Research article

Periodic stationarity conditions for mixture periodic INGARCH models

  • Received: 19 December 2021 Revised: 06 February 2022 Accepted: 16 February 2022 Published: 18 March 2022
  • MSC : 37A25, 60A10, 60G10, 60H35, 62M10, 62M20

  • This paper proposes strict periodic stationarity and periodic ergodicity conditions for a finite mixture integer-valued GARCH model with $ S $-periodic time-varying parameters that depend on the state of an independent and periodically distributed regime sequence. In this model, the past conditional mean values depend on the past of the regime variable in the same order, so the model is characterized by path-regime dependence. We also propose sufficient conditions for periodic stationarity when the conditional means are nonlinear of past observations. The results are applied to various discrete conditional distributions.

    Citation: Bader S. Almohaimeed. Periodic stationarity conditions for mixture periodic INGARCH models[J]. AIMS Mathematics, 2022, 7(6): 9809-9824. doi: 10.3934/math.2022546

    Related Papers:

  • This paper proposes strict periodic stationarity and periodic ergodicity conditions for a finite mixture integer-valued GARCH model with $ S $-periodic time-varying parameters that depend on the state of an independent and periodically distributed regime sequence. In this model, the past conditional mean values depend on the past of the regime variable in the same order, so the model is characterized by path-regime dependence. We also propose sufficient conditions for periodic stationarity when the conditional means are nonlinear of past observations. The results are applied to various discrete conditional distributions.



    加载中


    [1] A. Ahmad, C. Francq, Poisson QMLE of count time series models, J. Time Ser. Anal., 37 (2016), 291–314. http://dx.doi.org/10.1111/jtsa.12167 doi: 10.1111/jtsa.12167
    [2] M. Aitkin, D. B. Rubin, Estimation and hypothesis testing in finite mixture models, J. Roy. Stat. Soc. B, 47 (1985), 67–75. http://dx.doi.org/10.1111/j.2517-6161.1985.tb01331.x doi: 10.1111/j.2517-6161.1985.tb01331.x
    [3] A. Aknouche, C. Francq, Count and duration time series with equal conditional stochastic and mean orders, Economet. Theor., 37 (2021), 248–280. http://dx.doi.org/10.1017/S0266466620000134 doi: 10.1017/S0266466620000134
    [4] A. Aknouche, C. Francq, Stationarity and ergodicity of Markov switching positive conditional mean models, J. Time Ser. Anal., 2022, in press. http://dx.doi.org/10.1111/jtsa.12621
    [5] A. Aknouche, B. S. Almohaimeed, S. Dimitrakopoulos, Forecasting transaction counts with integer-valued GARCH models, Stud. Nonlinear Dyn. Economet., 2021, in press. http://dx.doi.org/10.1515/snde-2020-0095
    [6] A. Aknouche, N. Demmouche, S. Dimitrakopoulos, N. Touche, Bayesian analysis of periodic asymmetric power GARCH models, Stud. Nonlinear Dyn. Economet., 24 (2020), 1–24. http://dx.doi.org/10.1515/snde-2018-0112 doi: 10.1515/snde-2018-0112
    [7] A. Aknouche, W. Bentarzi, N. Demouche, On periodic ergodicity of a general periodic mixed Poisson autoregression, Stat. Probabil. Lett., 134 (2018), 15–21. http://dx.doi.org/10.1016/j.spl.2017.10.014 doi: 10.1016/j.spl.2017.10.014
    [8] A. Aknouche, S. Bendjeddou, N. Touche, Negative binomial quasi-likelihood inference for general integer-valued time series models, J. Time Ser. Anal., 39 (2018), 192–211. http://dx.doi.org/10.1111/jtsa.12277 doi: 10.1111/jtsa.12277
    [9] A. Aknouche, N. Demmouche, Ergodicity conditions for a double mixed Poisson autoregression, Stat. Probabil. Lett., 147 (2019), 6–11. http://dx.doi.org/10.1016/j.spl.2018.11.030 doi: 10.1016/j.spl.2018.11.030
    [10] A. Aknouche, N. Rabehi, On an independent and identically distributed mixture bilinear time series model, J. Time Ser. Anal., 31 (2010), 113–131. http://dx.doi.org/10.1111/j.1467-9892.2009.00649.x doi: 10.1111/j.1467-9892.2009.00649.x
    [11] B. S. Almohaimeed, Ergodic properties of periodic integer-valued GARCH models, Adv. Appl. Stat., 72 (2022), 55–70. http://dx.doi.org/10.17654/0972361722004 doi: 10.17654/0972361722004
    [12] L. Bauwens, A. Preminger, J. Rombouts, Theory and inference for a Markov Switching GARCH model, Economet. J., 13 (2010), 218–244. http://dx.doi.org/10.1111/j.1368-423X.2009.00307.x doi: 10.1111/j.1368-423X.2009.00307.x
    [13] M. Bentarzi, W. Bentarzi, Periodic integer-valued GARCH(1, 1) model, Commun. Stat.-Simul. Comput., 46 (2017), 1167–1188. http://dx.doi.org/10.1080/03610918.2014.994780 doi: 10.1080/03610918.2014.994780
    [14] J. Bracher, L. Held, Periodically stationary multivariate autoregressive models, 2017, arXiv: 1707.04635.
    [15] P. Bougerol, Kalman filtering with random coefficients and contractions, SIAM J. Control Optim., 31 (1993), 942–959. http://dx.doi.org/10.1137/0331041 doi: 10.1137/0331041
    [16] M. Bourguignon, K. L. P. Vasconcellos, V. A. Reisen, M. Ispány, A Poisson INAR(1) process with a seasonal structure, J. Stat. Comput. Sim., 86 (2016), 373–387. http://dx.doi.org/10.1080/00949655.2015.1015127 doi: 10.1080/00949655.2015.1015127
    [17] R. A. Boyles, W. A. Gardner, Cycloergodic properties of discrete-parameter nonstationary stochastic processes, IEEE, Trans. Inform. Theory, 29 (1983), 105–114. http://dx.doi.org/10.1109/TIT.1983.1056613 doi: 10.1109/TIT.1983.1056613
    [18] V. Christou, K. Fokianos, Quasi-likelihood inference for negative binomial time series models, J. Time Ser. Anal., 35 (2014), 55–78. http://dx.doi.org/10.1111/jtsa.12050 doi: 10.1111/jtsa.12050
    [19] R. A. Davis, S. H. Holan, R. Lund, N. Ravishanker, Handbook of discrete-valued time series, Boca Raton: CRC Press, 2016.
    [20] R. A. Davis, H. Liu, Theory and inference for a class of observation-driven models with application to time series of counts, Stat. Sinica, 26 (2016), 1673–1707. http://dx.doi.org/10.5705/ss.2014.145t doi: 10.5705/ss.2014.145t
    [21] M. L. Diop, A. Diop, A. K. Diongue, A mixture integer-valued GARCH model, Revstat-Stat. J., 14 (2016), 245–271.
    [22] M. L. Diop, A. Diop, A. Kâ, A negative binomial mixture integer-valued GARCH model, Afrika Statistika, 13 (2018), 1645–1666. http://dx.doi.org/10.16929/as/1645.126 doi: 10.16929/as/1645.126
    [23] P. Doukhan, K. Fokianos, D. Tjøstheim, On weak dependence conditions for Poisson autoregressions, Stat. Probabil. Lett., 82 (2012), 942–948. http://dx.doi.org/10.1016/j.spl.2012.01.015 doi: 10.1016/j.spl.2012.01.015
    [24] P. Doukhan, K. Fokianos, J. Rynkiewicz, Mixtures of nonlinear Poisson autoregressions, J. Time Ser. Anal., 42 (2021), 107–135. http://dx.doi.org/10.1111/jtsa.12558 doi: 10.1111/jtsa.12558
    [25] R. Ferland, A. Latour, D. Oraichi, Integer-valued GARCH process, J. Time Ser. Anal., 27 (2006), 923–942. http://dx.doi.org/10.1111/j.1467-9892.2006.00496.x doi: 10.1111/j.1467-9892.2006.00496.x
    [26] C. Francq, M. Roussignol, Ergodicity of autoregressive processes with Markov-switching and consistency of the maximum-likelihood estimator, Statistics, 32 (1998), 151–173. http://dx.doi.org/10.1080/02331889808802659 doi: 10.1080/02331889808802659
    [27] C. Francq, J.-M. Zakoian, GARCH models: structure, statistical inference and financial applications, 2 Eds., John Wiley & Sons, 2019.
    [28] C. Francq, J.-M. Zakoian, Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference, Comput. Stat. Data Anal., 52 (2008), 3027–3046. http://dx.doi.org/10.1016/j.csda.2007.08.003 doi: 10.1016/j.csda.2007.08.003
    [29] P. R. Filho, V. A. Reisen, P. Bondon, M. Ispany, M. Melo, F. Sarquis, A periodic and seasonal statistical model for non-negative integer-valued time series with an application to dispensed medications in respiratory diseases, Appl. Math. Model., 96 (2021), 545–558. http://dx.doi.org/10.1016/j.apm.2021.03.025 doi: 10.1016/j.apm.2021.03.025
    [30] K. Fokianos, A. Rahbek, D. Tjøstheim, Poisson autoregression, J. Amer. Stat. Assoc., 140 (2009), 1430–1439. http://dx.doi.org/10.1198/jasa.2009.tm08270 doi: 10.1198/jasa.2009.tm08270
    [31] R. Horn, C. R. Johnson, Matrix analysis, 2 Eds., Cambridge University Press, 2013.
    [32] Q. Li, H. Chen, F. Zhu, Robust estimation for Poisson integer-valued GARCH models using a new hybrid loss, J. Syst. Sci. Complex., 34 (2021), 1578–1596. http://dx.doi.org/10.1007/s11424-020-9344-0 doi: 10.1007/s11424-020-9344-0
    [33] A. Manaa, M. Bentarzi, Periodic negative binomial INGARCH(1, 1) model, Commun. Stat.-Simul. Comput., 2022, in press. http://dx.doi.org/10.1080/03610918.2021.1990329
    [34] H. Mao, F. Zhu, Y. Cui, A generalized mixture integer-valued GARCH model, Stat. Methods Appl., 29 (2020), 527–552. http://dx.doi.org/10.1007/s10260-019-00498-2 doi: 10.1007/s10260-019-00498-2
    [35] F. Ouzzani, M. Bentarzi, On mixture periodic Integer-Valued ARCH models, Commun. Stat.-Simul. Comput., 50 (2021), 3931–3957. http://dx.doi.org/10.1080/03610918.2019.1635155 doi: 10.1080/03610918.2019.1635155
    [36] D. C. H. Wee, F. Chen, W. T. M. Dunsmuir, Likelihood inference for Markov switching GARCH(1, 1) models using sequential Monte Carlo, Economet. Stat., 2 (2022), 50–68. http://dx.doi.org/10.1016/j.ecosta.2020.03.004 doi: 10.1016/j.ecosta.2020.03.004
    [37] C. H. Weiss, F. Zhu, A. Hoshiyar, Softplus INGARCH models, Stat. Sinica, 2022, in press. http://dx.doi.org/10.5705/ss.202020.0353
    [38] Y. Xu, F. Zhu, A new GJR-GARCH model for $\mathbb{Z}$-valued time series, J. Time Ser. Anal., 2022, in press. http://dx.doi.org/10.1111/jtsa.12623
    [39] F. Zhu, A negative binomial integer-valued $GARCH$ model, J. Time Ser. Anal., 32 (2011), 54–67. http://dx.doi.org/10.1111/j.1467-9892.2010.00684.x doi: 10.1111/j.1467-9892.2010.00684.x
    [40] F. Zhu, Q. Li, D. Wang, A mixture integer-valued ARCH model, J. Stat. Plan. Infer., 140 (2010), 2025–2036. http://dx.doi.org/10.1016/j.jspi.2010.01.037 doi: 10.1016/j.jspi.2010.01.037
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1503) PDF downloads(100) Cited by(2)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog