Research article Special Issues

A novel high accurate numerical approach for the time-delay optimal control problems with delay on both state and control variables

  • Received: 10 December 2021 Revised: 10 February 2022 Accepted: 22 February 2022 Published: 17 March 2022
  • MSC : 65M70, 49J15, 90C30

  • In this study, we intend to present a numerical method with highly accurate to solve the time-delay optimal control problems with delay on both the state and control variables. These problems can be seen in many sciences such as medicine, biology, chemistry, engineering, etc. Most of the methods used to work out time delay optimal control problems have high complexity and cost of computing. We extend a direct Legendre-Gauss-Lobatto spectral collocation method for numerically solving the issues mentioned above, which have some difficulties with other methods. The simple structure, convergence, and high accuracy of our approach are the advantages that distinguish it from different processes. At first, by replacing the delay functions of state and control variables in the dynamical method, we propose an equivalent system. Then discretizing the problem at the collocation points, we achieve a nonlinear programming problem. We can solve this discrete problem to obtain the approximate solutions for the main problem. Moreover, we prove the gained approximate solutions convergent to the exact optimal solutions when the number of collocation points increases. Finally, we show the capability and the superiority of the presented method by solving some numeral examples and comparing the results with those of others.

    Citation: Mehrnoosh Hedayati, Hojjat Ahsani Tehrani, Alireza Fakharzadeh Jahromi, Mohammad Hadi Noori Skandari, Dumitru Baleanu. A novel high accurate numerical approach for the time-delay optimal control problems with delay on both state and control variables[J]. AIMS Mathematics, 2022, 7(6): 9789-9808. doi: 10.3934/math.2022545

    Related Papers:

  • In this study, we intend to present a numerical method with highly accurate to solve the time-delay optimal control problems with delay on both the state and control variables. These problems can be seen in many sciences such as medicine, biology, chemistry, engineering, etc. Most of the methods used to work out time delay optimal control problems have high complexity and cost of computing. We extend a direct Legendre-Gauss-Lobatto spectral collocation method for numerically solving the issues mentioned above, which have some difficulties with other methods. The simple structure, convergence, and high accuracy of our approach are the advantages that distinguish it from different processes. At first, by replacing the delay functions of state and control variables in the dynamical method, we propose an equivalent system. Then discretizing the problem at the collocation points, we achieve a nonlinear programming problem. We can solve this discrete problem to obtain the approximate solutions for the main problem. Moreover, we prove the gained approximate solutions convergent to the exact optimal solutions when the number of collocation points increases. Finally, we show the capability and the superiority of the presented method by solving some numeral examples and comparing the results with those of others.



    加载中


    [1] J. G. Milton, Time delays and the control of biological systems: An overview, J. Int. Fed. Autom. Control, 48 (2015), 87–92. https://doi.org/10.1016/j.ifacol.2015.09.358 doi: 10.1016/j.ifacol.2015.09.358
    [2] L. Wu, H. K. Lam, Y. Zhao, Z. Shu, Time-delay systems and their applications in engineering, J. Math. Probl. Eng., 2014, 1–3. http://dx.doi.org/10.1155/2015/246351
    [3] M. A. R. AboShady, M. A. Hindy, H. Shatla, R. Elsagher, M. S. AbdelMoteleb, Novel transport delay problem solutions for gas plant inlet pressure control, J. Electr. Syst. Inform. Technol., 1 (2014), 150–165. https://doi.org/10.1016/j.jesit.2014.07.006 doi: 10.1016/j.jesit.2014.07.006
    [4] E. K. Boukas, Z. K. Liu, Deterministic and stochastic time-delay systems, Boston, MA: Birkhäuser, 2002.
    [5] E. Witrant, E. Fridman, O. Sename, L. Dugard, Recent results on time-delay systems, Springer International, 2016.
    [6] V. B. Kolmanovskii, A. D. Myshkis, Introduction to the theory and applications of functional differential equations, NewYork: Kluwer, 1999.
    [7] M. M. Zavarei, M. Jamshidi, Time-delay systems: Analysis, optimization and applications, Amsterdam, The Netherlands: North Holland, 1987.
    [8] W. H. Kwon, P. Park, Stabilizing and optimizing control for time-delay systems, Springer International, 2019. https://doi.org/10.1007/978-3-319-92704-6
    [9] O. Santos, S. Mondie, On the optimal control of time delay systems: A complete type functionals approach, IEEE Conf. Decis. Control, 2007, 6035–6040. https://doi.org/10.1109/CDC.2007.4434086
    [10] H. R. Sharif, M. A. Vali, M. Samavat, A. A. Gharavisi, A new algorithm for optimal control of time-delay systems, J. Appl. Math. Sci., 5 (2011), 595–606.
    [11] S. Dadebo, R. Luus, Optimal control of time-delay systems by dynamic programming, J. Optim. Control Appl. Method., 13 (1992), 29–41.
    [12] K. Inoue, H. Akashi, K. Ogino, Y. Sawaragi, Sensitivity approaches to optimization of linear systems with time delay, J. Autom., 7 (1971), 671–679. https://doi.org/10.1016/0005-1098(71)90005-7 doi: 10.1016/0005-1098(71)90005-7
    [13] T. Guinn, Reduction of delayed optimal control problems to nondelayed problems, J. Optim. Theor. Appl., 18 (1976), 371–377.
    [14] M. Basin, J. R. Gonzalez, Optimal control for linear systems with multiple time delays in control input, IEEE T. Autom. Contr., 51 (2006), 91–97.
    [15] C. Wu, K. L. Teo, R. Li, Y. Zhao, Optimal control of switched systems with time delay, J. Appl. Math. Lett., 19 (2006), 1062–1067.
    [16] M. Jamshidi, C. M. Wang, A computational algorithm for large-scale nonlinear time-delay systems, IEEE Trans. Syst. Man Cy., 1 (1984), 2–9.
    [17] H. R. Marzban, M. Shahsiah, Solution of piecewise constant delay systems using hybrid of block-pulse and Chebyshev polynomials, J. Optim. Control Appl. Method., 32 (2011), 647–659.
    [18] A. H. Borzabadi, S. Asadi, A wavelet collocation method for optimal control of non-linear time-delay systems via Haar wavelets, J. Math. Control Inform., 32 (2015), 41–54. https://doi.org/10.1093/imamci/dnt032. doi: 10.1093/imamci/dnt032
    [19] A. J. Koshkouei, M. H. Farahi, K. J. Burnham, An almost optimal control design method for nonlinear time-delay systems, Int. J. Control, 85 (2012), 147–158. http://dx.doi.org/10.1080/00207179.2011.641158 doi: 10.1080/00207179.2011.641158
    [20] A. Nazemi, M. Mansoori, Solving optimal control problems of the time-delayed systems by Haar wavelet, J. Vib. Control, 22 (2016), 2657–2670. http://dx.doi.org/10.1177/1077546314550698 doi: 10.1177/1077546314550698
    [21] D. Y. Sun, T. C. Huang, The solutions of time-delayed optimal control problems by the use of modified line-up competition algorithm, J. Taiwan Inst. Chem. E., 41 (2010), 54–64. https://doi.org/10.1016/j.jtice.2009.04.013. doi: 10.1016/j.jtice.2009.04.013
    [22] H. J. Kushner, D. I. Barnea, On the control of a linear functional-differential equation with quadratic cost, SIAM J. Control, 8 (1970), 257–272.
    [23] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral method in fluid dynamics, Springer, New York, 1988.
    [24] P. Lu, H. Sun, B. Tsai, Closed-loop endoatmospheric ascent guidance, J. Guid. Control Dynam., 26 (2003), 283–294. https://doi.org/10.2514/2.5045 doi: 10.2514/2.5045
    [25] R. E. Stevens, W. Wiesel, Large time scale optimal control of an electrodynamic tether satellite, J. Guid. Control Dynam., 32 (2008), 1716–1727. https://doi.org/10.2514/1.34897 doi: 10.2514/1.34897
    [26] P. Wiliams, B. Lansdorp, W. Ockels, Optimal crosswind towing and power generation with tethered kites, J. Guid. Control Dynam., 31 (2008), 81–93. https://doi.org/10.2514/1.30089 doi: 10.2514/1.30089
    [27] F. Fahroo, I. M. Ross, Costate estimation by a Lagrange pseudospectral, J. Guid. Control Dynam., 24 (2001), 270–277. https://doi.org/10.2514/2.4709
    [28] G. Xiao, Z. Ming, Direct trajectory optimization based on a mapped Chebyshev pseudospectral method, J. Aeronautics, 26 (2013), 401–412. https://doi.org/10.1016/j.cja.2013.02.018 doi: 10.1016/j.cja.2013.02.018
    [29] L. D. Berkovitz, Optimal control theory, New York: Springer, 1974.
    [30] A. D. Ioffe, V. M. Tichomirov, Theory of extremal problems, Amsterdam, The Netherlands: North Holland, 1979.
    [31] H. O. Fattorini, Infinite dimensional optimization and control theory, UK: Cambridge Univ. Press, 1999.
    [32] I. M. Ross, Q. Gong, W. Kang, A pseudospectral method for the optimal control of constrained feedback linearizable systems, IEEE T. Autom. Contr., 51 (2006), 1115–1129. https://doi.org/10.1109/TAC.2006.878570
    [33] J. Shen, T. Tang, L. Wang, Spectral methods: Algorithms, analysis and applications, Springer, 41 (2011).
    [34] B. Fornberg, A practical guide to pseudospectral methods, Cambridge University Press, 1998.
    [35] Q. Gong, I. M. Ross, W. Kang, F. Fahroo, Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control, J. Comput. Optim. Appl., 41 (2008), 307–335. https://doi.org/10.1007/s10589-007-9102-4 doi: 10.1007/s10589-007-9102-4
    [36] M. Dadkhah, M. H. Farahi, Numerical solution of time delay optimal control problems by hybrid of block-pulse functions and Bernstein polynomials, IMA J. Math. Control I., 35 (2018), 451–477. https://doi.org/10.1093/imamci/dnw057 doi: 10.1093/imamci/dnw057
    [37] S. Effati, S. A. Rakhshan, S. Saqi, Formulation of Euler-Lagrange equations for multidelay fractional optimal control problem, J. Comput. Nonlinear Dynam., 13 (2018), 1–10. https://doi.org/10.1115/1.4039900 doi: 10.1115/1.4039900
    [38] A. Nazemi, M. M. Shabani, Numerical solution of the time-delayed optimal control problems with hybrid functions, IMA J. Math. Control I., 32 (2015), 623–638. https://doi.org/10.1093/imamci/dnu012 doi: 10.1093/imamci/dnu012
    [39] K. L. Teo, K. H. Wong, D. J. Clements, Optimal control computation for nonlinear time-lag systems with linear terminal constraints, J. Optim. Theor. Appl., 44 (1984), 509–526.
    [40] A. Y. Lee, Numerical solution of time-delayed optimal control problems with terminal inequality constraints, J. Control Appl. Method., 14 (1993), 203–210.
    [41] S. Hosseinpour, A. Nazemi, E. Tohidi, Müntz-Legendre spectral collocation method for solving delay fractional optimal control problems, J. Comput. Appl. Math., 351 (2019), 344–363. https://doi.org/10.1016/j.cam.2018.10.058 doi: 10.1016/j.cam.2018.10.058
    [42] K. H. Wong, D. J. Clements, K. L. Teo, Optimal control computation for nonlinear time-lag systems, J. Optim., 47 (1985), 91–107.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1581) PDF downloads(111) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog