, E. El-Sanowsy, H. M. Khiamy, K. A. Aldwoah, Ismail Ibedou, New soft rough approximations via ideals and its applications, 2024, 9, 2473-6988, 9884, 10.3934/math.2024484
    2. Ahmed Ramadan, Anwar Fawakhreh, Enas Elkordy, Novel categorical relations between \mathcal{L} -fuzzy co-topologies and \mathcal{L} -fuzzy ideals, 2024, 9, 2473-6988, 20572, 10.3934/math.2024999
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1979) PDF downloads(114) Cited by(4)

Figures and Tables

Figures(5)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog