This paper proposes strict periodic stationarity and periodic ergodicity conditions for a finite mixture integer-valued GARCH model with S-periodic time-varying parameters that depend on the state of an independent and periodically distributed regime sequence. In this model, the past conditional mean values depend on the past of the regime variable in the same order, so the model is characterized by path-regime dependence. We also propose sufficient conditions for periodic stationarity when the conditional means are nonlinear of past observations. The results are applied to various discrete conditional distributions.
Citation: Bader S. Almohaimeed. Periodic stationarity conditions for mixture periodic INGARCH models[J]. AIMS Mathematics, 2022, 7(6): 9809-9824. doi: 10.3934/math.2022546
[1] | Nattapong Kamsrisuk, Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Quantum calculus with respect to another function. AIMS Mathematics, 2024, 9(4): 10446-10461. doi: 10.3934/math.2024510 |
[2] | Xue-Xiao You, Muhammad Aamir Ali, Ghulam Murtaza, Saowaluck Chasreechai, Sotiris K. Ntouyas, Thanin Sitthiwirattham . Post-quantum Simpson's type inequalities for coordinated convex functions. AIMS Mathematics, 2022, 7(2): 3097-3132. doi: 10.3934/math.2022172 |
[3] | Saowaluck Chasreechai, Muhammad Aamir Ali, Surapol Naowarat, Thanin Sitthiwirattham, Kamsing Nonlaopon . On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications. AIMS Mathematics, 2023, 8(2): 3885-3896. doi: 10.3934/math.2023193 |
[4] | Saad Ihsan Butt, Muhammad Nasim Aftab, Hossam A. Nabwey, Sina Etemad . Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus. AIMS Mathematics, 2024, 9(3): 5523-5549. doi: 10.3934/math.2024268 |
[5] | Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218 |
[6] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[7] | Muhammad Uzair Awan, Muhammad Aslam Noor, Tingsong Du, Khalida Inayat Noor . On M-convex functions. AIMS Mathematics, 2020, 5(3): 2376-2387. doi: 10.3934/math.2020157 |
[8] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[9] | Andrea Aglić Aljinović, Domagoj Kovačević, Mehmet Kunt, Mate Puljiz . Correction: Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Mathematics, 2021, 6(2): 1880-1888. doi: 10.3934/math.2021114 |
[10] | Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon . Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications. AIMS Mathematics, 2021, 6(12): 13327-13346. doi: 10.3934/math.2021771 |
This paper proposes strict periodic stationarity and periodic ergodicity conditions for a finite mixture integer-valued GARCH model with S-periodic time-varying parameters that depend on the state of an independent and periodically distributed regime sequence. In this model, the past conditional mean values depend on the past of the regime variable in the same order, so the model is characterized by path-regime dependence. We also propose sufficient conditions for periodic stationarity when the conditional means are nonlinear of past observations. The results are applied to various discrete conditional distributions.
Simpson's rules are well-known methods for numerical integration and numerical estimation of definite integral. Thomas Simpson is credited with inventing this process (1710–1761). However, about 100 years earlier, Johannes Kepler used the same approximation, so this form is also known as Kepler's law. The three-point Newton-Cotes quadrature rule is included in Simpson's rule, so estimation based on three steps quadratic kernel is often referred to as Newton type results.
1) Simpson's quadrature formula (Simpson's 1/3 rule)
∫π2π1Π(x)dx≈π2−π16[Π(π1)+4Π(π1+π22)+Π(π2)]. |
2) Simpson's second formula or Newton-Cotes quadrature formula (Simpson's 3/8 rule).
∫π2π1Π(x)dx≈π2−π18[Π(π1)+3Π(2π1+π23)+3Π(π1+2π23)+Π(π2)]. |
In the literature, there are several estimations linked to these quadrature laws, one of which is known as Simpson's inequality:
Theorem 1.1. Suppose that Π:[π1,π2]→R is a four times continuously differentiable mapping on (π1,π2), and let ‖Π(4)‖∞=supx∈(π1,π2)|Π(4)(x)|<∞. Then, one has the inequality
|13[Π(π1)+Π(π2)2+2Π(π1+π22)]−1π2−π1∫π2π1Π(x)dx|≤12880‖Π(4)‖∞(π2−π1)4. |
Many authors have concentrated on Simpson's type inequalities for different classes of functions in recent years. Since convexity theory is an effective and efficient method for solving a large number of problems that exist within various branches of pure and applied mathematics, some mathematicians have worked on Simpson's and Newton's type results for convex mappings. Dragomir et al. [1], presented new Simpson's type inequalities and their applications to numerical integration quadrature formulas. Furthermore, Alomari et al. in [2] derive some Simpson's type inequalities for s-convex functions. Following that, in [3], Sarikaya et al. discovered variants of Simpson's type inequalities dependent on convexity. The authors given some Newton's type inequalities for harmonic and p-harmonic convex functions in [4,5]. Iftikhar et al. also have new Newton's type inequalities for functions whose local fractional derivatives are generalized convex in [6].
On the other hand, in the domain of q analysis, many works are being carried out as initiated by Euler in order to attain adeptness in mathematics that constructs quantum computing q calculus considered as a relationship between physics and mathematics. In different areas of mathematics, it has numerous applications such as combinatorics, number theory, basic hypergeometric functions, orthogonal polynomials, and other sciences, as well as mechanics, the theory of relativity, and quantum theory [7,8]. Quantum calculus also has many applications in quantum information theory, which is an interdisciplinary area that encompasses computer science, information theory, philosophy, and cryptography, among other areas [9,10]. Apparently, Euler invented this important branch of mathematics. He used the q parameter in Newton's work on infinite series. Later, in a methodical manner, the q-calculus, calculus without limits, was firstly given by Jackson [11,12]. In 1966, Al-Salam [13] introduced a q-analogue of the q-fractional integral and q -Riemann–Liouville fractional. Since then, related research has gradually increased. In particular, in 2013, Tariboon [14] introduced the π1Dq-difference operator and qπ1-integral. In 2020, Bermudo et al. [15] introduced the notion of π2Dq derivative and qπ2-integral. Sadjang [16] generalized to quantum calculus and introduced the notions of post-quantum calculus, or briefly (p,q)-calculus. Soontharanon et al. [17] introduced the fractional (p,q)-calculus later on. In [18], Tunç and Göv gave the post-quantum variant of π1Dq-difference operator and qπ1-integral. Recently, in 2021, Chu et al. [19] introduced the notions of π2Dp,q derivative and (p,q)π2-integral.
Many integral inequalities have been studied using quantum and post-quantum integrals for various types of functions. For example, in [15,20,21,22,23,24,25,26,27], the authors used π1Dq,π2Dq-derivatives and qπ1,qπ2-integrals to prove Hermite–Hadamard integral inequalities and their left–right estimates for convex and coordinated convex functions. In [28], Noor et al. presented a generalized version of quantum integral inequalities. For generalized quasi-convex functions, Nwaeze et al. proved certain parameterized quantum integral inequalities in [29]. Khan et al. proved quantum Hermite–Hadamard inequality using the green function in [30]. Budak et al. [31], Ali et al. [32,33], and Vivas-Cortez et al. [34] developed new quantum Simpson's and quantum Newton's type inequalities for convex and coordinated convex functions. For quantum Ostrowski's inequalities for convex and co-ordinated convex functions, one can consult [35,36,37,38]. Kunt et al. [39] generalized the results of [22] and proved Hermite–Hadamard-type inequalities and their left estimates using π1Dp,q difference operator and (p,q)π1 integral. Recently, Latif et al. [40] found the right estimates of Hermite–Hadamard type inequalities proved by Kunt et al. [39]. To prove Ostrowski's inequalities, Chu et al. [19] used the concepts of π2Dp,q difference operator and (p,q)π2 integral.
Inspired by this ongoing studies, we offer some new quantum parameterized Simpson's and Newton's type inequalities for convex functions using the notions of quantum derivatives and integrals.
The structure of this paper is as follows: Section 2 provides a quick review of the ideas of q-calculus, as well as some related works. In Section 3, we present two integral identities that aid in the proof of the key conclusions. We prove quantum Simpson's and quantum Newton's inequalities in sections 4 and 5, respectively. Section 6 finishes with a few suggestions for future research.
In this section, we first present some known definitions and related inequalities in q-calculus. Set the following notation(see, [8]):
[n]q=1−qn1−q=n−1∑k=0qk, q∈(0,1). |
Jackson [11] defined the q-integral of a given function Π from 0 to π2 as follows:
π2∫0Π(x)dqx=(1−q)π2∞∑n=0qnΠ(π2qn), where 0<q<1 | (2.1) |
provided that the sum converges absolutely. Moreover, he defined the q -integral of a given function over the interval [π1,π2] as follows:
π2∫π1Π(x)dqx=π2∫0Π(x)dqx−π1∫0Π(x)dqx. |
Definition 2.1. [14] We consider the mapping Π:[π1,π2]→R. Then, the qπ1-derivative of Π at x∈[π1,π2] is defined by the the following expression
π1DqΠ(x)=Π(x)−Π(qx+(1−q)π1)(1−q)(x−π1),x≠π1. | (2.2) |
If x=π1, we define π1DqΠ(π1)=limx→π1π1DqΠ(x) if it exists and it is finite.
Definition 2.2. [15] We consider the mapping Π:[π1,π2]→R. Then, the qπ2-derivative of Π at x∈[π1,π2] is defined by
π2DqΠ(x)=Π(qx+(1−q)π2)−Π(x)(1−q)(π2−x),x≠π2. | (2.3) |
If x=π2, we define π2DqΠ(π2)=limx→π2π2DqΠ(x) if it exists and it is finite.
Definition 2.3. [14] We consider the mapping Π:[π1,π2]→R. Then, the qπ1-definite integral on [π1,π2] is defined by
π2∫π1Π(x)π1dqx=(1−q)(π2−π1)∞∑n=0qnΠ(qnπ2+(1−qn)π1)=(π2−π1)1∫0Π((1−τ)π1+τπ2)dqτ. | (2.4) |
Remark 2.1. If we set π1=0 in Definition 2.3, then we obtain q-Jackson integral, which is given in expression (2.1).
In [22,27], the authors proved quantum Hermite-Hadamard type inequalities and their estimations by using the notions of qπ1 -derivative and qπ1-integral.
On the other hand, in [15], Bermudo et al. gave the following definition and obtained the related Hermite-Hadamard type inequalities:
Definition 2.4. [15] We consider the mapping Π:[π1,π2]→R. Then, the qπ2-definite integral on [π1,π2] is defined by
π2∫π1Π(x)π2dqx=(1−q)(π2−π1)∞∑n=0qnΠ(qnπ1+(1−qn)π2)=(π2−π1)1∫0Π(τπ1+(1−τ)π2)dqτ. |
Theorem 2.1. [15] Let Π:[π1,π2]→R be a convex function on [π1,π2] and 0<q<1. Then, qπ2-Hermite-Hadamard inequalities are given as follows:
Π(π1+qπ2[2]q)≤1π2−π1π2∫π1Π(x)π2dqx≤Π(π1)+qΠ(π2)[2]q. | (2.5) |
In [24], Budak proved the left and right bounds of the inequality (2.5).
To obtain the key results of this paper, we prove three separate identities in this section.
Let's begin with the following crucial Lemma.
Lemma 3.1. If Π:[π1,π2]⊂R→R is a qπ1-differentiable function on (π1,π2) such that π1DqΠ is continuous and integrable on [π1,π2], then we have the following identity:
qλΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx=q(π2−π1)×[∫1[2]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫11[2]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt] | (3.1) |
where q∈(0,1).
Proof. From Definition 2.1, we have
π1DqΠ(tπ2+(1−t)π1)=Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)t. | (3.2) |
By utilizing the properties of quantum integrals, we obtain
∫1[2]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫11[2]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt=∫1[2]q0(μ−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫10(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt=(μ−λ)∫1[2]q0Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt+∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)dqt−μ∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt. | (3.3) |
By Definition 2.3, we have the following equalities
∫1[2]q0Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt=1π2−π1[∞∑n=0Π(qn[2]qπ2+(1−qn[2]q)π1)−∞∑n=0Π(qn+1[2]qπ2+(1−qn+1[2]q)π1)]=1π2−π1[Π(π1q+π2[2]q)−Π(π1)], | (3.4) |
∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt=1π2−π1[Π(π2)−Π(π1)] | (3.5) |
and
∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)dqt=1π2−π1[∞∑n=0qnΠ(qnπ2+(1−qn)π1)−∞∑n=0qnΠ(qn+1π2+(1−qn+1)π1)]=1π2−π1[∞∑n=0qnΠ(qnπ2+(1−qn)π1)−1q∞∑n=1qnΠ(qnπ2+(1−qn)π1)]=1π2−π1[∞∑n=0qnΠ(qnπ2+(1−qn)π1)−1q∞∑n=0qnΠ(qnπ2+(1−qn)π1)+1qΠ(π2)]=1π2−π1[1qΠ(π2)−1q(π2−π1)∫π2π1Π(x)π1dqx]. | (3.6) |
If we substitute the computed integrals (3.4)–(3.6) in (3.3), we establish the required identity (3.1).
Remark 3.1. In Lemma 3.1, if we choose λ=1[6]q and μ=[5]q[6]q, then we have the following identity:
1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]−1π2−π1π2∫π1Π(s)π1dqs=q(π2−π1)×[∫1[2]q0(t−1[6]q)π1DqΠ(tπ2+(1−t)π1)dqt+∫11[2]q(t−[5]q[6]q)π1DqΠ(tπ2+(1−t)π1)dqt] |
which is proved by Iftikhar et al. in [41].
Remark 3.2. In Lemma 3.1, if we choose λ=μ=1[2]q, then we obtain [42,Lemma 3.1].
Remark 3.3. In Lemma 3.1, if we choose λ=0 and μ=1q, then Lemma 3.1 reduces to [22,Lemma 11].
Remark 3.4. In Lemma 3.1, if we take the limit q→1−, then we have [43,Lemma 2.1 for m=1].
Lemma 3.2. If Π:[π1,π2]⊂R→R is a qπ1-differentiable function on (π1,π2) such that π1DqΠ is continuous and integrable on [π1,π2], then we have the following identity:
qλΠ(π1)+q(μ−λ)Π(π1q[2]q+π2[3]q)+q(ν−μ)Π(π1q2+π2[2]q[3]q)+(1−νq)Π(π2)−1π2−π1∫π2π1Π(x)π1dqx=(π2−π1)q[∫1[3]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q1[3]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt+∫1[2]q[3]q(t−ν)π1DqΠ(tπ2+(1−t)π1)dqt] | (3.7) |
where q∈(0,1).
Proof. By the fundamental properties of quantum integrals, we have
∫1[3]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q1[3]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt+∫1[2]q[3]q(t−ν)π1DqΠ(tπ2+(1−t)π1)dqt=∫1[3]q0(μ−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q0(ν−μ)π1DqΠ(tπ2+(1−t)π1)dqt+∫10(t−ν)π1DqΠ(tπ2+(1−t)π1)dqt. |
By applying the same steps in the proof of Lemma 3.1 for rest of this proof, one can obtain the desired identity (3.7).
Remark 3.5. If we take \lambda = \frac{1}{\left[8\right] _{q}} , \mu = \frac{1}{\left[2 \right] _{q}} , and \nu = \frac{\left[7\right] _{q}}{\left[8\right] _{q}} in Lemma 3.2, then we obtain the following identity
\begin{eqnarray*} &&\frac{1}{\left[ 8\right] _{q}}\left[ q\Pi \left( \pi _{1}\right) +\frac{ q^{3}\left[ 6\right] _{q}}{\left[ 2\right] _{q}}\Pi \left( \frac{\pi _{1}q \left[ 2\right] _{q}+\pi _{2}}{\left[ 3\right] _{q}}\right) +\frac{q^{2} \left[ 6\right] _{q}}{\left[ 2\right] _{q}}\Pi \left( \frac{\pi _{1}q^{2}+\pi _{2}\left[ 2\right] _{q}}{\left[ 3\right] _{q}}\right) +\Pi \left( \pi _{2}\right) \right] \\ &&-\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x \\ & = &q\left( \pi _{2}-\pi _{1}\right) \left[ \int_{0}^{\frac{1}{\left[ 3\right] _{q}}}\left( t-\frac{1}{\left[ 8\right] _{q}}\right) \; _{\pi _{1}}D_{q}\Pi \left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) d_{q}t\right. \\ &&+\int_{\frac{1}{\left[ 3\right] _{q}}}^{\frac{\left[ 2\right] _{q}}{\left[ 3\right] _{q}}}\left( t-\frac{1}{\left[ 2\right] _{q}}\right) \; _{\pi _{1}}D_{q}\Pi \left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) d_{q}t \\ &&\left. +\int_{\frac{\left[ 2\right] _{q}}{\left[ 3\right] _{q}}}^{1}\left( t-\frac{\left[ 7\right] _{q}}{\left[ 8\right] _{q}}\right) \; _{\pi _{1}}D_{q}\Pi \left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) d_{q}t \right] \end{eqnarray*} |
which is proved by Erden et al. in [44].
Remark 3.6. If we take \lambda = \mu = \nu = \frac{1}{\left[2\right] _{q}} , in Lemma 3.2, then we obtain [42,Lemma 3.1].
Corollary 3.1. If we take the limit q\rightarrow 1^{-} in Lemma 3.2, then we obtain the following new identity
\begin{eqnarray*} &&\lambda \Pi \left( \pi _{1}\right) +\left( \mu -\lambda \right) \Pi \left( \frac{2\pi _{1}+\pi _{2}}{3}\right) +\left( \nu -\mu \right) \Pi \left( \frac{\pi _{1}+2\pi _{2}}{3}\right) +\left( 1-\nu \right) \Pi \left( \pi _{2}\right) \\ &&-\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) dx \\ & = &\left( \pi _{2}-\pi _{1}\right) \left[ \int_{0}^{\frac{1}{3}}\left( t-\lambda \right) \Pi ^{\prime }\left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) dt+\int_{\frac{1}{3}}^{\frac{2}{3}}\left( t-\mu \right) \Pi ^{\prime }\left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) dt\right. \\ &&\left. +\int_{\frac{2}{3}}^{1}\left( t-\nu \right) \Pi ^{\prime }\left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) dt\right] \end{eqnarray*} |
For brevity, let us prove another lemma that will be used frequently in the main results.
Lemma 3.3. The following quantum integrals holds for \lambda, \mu, \nu \geq 0 :
\begin{equation} \Omega _{11} = \int_{0}^{\frac{1}{\left[ 2\right] _{q}}}\left \vert t-\lambda \right \vert d_{q}t = \frac{2\lambda ^{2}q}{\left[ 2\right] _{q}}+\frac{1}{ \left( \left[ 2\right] _{q}\right) ^{3}}-\frac{\lambda }{\left[ 2\right] _{q} } \end{equation} | (3.8) |
\begin{equation} \Omega _{12} = \int_{\frac{1}{\left[ 2\right] _{q}}}^{1}\left \vert t-\mu \right \vert d_{q}t = \frac{2\mu ^{2}q}{\left[ 2\right] _{q}}+\frac{\left( \left[ 2\right] _{q}\right) ^{2}+1}{\left( \left[ 2\right] _{q}\right) ^{3}}- \frac{\mu \left( \left[ 2\right] _{q}+1\right) }{\left[ 2\right] _{q}} \end{equation} | (3.9) |
\begin{equation} \Omega _{13} = \int_{0}^{\frac{1}{\left[ 3\right] _{q}}}\left \vert t-\lambda \right \vert d_{q}t = \frac{2\lambda ^{2}q}{\left[ 2\right] _{q}}+\frac{1}{ \left[ 2\right] _{q}\left( \left[ 3\right] _{q}\right) ^{2}}-\frac{\lambda }{ \left[ 3\right] _{q}} \end{equation} | (3.10) |
\begin{equation} \Omega _{14} = \int_{\frac{1}{\left[ 3\right] _{q}}}^{\frac{\left[ 2\right] _{q}}{\left[ 3\right] _{q}}}\left \vert t-\mu \right \vert d_{q}t = \frac{2\mu ^{2}q}{\left[ 2\right] _{q}}-\frac{\mu \left( \left[ 2\right] _{q}+1\right) }{\left[ 3\right] _{q}}+\frac{\left( \left[ 2\right] _{q}\right) ^{2}+1}{ \left[ 2\right] _{q}\left( \left[ 3\right] _{q}\right) ^{2}} \end{equation} | (3.11) |
\begin{equation} \Omega _{15} = \int_{\frac{\left[ 2\right] _{q}}{\left[ 3\right] _{q}} }^{1}\left \vert t-\nu \right \vert d_{q}t = \frac{2\nu ^{2}q}{\left[ 2\right] _{q}}-\frac{\nu \left( \left[ 2\right] _{q}+\left[ 3\right] _{q}\right) }{ \left[ 3\right] _{q}}+\frac{\left[ 2\right] _{q}}{\left( \left[ 3\right] _{q}\right) ^{2}}+\frac{1}{\left[ 2\right] _{q}} \end{equation} | (3.12) |
\begin{equation} \Omega _{1} = \int_{0}^{\frac{1}{\left[ 2\right] _{q}}}t\left \vert t-\lambda \right \vert d_{q}t = \frac{2\lambda ^{3}q^{2}}{\left[ 2\right] _{q}\left[ 3 \right] _{q}}+\frac{1}{\left( \left[ 2\right] _{q}\right) ^{3}\left[ 3\right] _{q}}-\frac{\lambda }{\left( \left[ 2\right] _{q}\right) ^{3}} \end{equation} | (3.13) |
\begin{eqnarray} \Omega _{2} & = &\int_{0}^{\frac{1}{\left[ 2\right] _{q}}}\left( 1-t\right) \left \vert t-\lambda \right \vert d_{q}t \\ && \\ & = &\Omega _{11}-\Omega _{1} \\ && \\ & = &\frac{2\lambda ^{2}q}{\left[ 2\right] _{q}}-\frac{2\lambda ^{3}q^{2}}{ \left[ 2\right] _{q}\left[ 3\right] _{q}}-\frac{\lambda \left( \left( \left[ 2\right] _{q}\right) ^{2}-1\right) }{\left( \left[ 2\right] _{q}\right) ^{3}} +\frac{\left[ 3\right] _{q}-1}{\left( \left[ 2\right] _{q}\right) ^{3}\left[ 3\right] _{q}} \end{eqnarray} | (3.14) |
\begin{eqnarray} \Omega _{3} & = &\int_{\frac{1}{\left[ 2\right] _{q}}}^{1}t\left \vert t-\mu \right \vert d_{q}t \\ && \\ & = &\frac{2\mu ^{3}q^{2}}{\left[ 2\right] _{q}\left[ 3\right] _{q}}+\frac{ 1+\left( \left[ 2\right] _{q}\right) ^{3}}{\left( \left[ 2\right] _{q}\right) ^{3}\left[ 3\right] _{q}}-\frac{\mu \left( \left( \left[ 2\right] _{q}\right) ^{2}+1\right) }{\left( \left[ 2\right] _{q}\right) ^{3}} \end{eqnarray} | (3.15) |
\begin{eqnarray} \Omega _{4} & = &\int_{\frac{1}{\left[ 2\right] _{q}}}^{1}\left( 1-t\right) \left \vert t-\mu \right \vert d_{q}t = \\ && \\ & = &\Omega _{12}-\Omega _{3} \\ && \\ & = &\frac{2\mu ^{2}q}{\left[ 2\right] _{q}}-\frac{2\mu ^{3}q^{2}}{\left[ 2 \right] _{q}\left[ 3\right] _{q}}-\frac{\mu \left( \left( \left[ 2\right] _{q}\right) ^{3}-1\right) }{\left( \left[ 2\right] _{q}\right) ^{3}}+\frac{ \left[ 3\right] _{q}\left( 1+\left( \left[ 2\right] _{q}\right) ^{2}\right) -\left( \left[ 2\right] _{q}\right) ^{3}-1}{\left( \left[ 2\right] _{q}\right) ^{3}\left[ 3\right] _{q}} \end{eqnarray} | (3.16) |
\begin{equation} \Omega _{5} = \int_{0}^{\frac{1}{\left[ 3\right] _{q}}}t\left \vert t-\lambda \right \vert d_{q}t = \frac{2\lambda ^{3}q^{2}}{\left[ 2\right] _{q}\left[ 3 \right] _{q}}+\frac{1}{\left( \left[ 3\right] _{q}\right) ^{4}}-\frac{ \lambda }{\left( \left[ 3\right] _{q}\right) ^{2}\left[ 2\right] _{q}} \end{equation} | (3.17) |
\begin{eqnarray} \Omega _{6} & = &\int_{0}^{\frac{1}{\left[ 3\right] _{q}}}\left( 1-t\right) \left \vert t-\lambda \right \vert d_{q}t = \\ && \\ & = &\Omega _{13}-\Omega _{5} \\ && \\ & = &\frac{2\lambda ^{2}q}{\left[ 2\right] _{q}}-\frac{2\lambda ^{3}q^{2}}{ \left[ 2\right] _{q}\left[ 3\right] _{q}}+\frac{\lambda \left( 1-\left[ 2 \right] _{q}\left[ 3\right] _{q}\right) }{\left( \left[ 3\right] _{q}\right) ^{2}\left[ 2\right] _{q}}+\frac{\left( \left[ 3\right] _{q}\right) ^{2}- \left[ 2\right] _{q}}{\left( \left[ 3\right] _{q}\right) ^{4}\left[ 2\right] _{q}} \end{eqnarray} | (3.18) |
\begin{equation} \Omega _{7} = \int_{\frac{1}{\left[ 3\right] _{q}}}^{\frac{\left[ 2\right] _{q} }{\left[ 3\right] _{q}}}t\left \vert t-\mu \right \vert d_{q}t = \frac{2\mu ^{3}q^{2}}{\left[ 2\right] _{q}\left[ 3\right] _{q}}+\frac{1+\left( \left[ 2 \right] _{q}\right) ^{3}}{\left( \left[ 3\right] _{q}\right) ^{4}}-\frac{\mu \left( \left( \left[ 2\right] _{q}\right) ^{2}+1\right) }{\left( \left[ 3 \right] _{q}\right) ^{2}\left[ 2\right] _{q}} \end{equation} | (3.19) |
\begin{eqnarray} \Omega _{8} & = &\int_{\frac{1}{\left[ 3\right] _{q}}}^{\frac{\left[ 2\right] _{q}}{\left[ 3\right] _{q}}}\left( 1-t\right) \left \vert t-\mu \right \vert d_{q}t \\ & = &\Omega _{14}-\Omega _{7} \\ && \\ & = &\frac{2\mu ^{2}q}{\left[ 2\right] _{q}}-\frac{2\mu ^{3}q^{2}}{\left[ 2 \right] _{q}\left[ 3\right] _{q}}-\frac{\mu \left( \left( \left[ 2\right] _{q}\right) ^{2}\left( \left[ 3\right] _{q}-1\right) +\left[ 2\right] _{q} \left[ 3\right] _{q}\right) }{\left( \left[ 3\right] _{q}\right) ^{2}\left[ 2 \right] _{q}} \\ &&+\frac{\left( \left( \left[ 2\right] _{q}\right) ^{2}+1\right) \left( \left[ 3\right] _{q}\right) ^{3}-\left[ 2\right] _{q}-\left( \left[ 2\right] _{q}\right) ^{4}}{\left( \left[ 3\right] _{q}\right) ^{4}\left[ 2\right] _{q} } \end{eqnarray} | (3.20) |
\begin{equation} \Omega _{9} = \int_{\frac{\left[ 2\right] _{q}}{\left[ 3\right] _{q}} }^{1}t\left \vert t-\nu \right \vert d_{q}t = \frac{2\nu ^{3}q^{2}}{\left[ 2 \right] _{q}\left[ 3\right] _{q}}-\frac{\nu \left( \left( \left[ 2\right] _{q}\right) ^{2}+\left( \left[ 3\right] _{q}\right) ^{2}\right) }{\left[ 2 \right] _{q}\left( \left[ 3\right] _{q}\right) ^{2}}+\frac{\left( \left[ 2 \right] _{q}\right) ^{3}+\left( \left[ 3\right] _{q}\right) ^{3}}{\left( \left[ 3\right] _{q}\right) ^{4}} \end{equation} | (3.21) |
\begin{eqnarray} \Omega _{10} & = &\int_{\frac{\left[ 2\right] _{q}}{\left[ 3\right] _{q}} }^{1}\left( 1-t\right) \left \vert t-\nu \right \vert d_{q}t \end{eqnarray} | (3.22) |
\begin{eqnarray} && \\ & = &\Omega _{15}-\Omega _{9} \\ && \\ & = &\frac{2\upsilon ^{2}q}{\left[ 2\right] _{q}}-\frac{2\upsilon ^{3}q^{2}}{ \left[ 2\right] _{q}\left[ 3\right] _{q}}-\frac{\upsilon \left( \left( \left[ 3\right] _{q}\right) ^{2}\left( \left[ 2\right] _{q}-1\right) +\left( \left[ 2\right] _{q}\right) ^{2}\left( \left[ 3\right] _{q}-1\right) \right) }{ \left( \left[ 3\right] _{q}\right) ^{2}\left[ 2\right] _{q}} \end{eqnarray} | (3.23) |
\begin{eqnarray} &&+\frac{\left( \left[ 3\right] _{q}\right) ^{2}\left( \left[ 2\right] _{q}- \left[ 3\right] _{q}\right) -\left( \left[ 2\right] _{q}\right) ^{3}}{\left( \left[ 3\right] _{q}\right) ^{4}} \end{eqnarray} | (3.24) |
Proof. By the definition of q -integral, we have
\begin{eqnarray*} \Omega _{1} & = &\int_{0}^{\frac{1}{\left[ 2\right] _{q}}}t\left \vert t-\lambda \right \vert d_{q}t \\ && \\ & = &\int_{0}^{\lambda }t\left( \lambda -t\right) d_{q}t+\int_{\lambda }^{ \frac{1}{\left[ 2\right] _{q}}}t\left( t-\lambda \right) d_{q}t \\ && \\ & = &2\int_{0}^{\lambda }t\left( \lambda -t\right) d_{q}t+\int_{0}^{\frac{1}{ \left[ 2\right] _{q}}}t\left( t-\lambda \right) d_{q}t \\ && \\ & = &\frac{2\lambda ^{3}q^{2}}{\left[ 2\right] _{q}\left[ 3\right] _{q}}+\frac{ 1}{\left( \left[ 2\right] _{q}\right) ^{3}\left[ 3\right] _{q}}-\frac{ \lambda }{\left( \left[ 2\right] _{q}\right) ^{3}} \end{eqnarray*} |
and so
\begin{equation*} \Omega _{1} = \frac{2\lambda ^{3}q^{2}}{\left[ 2\right] _{q}\left[ 3\right] _{q}}+\frac{1}{\left( \left[ 2\right] _{q}\right) ^{3}\left[ 3\right] _{q}}- \frac{\lambda }{\left( \left[ 2\right] _{q}\right) ^{3}}. \end{equation*} |
This gives the proof of the equality (3.13). The others can be calculated in similar way.
In this section, we prove a new generalization of quantum Simpson's, Midpoint and Trapezoid type inequalities for quantum differentiable convex functions.
Theorem 4.1. We assume that the given conditions of Lemma 3.1 hold. If the mapping \left \vert _{\pi _{1}}D_{q}\Pi \right \vert is convex on \left[\pi _{1}, \pi _{2}\right] , then the following inequality holds:
\begin{eqnarray} &&\left \vert q\lambda \Pi \left( \pi _{1}\right) +\left( 1-\mu q\right) \Pi \left( \pi _{2}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q+\pi _{2}}{\left[ 2\right] _{q}}\right) -\frac{1}{\pi _{2}-\pi _{1}} \int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &q\left( \pi _{2}-\pi _{1}\right) \left[ \left( \Omega _{1}+\Omega _{3}\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert +\left( \Omega _{2}+\Omega _{4}\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert \right] \end{eqnarray} | (4.1) |
where \Omega _{1} - \Omega _{4} are given in (3.13)-(3.16), respectively.
Proof. By taking the modulus in Lemma 3.1 and using the convexity of \left \vert _{\pi _{1}}D_{q}\Pi \right \vert , we obtain
\begin{eqnarray*} &&q\lambda \Pi \left( \pi _{1}\right) +\left( 1-\mu q\right) \Pi \left( \pi _{2}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q+\pi _{2} }{\left[ 2\right] _{q}}\right) -\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x \\ &\leq &q\left( \pi _{2}-\pi _{1}\right) \\ &&\times \left[ \int_{0}^{\frac{1}{\left[ 2\right] _{q}}}\left \vert t-\lambda \right \vert \left \vert _{\pi _{1}}D_{q}\Pi \left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) \right \vert d_{q}t+\int_{\frac{1}{ \left[ 2\right] _{q}}}^{1}\left \vert t-\mu \right \vert \left \vert _{\pi _{1}}D_{q}\Pi \left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) \right \vert d_{q}t\right] \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert \left \{ \int_{0}^{\frac{1 }{\left[ 2\right] _{q}}}t\left \vert t-\lambda \right \vert d_{q}t+\int_{ \frac{1}{\left[ 2\right] _{q}}}^{1}t\left \vert t-\mu \right \vert d_{q}t\right \} \right. \\ &&\left. +\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert \left \{ \int_{0}^{\frac{1}{\left[ 2\right] _{q}}}\left( 1-t\right) \left \vert t-\lambda \right \vert d_{q}t+\int_{\frac{1}{\left[ 2\right] _{q} }}^{1}\left( 1-t\right) \left \vert t-\mu \right \vert d_{q}t\right \} \right] \\ & = &\left( \pi _{2}-\pi _{1}\right) q\left[ \left( \Omega _{1}+\Omega _{3}\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert +\left( \Omega _{2}+\Omega _{4}\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert \right] \end{eqnarray*} |
which is the desired inequality.
Remark 4.1. If we take the limit q\rightarrow 1^{-} in Theorem 4.1, then we have [43,Theorem 2.1 for s = m = 1 ].
Remark 4.2. If we assume \lambda = \mu = \frac{1}{\left[2\right] _{q}} in Theorem 4.1, then we obtain [42,Theorem 4.1].
Remark 4.3. In Theorem 4.1, if we choose \lambda = 0 and \mu = \frac{1}{q} , then Theorem 4.1 reduces to [22,Theorem 13].
Remark 4.4. If we assume \lambda = \frac{1}{\left[6\right] _{q}} and \mu = \frac{\left[5\right] _{q}}{\left[6\right] _{q}} in Theorem 4.1, then we obtain the following inequality
\begin{eqnarray*} &&\left \vert \frac{1}{\left[ 6\right] _{q}}\left[ q\Pi \left( \alpha \right) +q^{2}\left[ 4\right] _{q}\Pi \left( \frac{q\pi _{1}+\pi _{2}}{\left[ 2\right] _{q}}\right) +\Pi \left( \pi _{2}\right) \right] -\frac{1}{\pi _{2}-\pi _{1}}\int \limits_{\pi _{1}}^{\pi _{2}}\Pi \left( s\right) \begin{array}{c} _{\pi _{1}}d_{q}s \end{array} \right \vert \\ &\leq &q\left( \pi _{2}-\pi _{1}\right) \left \{ \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert \left[ A_{1}\left( q\right) +A_{2}\left( q\right) \right] +\left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert \left[ B_{1}\left( q\right) +B_{2}\left( q\right) \right] \right \} , \end{eqnarray*} |
where
\begin{eqnarray*} A_{1}\left( q\right) & = &\frac{2q^{2}\left[ 2\right] _{q}^{2}+\left[ 6\right] _{q}^{2}\left( \left[ 6\right] _{q}-\left[ 3\right] _{q}\right) }{\left[ 2 \right] _{q}^{3}\left[ 3\right] _{q}\left[ 6\right] _{q}^{3}}, \\ B_{1}\left( q\right) & = &2\frac{q\left[ 3\right] _{q}\left[ 6\right] _{q}-q^{2}}{\left[ 2\right] _{q}\left[ 3\right] _{q}\left[ 6\right] _{q}^{3}} +\frac{1}{\left[ 2\right] _{q}^{3}}\left( \frac{q+q^{2}}{\left[ 3\right] _{q} }-\frac{q^{2}+2q}{\left[ 6\right] _{q}}\right) , \\ A_{2}\left( q\right) & = &\frac{2q^{2}\left[ 5\right] _{q}^{3}}{\left[ 2\right] _{q}\left[ 3\right] _{q}\left[ 6\right] _{q}^{3}}+\frac{\left[ 6\right] _{q}\left( 1+\left[ 2\right] _{q}^{3}\right) -\left[ 3\right] _{q}\left[ 5 \right] _{q}\left( 1+\left[ 2\right] _{q}^{2}\right) }{\left[ 2\right] _{q}^{3}\left[ 3\right] _{q}\left[ 6\right] _{q}}, \\ B_{2}\left( q\right) & = &2\frac{q\left[ 5\right] _{q}^{2}\left[ 6\right] _{q} \left[ 3\right] _{q}-q^{2}\left[ 5\right] _{q}^{3}}{\left[ 2\right] _{q} \left[ 3\right] _{q}\left[ 6\right] _{q}^{3}}+\frac{q^{2}}{\left[ 2\right] _{q}\left[ 3\right] _{q}}-\frac{q\left[ 5\right] _{q}}{\left[ 2\right] _{q} \left[ 6\right] _{q}} \\ &&-\frac{1}{\left[ 2\right] _{q}^{3}}\left[ \frac{\left[ 5\right] _{q}\left( 2q+q^{2}\right) }{\left[ 6\right] _{q}}-\frac{q+q^{2}}{\left[ 3\right] _{q}} \right] \end{eqnarray*} |
which is proved by Ifitikhar et al. [41].
Theorem 4.2. We assume that the given conditions of Lemma 3.1 hold. If the mapping \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} , p_{1}\geq 1 is convex on \left[\pi _{1}, \pi _{2}\right] , then the following inequality holds:
\begin{eqnarray} &&\left \vert \lambda q\Pi \left( \pi _{1}\right) +\left( 1-\mu q\right) \Pi \left( \pi _{2}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q+\pi _{2}}{\left[ 2\right] _{q}}\right) -\frac{1}{\pi _{2}-\pi _{1}} \int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ && \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \Omega _{11}^{1-\frac{1}{p_{1} }}\left( \Omega _{1}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\Omega _{2}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}}\right. \\ && \\ &&\left. +\Omega _{12}^{1-\frac{1}{p_{1}}}\left( \Omega _{3}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\Omega _{4}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}}\right] \end{eqnarray} | (4.2) |
where \Omega _{11}, \Omega _{12} and \Omega _{1} - \Omega _{4} are given in (3.8), (3.9), and (3.13)–(3.16), respectively.
Proof. By taking the modulus in Lemma 3.1 and using the power mean inequality, we have
\begin{eqnarray*} &&\left \vert \lambda q\Pi \left( \pi _{1}\right) +\left( 1-\mu q\right) \Pi \left( \pi _{2}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q+\pi _{2}}{\left[ 2\right] _{q}}\right) -\frac{1}{\pi _{2}-\pi _{1}} \int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \left( \int_{0}^{\frac{1}{ \left[ 2\right] _{q}}}\left \vert t-\lambda \right \vert d_{q}t\right) ^{1- \frac{1}{p_{1}}}\left( \int_{0}^{\frac{1}{\left[ 2\right] _{q}}}\left \vert t-\lambda \right \vert \left \vert _{\pi _{1}}D_{q}\Pi \left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) \right \vert ^{p_{1}}d_{q}t\right) ^{ \frac{1}{p_{1}}}\right. \\ &&\left. +\left( \int_{\frac{1}{\left[ 2\right] _{q}}}^{1}\left \vert t-\mu \right \vert d_{q}t\right) ^{1-\frac{1}{p_{1}}}\left( \int_{\frac{1}{\left[ 2 \right] _{q}}}^{1}\left \vert t-\mu \right \vert \left \vert _{\pi _{1}}D_{q}\Pi \left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) \right \vert ^{p_{1}}d_{q}t\right) ^{\frac{1}{p_{1}}}\right] . \end{eqnarray*} |
By using the convexity of \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} , we have
\begin{eqnarray*} &&\left \vert \lambda q\Pi \left( \pi _{1}\right) +\left( 1-\mu q\right) \Pi \left( \pi _{2}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q+\pi _{2}}{\left[ 2\right] _{q}}\right) -\frac{1}{\pi _{2}-\pi _{1}} \int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \left( \int_{0}^{\frac{1}{ \left[ 2\right] _{q}}}\left \vert t-\lambda \right \vert d_{q}t\right) ^{1- \frac{1}{p_{1}}}\right. \\ &&\times \left( \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}\int_{0}^{\frac{1}{\left[ 2\right] _{q}}}t\left \vert t-\lambda \right \vert d_{q}t+\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\int_{0}^{\frac{1}{\left[ 2\right] _{q}} }\left( 1-t\right) \left \vert t-\lambda \right \vert d_{q}t\right) ^{\frac{1 }{p_{1}}} \\ &&+\left( \int_{\frac{1}{\left[ 2\right] _{q}}}^{1}\left \vert t-\mu \right \vert d_{q}t\right) ^{1-\frac{1}{p_{1}}} \\ &&\left. \times \left( \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}\int_{\frac{1}{\left[ 2\right] _{q}} }^{1}t\left \vert t-\mu \right \vert d_{q}t+\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\int_{\frac{1}{\left[ 2\right] _{q}}}^{1}\left( 1-t\right) \left \vert t-\mu \right \vert d_{q}t\right) ^{ \frac{1}{p_{1}}}\right] \\ & = &\left( \pi _{2}-\pi _{1}\right) q\left[ \Omega _{11}^{1-\frac{1}{p_{1}} }\left( \Omega _{1}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\Omega _{2}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}}\right. \\ &&\left. +\Omega _{12}^{1-\frac{1}{p_{1}}}\left( \Omega _{3}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\Omega _{4}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}}\right] \end{eqnarray*} |
and the proof is completed.
Remark 4.5. If we take the limit q\rightarrow 1^{-} in Theorem 4.2, then we have [43,Theorem 2.3 for s = m = 1 ].
Remark 4.6. If we assume \lambda = \mu = \frac{1}{\left[2\right] _{q}} in Theorem 4.2, then we obtain [42,Theorem 4.2].
Remark 4.7. If we assume \lambda = \frac{1}{\left[6\right] _{q}} and \mu = \frac{\left[5\right] _{q}}{\left[6\right] _{q}} in Theorem 4.2, then we obtain the following inequality
\begin{eqnarray*} &&\left \vert \frac{1}{\left[ 6\right] _{q}}\left[ q\Pi \left( \alpha \right) +q^{2}\left[ 4\right] _{q}\Pi \left( \frac{q\pi _{1}+\pi _{2}}{\left[ 2\right] _{q}}\right) +\Pi \left( \pi _{2}\right) \right] -\frac{1}{\pi _{2}-\pi _{1}}\int \limits_{\pi _{1}}^{\pi _{2}}\Pi \left( s\right) \begin{array}{c} _{\pi _{1}}d_{q}s \end{array} \right \vert \\ &\leq &q\left( \pi _{2}-\pi _{1}\right) \left[ \left( \frac{2q}{\left[ 2 \right] _{q}\left[ 6\right] _{q}^{2}}+\frac{q^{3}\left[ 3\right] _{q}-q}{ \left[ 6\right] _{q}\left[ 2\right] _{q}^{3}}\right) ^{1-\frac{1}{p_{1}} }\right. \\ &&\times \left( A_{1}\left( q\right) \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+B_{1}\left( q\right) \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{ \frac{1}{p_{1}}} \\ &&+\left( 2q\frac{\left[ 5\right] _{q}^{2}}{\left[ 2\right] _{q}\left[ 6 \right] _{q}^{2}}+\frac{1}{\left[ 2\right] _{q}}-\frac{\left[ 5\right] _{q}}{ \left[ 6\right] _{q}}-\frac{\left[ 5\right] _{q}\left[ 2\right] _{q}^{2}- \left[ 6\right] _{q}}{\left[ 6\right] _{q}\left[ 2\right] _{q}^{3}}\right) ^{1-\frac{1}{p_{1}}} \\ &&\times \left( A_{2}\left( q\right) \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+B_{2}\left( q\right) \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{ \frac{1}{p_{1}}} \end{eqnarray*} |
where A_{1}\left(q\right), \; A_{2}\left(q\right), \; B_{1}\left(q\right) \, \ and B_{2}\left(q\right) are defined in Remark 4.4. The above inequality is proved by Ifitikhar et al. [41].
Remark 4.8. In Theorem 4.2, if we choose \lambda = 0 and \mu = \frac{1}{q} , then Theorem 4.2 reduces to [22,Theorem 16].
Theorem 4.3. We assume that the given conditions of Lemma 3.1 hold. If the mapping \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} , p_{1} > 1 is convex on \left[\pi _{1}, \pi _{2}\right] , then the following inequality holds:
\begin{eqnarray} &&\left \vert \lambda q\Pi \left( \pi _{1}\right) +\left( 1-\mu q\right) \Pi \left( \pi _{2}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q+\pi _{2}}{\left[ 2\right] _{q}}\right) -\frac{1}{\pi _{2}-\pi _{1}} \int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \Omega _{16}^{\frac{1}{r_{1}} }\left( \frac{\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}}{\left( \left[ 2\right] _{q}\right) ^{3}}+\frac{\left( \left( \left[ 2\right] _{q}\right) ^{2}-1\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}}{\left( \left[ 2\right] _{q}\right) ^{3}}\right) ^{\frac{1}{p_{1}}}\right. \\ &&\left. +\Omega _{17}^{\frac{1}{r_{1}}}\left( \frac{\left( \left( \left[ 2 \right] _{q}\right) ^{2}-1\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}}{\left( \left[ 2\right] _{q}\right) ^{3}}+ \frac{\left( \left( \left[ 2\right] _{q}\right) ^{3}-2\left( \left[ 2\right] _{q}\right) ^{2}+1\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}}{\left( \left[ 2\right] _{q}\right) ^{3}} \right) ^{\frac{1}{p_{1}}}\right] \end{eqnarray} | (4.3) |
where p_{1}^{-1}+r_{1}^{-1} = 1 and
\begin{equation*} \Omega _{16} = \int_{0}^{\frac{1}{\left[ 2\right] _{q}}}\left \vert t-\lambda \right \vert ^{r_{1}}d_{q}t, \Omega _{17} = \int_{\frac{1}{\left[ 2 \right] _{q}}}^{1}\left \vert t-\mu \right \vert ^{r_{1}}d_{q}t \end{equation*} |
Proof. By taking the modulus in Lemma 3.1 and using the Hölder inequality, we have
\begin{eqnarray*} &&\left \vert \lambda q\Pi \left( \pi _{1}\right) +\left( 1-\mu q\right) \Pi \left( \pi _{2}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q+\pi _{2}}{\left[ 2\right] _{q}}\right) -\frac{1}{\pi _{2}-\pi _{1}} \int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \left( \int_{0}^{\frac{1}{ \left[ 2\right] _{q}}}\left \vert t-\lambda \right \vert ^{r_{1}}d_{q}t\right) ^{\frac{1}{r_{1}}}\left( \int_{0}^{\frac{1}{\left[ 2 \right] _{q}}}\left \vert _{\pi _{1}}D_{q}\Pi \left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) \right \vert ^{p_{1}}d_{q}t\right) ^{\frac{1}{ p_{1}}}\right. \\ &&\left. +\left( \int_{\frac{1}{\left[ 2\right] _{q}}}^{1}\left \vert t-\mu \right \vert ^{r_{1}}d_{q}t\right) ^{\frac{1}{r_{1}}}\left( \int_{\frac{1}{ \left[ 2\right] _{q}}}^{1}\left \vert _{\pi _{1}}D_{q}\Pi \left( t\pi _{2}+\left( 1-t\right) \pi _{1}\right) \right \vert ^{p_{1}}d_{q}t\right) ^{ \frac{1}{p_{1}}}\right] . \end{eqnarray*} |
Since \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} is convex on \left[\pi _{1}, \pi _{2}\right] , we have
\begin{eqnarray*} &&\left \vert \lambda q\Pi \left( \pi _{1}\right) +\left( 1-\mu q\right) \Pi \left( \pi _{2}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q+\pi _{2}}{\left[ 2\right] _{q}}\right) -\frac{1}{\pi _{2}-\pi _{1}} \int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &q\left( \pi _{2}-\pi _{1}\right) \\ &&\times \left[ \left( \int_{0}^{\frac{1}{\left[ 2\right] _{q}}}\left \vert t-\lambda \right \vert ^{r_{1}}d_{q}t\right) ^{\frac{1}{r_{1}}}\left( \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}\int_{0}^{\frac{1}{\left[ 2\right] _{q}}}td_{q}t+\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\int_{0}^{\frac{1}{ \left[ 2\right] _{q}}}\left( 1-t\right) d_{q}t\right) ^{\frac{1}{p_{1}} }\right. \\ &&\left. +\left( \int_{\frac{1}{\left[ 2\right] _{q}}}^{1}\left \vert t-\mu \right \vert ^{r_{1}}d_{q}t\right) ^{\frac{1}{r_{1}}}\left( \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}\int_{\frac{1 }{\left[ 2\right] _{q}}}^{1}td_{q}t+\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\int_{\frac{1}{\left[ 2\right] _{q}} }^{1}\left( 1-t\right) d_{q}t\right) ^{\frac{1}{p_{1}}}\right] \\ & = &\left( \pi _{2}-\pi _{1}\right) q\left[ \Omega _{16}^{\frac{1}{r_{1}} }\left( \frac{\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}}{\left( \left[ 2\right] _{q}\right) ^{3}}+\frac{\left( \left( \left[ 2\right] _{q}\right) ^{2}-1\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}}{\left( \left[ 2\right] _{q}\right) ^{3}}\right) ^{\frac{1}{p_{1}}}\right. \\ &&\left. +\Omega _{17}^{\frac{1}{r_{1}}}\left( \frac{\left( \left( \left[ 2 \right] _{q}\right) ^{2}-1\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}}{\left( \left[ 2\right] _{q}\right) ^{3}}+ \frac{\left( \left( \left[ 2\right] _{q}\right) ^{3}-2\left( \left[ 2\right] _{q}\right) ^{2}+1\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}}{\left( \left[ 2\right] _{q}\right) ^{3}} \right) ^{\frac{1}{p_{1}}}\right] . \end{eqnarray*} |
This completes the proof.
Remark 4.9. If we take the limit q\rightarrow 1^{-} in Theorem 4.3, then Theorem 4.3 becomes [43,Theorem 2.2 for s = m = 1 ].
Remark 4.10. If we assume \lambda = \mu = \frac{1}{\left[2\right] _{q}} in Theorem 4.3, then we obtain [27,Theorem 3.3].
Remark 4.11. If we assume \lambda = \frac{1}{\left[6\right] _{q}} and \mu = \frac{\left[5\right] _{q}}{\left[6\right] _{q}} in Theorem 4.3, then we obtain the following inequality
\begin{eqnarray*} &&\left \vert \frac{1}{\left[ 6\right] _{q}}\left[ q\Pi \left( \alpha \right) +q^{2}\left[ 4\right] _{q}\Pi \left( \frac{q\pi _{1}+\pi _{2}}{\left[ 2\right] _{q}}\right) +\Pi \left( \pi _{2}\right) \right] -\frac{1}{\pi _{2}-\pi _{1}}\int \limits_{\pi _{1}}^{\pi _{2}}\Pi \left( s\right) \begin{array}{c} _{\pi _{1}}d_{q}s \end{array} \right \vert \\ &\leq &q\left( \pi _{2}-\pi _{1}\right) \left[ \left( \frac{q^{2r_{1}}\left[ 4\right] _{q}^{r_{1}}}{\left[ 2\right] _{q}^{r_{1}+1}\left[ 6\right] _{q}^{r_{1}}}\right) ^{\frac{1}{r_{1}}}\right. \\ &&+\left( \frac{\left[ 2\right] _{q}^{r_{1}+1}\left[ 5\right] _{q}^{r_{1}}-q^{r_{1}}\left[ 4\right] _{q}^{r_{1}}}{\left[ 2\right] _{q}^{r_{1}+1}\left[ 6\right] _{q}^{r_{1}}}\right) ^{\frac{1}{r_{1}}} \\ &&\left. \times \left( \frac{q^{2}+2q}{\left[ 2\right] _{q}^{3}}\left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\frac{ q^{3}+q^{2}-q}{\left[ 2\right] _{q}^{3}}\left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}}\right] \end{eqnarray*} |
which is established by Iftikhar et al. in [41].
Remark 4.12. In Theorem 4.2, if we choose \lambda = 0 and \mu = \frac{1}{q} , then Theorem 4.3 reduces to [22,Theorem 18].
Some new generalized versions of quantum Newton's and Trapezoid type inequalities for quantum differentiable convex functions are offered in this section.
Theorem 5.1. We assume that the given conditions of Lemma 3.2 hold. If the mapping \left \vert _{\pi _{1}}D_{q}\Pi \right \vert is convex on \left[\pi _{1}, \pi _{2}\right] , then the following inequality holds:
\begin{eqnarray} &&\left \vert q\lambda \Pi \left( \pi _{1}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q\left[ 2\right] _{q}+\pi _{2}}{\left[ 3 \right] _{q}}\right) +q\left( \nu -\mu \right) \Pi \left( \frac{\pi _{1}q^{2}+\pi _{2}\left[ 2\right] _{q}}{\left[ 3\right] _{q}}\right) \right. \\ &&\left. +\left( 1-\nu q\right) \Pi \left( \pi _{2}\right) -\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \left( \Omega _{5}+\Omega _{7}+\Omega _{9}\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert +\left( \Omega _{6}+\Omega _{8}+\Omega _{10}\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert \right] \end{eqnarray} | (5.1) |
where \Omega _{5} - \Omega _{10} are given in (3.17)-(3.22), respectively.
Proof. By considering Lemma 3.2 and applying the same method that used in the proof of Theorem 4.1, then we can obtain the desired inequality (5.1).
Remark 5.1. If we assume \lambda = \mu = \nu = \frac{1}{\left[2\right] _{q}} in Theorem 5.1, then we obtain [42,Theorem 4.1].
Corollary 5.1. If we take the limit q\rightarrow 1^{-} in Theorem 5.1, then we obtain the following inequality
\begin{eqnarray*} &&\left \vert \lambda \Pi \left( \pi _{1}\right) +\left( \mu -\lambda \right) \Pi \left( \frac{2\pi _{1}+\pi _{2}}{3}\right) +\left( \nu -\mu \right) \Pi \left( \frac{\pi _{1}+2\pi _{2}}{3}\right) \right. \\ &&\left. +\left( 1-\nu \right) \Pi \left( \pi _{2}\right) -\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) dx\right \vert \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \left( \Omega _{5}^{\ast }+\Omega _{7}^{\ast }+\Omega _{9}^{\ast }\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert +\left( \Omega _{6}^{\ast }+\Omega _{8}^{\ast }+\Omega _{10}^{\ast }\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert \right] \end{eqnarray*} |
where
\begin{equation*} \Omega _{5}^{\ast } = \int_{0}^{\frac{1}{3}}t\left \vert t-\lambda \right \vert dt = \frac{\lambda ^{3}}{3}+\frac{1}{81}-\frac{\lambda }{18}, \end{equation*} |
\begin{equation} \Omega _{6}^{\ast } = \int_{0}^{\frac{1}{3}}\left( 1-t\right) \left \vert t-\lambda \right \vert dt = \frac{18\lambda ^{2}-5\lambda +1}{18}-\frac{1}{81}- \frac{\lambda ^{3}}{3}, \notag \end{equation} |
\begin{equation*} \Omega _{7}^{\ast } = \int_{\frac{1}{3}}^{\frac{2}{3}}t\left \vert t-\mu \right \vert dt = \frac{\mu ^{3}}{3}-\frac{5\mu }{18}+\frac{1}{9} \end{equation*} |
\begin{equation} \Omega _{8}^{\ast } = \int_{\frac{1}{3}}^{\frac{2}{3}}\left( 1-t\right) \left \vert t-\mu \right \vert dt = \frac{18\mu ^{2}+5+5\mu }{18}-\mu -\frac{1}{9}- \frac{\mu ^{3}}{3} \notag \end{equation} |
\begin{equation*} \Omega _{9}^{\ast } = \int_{\frac{2}{3}}^{1}t\left \vert t-\nu \right \vert dt = \frac{\nu ^{3}}{3}-\frac{13\nu }{18}+\frac{35}{81}, \end{equation*} |
\begin{equation*} \Omega _{10}^{\ast } = \int_{\frac{2}{3}}^{1}\left( 1-t\right) \left \vert t-\nu \right \vert dt = \frac{18\nu ^{2}+13+13\nu }{18}-\frac{5\nu }{3}-\frac{ 35}{81}-\frac{\nu ^{3}}{3} \end{equation*} |
Remark 5.2. If we take \lambda = \frac{1}{\left[8\right] _{q}} , \mu = \frac{ 1}{\left[2\right] _{q}} , and \nu = \frac{\left[7\right] _{q}}{\left[8 \right] _{q}} in Theorem 5.1, then we obtain the following inequality
\begin{eqnarray*} &&\left \vert \frac{1}{\left[ 8\right] _{q}}\left[ q\Pi \left( \pi _{1}\right) +\frac{q^{3}\left[ 6\right] _{q}}{\left[ 2\right] _{q}}\Pi \left( \frac{\pi _{1}q\left[ 2\right] _{q}+\pi _{2}}{\left[ 3\right] _{q}} \right) +\frac{q^{2}\left[ 6\right] _{q}}{\left[ 2\right] _{q}}\Pi \left( \frac{\pi _{1}q^{2}+\pi _{2}\left[ 2\right] _{q}}{\left[ 3\right] _{q}} \right) +\Pi \left( \pi _{2}\right) \right] \right. \\ && \\ &&\left. -\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ && \\ &\leq &q\left( \pi _{2}-\pi _{1}\right) \left[ \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert \left[ A_{3}\left( q\right) +A_{4}\left( q\right) +A_{5}\left( q\right) \right] +\left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert \left[ B_{3}\left( q\right) +B_{4}\left( q\right) +B_{5}\left( q\right) \right] \right] \end{eqnarray*} |
where
\begin{eqnarray*} A_{3}\left( q\right) & = &\frac{2q^{2}\left[ 3\right] _{q}^{3}+\left[ 8\right] _{q}^{2}\left( \left[ 8\right] _{q}\left[ 2\right] _{q}-\left[ 3\right] _{q}^{2}\right) }{\left[ 8\right] _{q}^{3}\left[ 3\right] _{q}^{4}\left[ 2 \right] _{q}}, \\ B_{3}\left( q\right) & = &2\frac{q\left[ 8\right] _{q}\left[ 3\right] _{q}-q^{2}}{\left[ 8\right] _{q}^{3}\left[ 2\right] _{q}\left[ 3\right] _{q}} +\frac{\left[ 3\right] _{q}^{2}-\left[ 2\right] _{q}}{\left[ 3\right] _{q}^{4}\left[ 2\right] _{q}} \\ &&+\frac{1-\left[ 3\right] _{q}\left[ 2\right] _{q}}{\left[ 8\right] _{q} \left[ 3\right] _{q}^{2}\left[ 2\right] _{q}}, \\ A_{4}\left( q\right) & = &\frac{2q^{2}}{\left[ 2\right] _{q}^{4}\left[ 3\right] _{q}}+\frac{\left[ 2\right] _{q}^{2}\left( 1+\left[ 2\right] _{q}^{3}\right) -\left[ 3\right] _{q}^{2}\left( 1+\left[ 2\right] _{q}^{2}\right) }{\left[ 3 \right] _{q}^{4}\left[ 2\right] _{q}^{2}}, \\ B_{4}\left( q\right) & = &\frac{2q}{\left[ 2\right] _{q}^{3}}-\frac{q}{\left[ 3 \right] _{q}^{2}}-\frac{q^{2}}{\left[ 3\right] _{q}^{2}}-A_{4}\left( q\right) , \\ && \\ A_{5}\left( q\right) & = &\frac{2q^{2}\left[ 7\right] _{q}^{3}}{\left[ 8\right] _{q}^{3}\left[ 2\right] _{q}\left[ 3\right] _{q}}+\frac{\left[ 2\right] _{q} \left[ 8\right] _{q}\left( \left[ 2\right] _{q}^{3}+\left[ 3\right] _{q}^{3}\right) -\left[ 7\right] _{q}\left[ 3\right] _{q}^{2}\left( \left[ 2 \right] _{q}^{2}+\left[ 3\right] _{q}^{2}\right) }{\left[ 3\right] _{q}^{4} \left[ 8\right] _{q}\left[ 2\right] _{q}}, \end{eqnarray*} |
and
\begin{eqnarray*} B_{5}\left( q\right) & = &2\frac{q\left[ 7\right] _{q}^{2}\left[ 8\right] _{q} \left[ 3\right] _{q}-q^{2}\left[ 7\right] _{q}^{3}}{\left[ 8\right] _{q}^{3} \left[ 2\right] _{q}\left[ 3\right] _{q}}+\frac{q^{2}}{\left[ 2\right] _{q} \left[ 3\right] _{q}}-\frac{q\left[ 7\right] _{q}}{\left[ 2\right] _{q}\left[ 8\right] _{q}} \\ &&+\frac{\left[ 2\right] _{q}\left( \left[ 3\right] _{q}^{2}-\left[ 2\right] _{q}^{2}\right) }{\left[ 3\right] _{q}^{4}}-\frac{\left( q+q^{2}\right) \left[ 7\right] _{q}\left[ 2\right] _{q}}{\left[ 3\right] _{q}^{2}\left[ 8 \right] _{q}}. \end{eqnarray*} |
Theorem 5.2. We assume that the given conditions of Lemma 3.2 hold. If the mapping \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} , p_{1}\geq 1 is convex on \left[\pi _{1}, \pi _{2}\right] , then the following inequality holds:
\begin{eqnarray} &&\left \vert q\lambda \Pi \left( \pi _{1}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q\left[ 2\right] _{q}+\pi _{2}}{\left[ 3 \right] _{q}}\right) +q\left( \nu -\mu \right) \Pi \left( \frac{\pi _{1}q^{2}+\pi _{2}\left[ 2\right] _{q}}{\left[ 3\right] _{q}}\right) \right. \\ &&\left. +\left( 1-\nu q\right) \Pi \left( \pi _{2}\right) -\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \Omega _{13}^{1-\frac{1}{p_{1} }}\left( \Omega _{5}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\Omega _{6}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}}\right. \\ &&+\Omega _{14}^{1-\frac{1}{p_{1}}}\left( \left( \Omega _{7}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\Omega _{8}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}}\right) \\ &&\left. +\Omega _{15}^{1-\frac{1}{p_{1}}}\left( \Omega _{9}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\Omega _{10}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}}\right] \end{eqnarray} | (5.2) |
where \Omega _{5} - \Omega _{10} and \Omega _{13} - \Omega _{15} are given in (3.17)–(3.22) and (3.10)–(3.12), respectively. The above inequality established by Erden et al. in [44].
Proof. By applying the steps used in the proof of Theorem 4.2 and taking into account Lemma 3.2, we can obtain the required inequality (5.2).
Corollary 5.2. If we take the limit q\rightarrow 1^{-} in Theorem 5.2, then we obtain the following inequality
\begin{eqnarray*} &&\left \vert \lambda \Pi \left( \pi _{1}\right) +\left( \mu -\lambda \right) \Pi \left( \frac{2\pi _{1}+\pi _{2}}{3}\right) +\left( \nu -\mu \right) \Pi \left( \frac{\pi _{1}+2\pi _{2}}{3}\right) +\left( 1-\nu \right) \Pi \left( \pi _{2}\right) \right. \\ &&\left. -\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) dx\right \vert \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \Theta _{11}^{1-\frac{1}{p_{1} }}\left( \Omega _{5}^{\ast }\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\Omega _{6}^{\ast }\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{ p_{1}}}\right. \\ &&+\Theta _{12}^{1-\frac{1}{p_{1}}}\left( \left( \Omega _{7}^{\ast }\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\Omega _{8}^{\ast }\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}}\right) \\ &&\left. +\Theta _{13}^{1-\frac{1}{p_{1}}}\left( \Omega _{9}^{\ast }\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+\Omega _{10}^{\ast }\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}}\right] \end{eqnarray*} |
where \Omega _{5}^{\ast } - \Omega _{10}^{\ast } are defined in Corollary 5.1 and
\begin{equation*} \Theta _{11} = \int_{0}^{\frac{1}{3}}\left \vert t-\lambda \right \vert dt = \lambda ^{2}+\frac{1}{9\left[ 2\right] _{q}}-\frac{\lambda }{3}, \end{equation*} |
\begin{equation*} \Theta _{12} = \int_{\frac{1}{3}}^{\frac{2}{3}}\left \vert t-\mu \right \vert dt = \frac{18\mu ^{2}+5}{18}-\mu , \end{equation*} |
\begin{equation*} \Theta _{13} = \int_{\frac{2}{3}}^{1}\left \vert t-\nu \right \vert dt = \frac{ 18\nu ^{2}+13}{18}-\frac{5\nu }{3}. \end{equation*} |
Remark 5.3. If we take \lambda = \frac{1}{\left[8\right] _{q}} , \mu = \frac{1}{\left[2 \right] _{q}} , and \nu = \frac{\left[7\right] _{q}}{\left[8\right] _{q}} in Theorem 5.2, then we obtain the following inequality
\begin{eqnarray*} &&\left \vert \frac{1}{\left[ 8\right] _{q}}\left[ q\Pi \left( \pi _{1}\right) +\frac{q^{3}\left[ 6\right] _{q}}{\left[ 2\right] _{q}}\Pi \left( \frac{\pi _{1}q\left[ 2\right] _{q}+\pi _{2}}{\left[ 3\right] _{q}} \right) +\frac{q^{2}\left[ 6\right] _{q}}{\left[ 2\right] _{q}}\Pi \left( \frac{\pi _{1}q^{2}+\pi _{2}\left[ 2\right] _{q}}{\left[ 3\right] _{q}} \right) +\Pi \left( \pi _{2}\right) \right] \right. \\ &&\left. -\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &q\left( \pi _{2}-\pi _{1}\right) \left[ \left( \frac{2q}{\left[ 8 \right] _{q}^{2}\left[ 2\right] _{q}}+\frac{\left[ 8\right] _{q}-\left[ 3 \right] _{q}\left[ 2\right] _{q}}{\left[ 3\right] _{q}^{2}\left[ 2\right] _{q}\left[ 8\right] _{q}}\right) ^{1-\frac{1}{p_{1}}}\right. \\ &&\times \left( A_{3}\left( q\right) \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+B_{3}\left( q\right) \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{ \frac{1}{p_{1}}} \\ &&+\left( \frac{2q}{\left[ 2\right] _{q}^{3}}+\frac{q}{\left[ 3\right] _{q}^{2}\left[ 2\right] _{q}}+\frac{1-\left[ 3\right] _{q}\left[ 2\right] _{q}}{\left[ 3\right] _{q}^{2}\left[ 2\right] _{q}}\right) ^{1-\frac{1}{p_{1} }} \\ &&\times \left( A_{4}\left( q\right) \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+B_{4}\left( q\right) \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{ \frac{1}{p_{1}}} \\ &&+\left( 2\frac{q\left[ 7\right] _{q}^{2}}{\left[ 8\right] _{q}^{2}\left[ 2 \right] _{q}}+\frac{\left[ 3\right] _{q}^{2}+\left[ 2\right] _{q}^{2}}{\left[ 2\right] _{q}\left[ 3\right] _{q}^{2}}-\frac{\left[ 7\right] _{q}\left( \left[ 3\right] _{q}+\left[ 2\right] _{q}\right) }{\left[ 8\right] _{q}\left[ 3\right] _{q}}\right) ^{1-\frac{1}{p_{1}}} \\ &&\times \left( A_{5}\left( q\right) \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}+B_{5}\left( q\right) \left \vert \; _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}\right) ^{ \frac{1}{p_{1}}} \end{eqnarray*} |
where A_{3}\left(q\right) -A_{5}\left(q\right) and B_{3}\left(q\right) -B_{5}\left(q\right) are given in Remark 5.2. The above inequality established by Erden et al. in [44].
Remark 5.4. If we assume \lambda = \mu = \nu = \frac{1}{\left[2\right] _{q}} in Theorem 5.2, then we obtain [42,Theorem 4.2].
Theorem 5.3. We assume that the given conditions of Lemma 3.2 hold. If the mapping \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} , p_{1} > 1 is convex on \left[\pi _{1}, \pi _{2}\right] , then the following inequality holds:
\begin{eqnarray} &&\left \vert q\lambda \Pi \left( \pi _{1}\right) +q\left( \mu -\lambda \right) \Pi \left( \frac{\pi _{1}q\left[ 2\right] _{q}+\pi _{2}}{\left[ 3 \right] _{q}}\right) +q\left( \nu -\mu \right) \Pi \left( \frac{\pi _{1}q^{2}+\pi _{2}\left[ 2\right] _{q}}{\left[ 3\right] _{q}}\right) \right. \\ &&\left. +\left( 1-\nu q\right) \Pi \left( \pi _{2}\right) -\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &\left( \pi _{2}-\pi _{1}\right) q\left[ \Omega _{18}^{\frac{1}{r_{1}} }\left( \frac{\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}}{\left( \left[ 3\right] _{q}\right) ^{2}\left[ 2\right] _{q}}+ \frac{\left( \left[ 2\right] _{q}\left[ 3\right] _{q}-1\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}}{\left( \left[ 3\right] _{q}\right) ^{2}\left[ 2\right] _{q}}\right) ^{\frac{1}{p_{1} }}\right. \\ &&+\Omega _{19}^{\frac{1}{r_{1}}}\left( \frac{\left( \left( \left[ 2\right] _{q}\right) ^{2}-1\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}}{\left( \left[ 3\right] _{q}\right) ^{2} \left[ 2\right] _{q}}+\frac{\left( \left( \left[ 2\right] _{q}\right) ^{2}\left( \left[ 3\right] _{q}-1\right) -\left[ 3\right] _{q}\left[ 2\right] _{q}+1\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}}{3\left[ 2\right] _{q}}\right) ^{\frac{1}{p_{1}}} \\ &&\left. +\Omega _{20}^{\frac{1}{r_{1}}}\left( \begin{array}{c} \frac{\left( \left( \left[ 3\right] _{q}\right) ^{2}-\left( \left[ 2\right] _{q}\right) ^{2}\right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}}{\left( \left[ 3\right] _{q}\right) ^{2} \left[ 2\right] _{q}} \\ +\frac{\left( \left( \left[ 3\right] _{q}\right) ^{2}\left( \left[ 2\right] _{q}-1\right) -\left( \left[ 2\right] _{q}\right) ^{2}\left( \left[ 3\right] _{q}-1\right) \right) \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}}{\left( \left[ 3\right] _{q}\right) ^{2}\left[ 2\right] _{q}} \end{array} \right) ^{\frac{1}{p_{1}}}\right] \end{eqnarray} | (5.3) |
where p_{1}^{-1}+r_{1}^{-1} = 1 and
\begin{equation*} \Omega _{18} = \int_{0}^{\frac{1}{\left[ 3\right] _{q}}}\left \vert t-\lambda \right \vert ^{r_{1}}d_{q}t, \; \Omega _{19} = \int_{\frac{1}{\left[ 3\right] _{q} }}^{\frac{\left[ 2\right] _{q}}{\left[ 3\right] _{q}}}\left \vert t-\mu \right \vert ^{r_{1}}d_{q}t, \; \Omega _{20} = \int_{\frac{\left[ 2\right] _{q}}{ \left[ 3\right] _{q}}}^{1}\left \vert t-\nu \right \vert ^{r_{1}}d_{q}t. \end{equation*} |
Proof. By applying the steps used in the proof of Theorem 4.3 and taking into account Lemma 3.2, we can obtain the required inequality (5.3).
Remark 5.5. If we assume \lambda = \mu = \frac{1}{\left[2\right] _{q}} in Theorem 5.3, then we obtain [27,Theorem 3.3].
Remark 5.6. If we take \lambda = \frac{1}{\left[8\right] _{q}} , \mu = \frac{1}{\left[2 \right] _{q}} , and \nu = \frac{\left[7\right] _{q}}{\left[8\right] _{q}} in Theorem 5.3, then we obtain the following inequality
\begin{eqnarray*} &&\left \vert \frac{1}{\left[ 8\right] _{q}}\left[ q\Pi \left( \pi _{1}\right) +\frac{q^{3}\left[ 6\right] _{q}}{\left[ 2\right] _{q}}\Pi \left( \frac{\pi _{1}q\left[ 2\right] _{q}+\pi _{2}}{\left[ 3\right] _{q}} \right) +\frac{q^{2}\left[ 6\right] _{q}}{\left[ 2\right] _{q}}\Pi \left( \frac{\pi _{1}q^{2}+\pi _{2}\left[ 2\right] _{q}}{\left[ 3\right] _{q}} \right) +\Pi \left( \pi _{2}\right) \right] \right. \\ &&\left. -\frac{1}{\pi _{2}-\pi _{1}}\int_{\pi _{1}}^{\pi _{2}}\Pi \left( x\right) \; _{\pi _{1}}d_{q}x\right \vert \\ &\leq &q\left( \pi _{2}-\pi _{1}\right) \left[ \left( \frac{q^{3r_{1}}\left[ 5\right] _{q}^{r_{1}}}{\left[ 3\right] _{q}^{r_{1}+1}\left[ 8\right] _{q}^{r_{1}}}\right) ^{\frac{1}{r_{1}}}\right. \\ &&\times \left( \frac{1}{\left[ 3\right] _{q}^{2}\left[ 2\right] _{q}}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}+\frac{ \left[ 3\right] _{q}\left[ 2\right] _{q}-1}{\left[ 3\right] _{q}^{2}\left[ 2 \right] _{q}}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}} \\ &&+\left( \frac{q^{r_{1}}\left[ 2\right] _{q}-q^{2r_{1}}}{\left[ 3\right] _{q}^{r_{1}+1}\left[ 2\right] _{q}^{r_{1}}}\right) ^{\frac{1}{r_{1}}} \end{eqnarray*} |
\begin{eqnarray*} &&\times \left( \frac{q^{2}+2}{\left[ 3\right] _{q}^{2}\left[ 2\right] _{q}} \left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}+ \frac{q\left[ 3\right] _{q}\left[ 2\right] _{q}-\left( q^{2}+2q\right) }{ \left[ 3\right] _{q}^{2}\left[ 2\right] _{q}}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{p_{1}}} \\ &&+\left( \frac{q^{7r_{1}}}{\left[ 8\right] _{q}^{r_{1}}}-\frac{\left[ 2 \right] _{q}\left( \left[ 7\right] _{q}\left[ 3\right] _{q}-\left[ 8\right] _{q}\left[ 2\right] _{q}\right) ^{r_{1}}}{\left[ 8\right] _{q}^{r_{1}}\left[ 3\right] _{q}^{r_{1}+1}}\right) ^{\frac{1}{r_{1}}} \\ &&\left. \times \left( \frac{\left[ 3\right] _{q}^{2}-\left[ 2\right] _{q}^{2}}{\left[ 3\right] _{q}^{2}\left[ 2\right] _{q}}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{1}\right) \right \vert ^{p_{1}}+\frac{q^{2}\left[ 3\right] _{q}\left[ 2\right] _{q}+\left[ 2\right] _{q}^{2}-\left[ 3\right] _{q}^{2}}{\left[ 3\right] _{q}^{2}\left[ 2\right] _{q}}\left \vert _{\pi _{1}}D_{q}\Pi \left( \pi _{2}\right) \right \vert ^{p_{1}}\right) ^{\frac{1}{ p_{1}}}\right] \end{eqnarray*} |
which is proved by Iftikhar et al. in [41].
To sum up, we provided some generalisations of quantum Simpson's and quantum Newton's inequalities for quantum differentiable convex functions with two and three parameters, respectively. It is important to note that by considering the limit q\rightarrow 1^{-} and different special choices of the involved parameters in our key results, our results transformed into some new and well-known results. We believe that it is an interesting and innovative problem for future researchers who can obtain similar inequalities for different types of convexity and quantum integrals.
This research was funded by King Mongkut's University of Technology North Bangkok. Contract no.KMUTNB-63-KNOW-22.
The authors declare no conflict of interest.
[1] |
A. Ahmad, C. Francq, Poisson QMLE of count time series models, J. Time Ser. Anal., 37 (2016), 291–314. http://dx.doi.org/10.1111/jtsa.12167 doi: 10.1111/jtsa.12167
![]() |
[2] |
M. Aitkin, D. B. Rubin, Estimation and hypothesis testing in finite mixture models, J. Roy. Stat. Soc. B, 47 (1985), 67–75. http://dx.doi.org/10.1111/j.2517-6161.1985.tb01331.x doi: 10.1111/j.2517-6161.1985.tb01331.x
![]() |
[3] |
A. Aknouche, C. Francq, Count and duration time series with equal conditional stochastic and mean orders, Economet. Theor., 37 (2021), 248–280. http://dx.doi.org/10.1017/S0266466620000134 doi: 10.1017/S0266466620000134
![]() |
[4] | A. Aknouche, C. Francq, Stationarity and ergodicity of Markov switching positive conditional mean models, J. Time Ser. Anal., 2022, in press. http://dx.doi.org/10.1111/jtsa.12621 |
[5] | A. Aknouche, B. S. Almohaimeed, S. Dimitrakopoulos, Forecasting transaction counts with integer-valued GARCH models, Stud. Nonlinear Dyn. Economet., 2021, in press. http://dx.doi.org/10.1515/snde-2020-0095 |
[6] |
A. Aknouche, N. Demmouche, S. Dimitrakopoulos, N. Touche, Bayesian analysis of periodic asymmetric power GARCH models, Stud. Nonlinear Dyn. Economet., 24 (2020), 1–24. http://dx.doi.org/10.1515/snde-2018-0112 doi: 10.1515/snde-2018-0112
![]() |
[7] |
A. Aknouche, W. Bentarzi, N. Demouche, On periodic ergodicity of a general periodic mixed Poisson autoregression, Stat. Probabil. Lett., 134 (2018), 15–21. http://dx.doi.org/10.1016/j.spl.2017.10.014 doi: 10.1016/j.spl.2017.10.014
![]() |
[8] |
A. Aknouche, S. Bendjeddou, N. Touche, Negative binomial quasi-likelihood inference for general integer-valued time series models, J. Time Ser. Anal., 39 (2018), 192–211. http://dx.doi.org/10.1111/jtsa.12277 doi: 10.1111/jtsa.12277
![]() |
[9] |
A. Aknouche, N. Demmouche, Ergodicity conditions for a double mixed Poisson autoregression, Stat. Probabil. Lett., 147 (2019), 6–11. http://dx.doi.org/10.1016/j.spl.2018.11.030 doi: 10.1016/j.spl.2018.11.030
![]() |
[10] |
A. Aknouche, N. Rabehi, On an independent and identically distributed mixture bilinear time series model, J. Time Ser. Anal., 31 (2010), 113–131. http://dx.doi.org/10.1111/j.1467-9892.2009.00649.x doi: 10.1111/j.1467-9892.2009.00649.x
![]() |
[11] |
B. S. Almohaimeed, Ergodic properties of periodic integer-valued GARCH models, Adv. Appl. Stat., 72 (2022), 55–70. http://dx.doi.org/10.17654/0972361722004 doi: 10.17654/0972361722004
![]() |
[12] |
L. Bauwens, A. Preminger, J. Rombouts, Theory and inference for a Markov Switching GARCH model, Economet. J., 13 (2010), 218–244. http://dx.doi.org/10.1111/j.1368-423X.2009.00307.x doi: 10.1111/j.1368-423X.2009.00307.x
![]() |
[13] |
M. Bentarzi, W. Bentarzi, Periodic integer-valued GARCH(1, 1) model, Commun. Stat.-Simul. Comput., 46 (2017), 1167–1188. http://dx.doi.org/10.1080/03610918.2014.994780 doi: 10.1080/03610918.2014.994780
![]() |
[14] | J. Bracher, L. Held, Periodically stationary multivariate autoregressive models, 2017, arXiv: 1707.04635. |
[15] |
P. Bougerol, Kalman filtering with random coefficients and contractions, SIAM J. Control Optim., 31 (1993), 942–959. http://dx.doi.org/10.1137/0331041 doi: 10.1137/0331041
![]() |
[16] |
M. Bourguignon, K. L. P. Vasconcellos, V. A. Reisen, M. Ispány, A Poisson INAR(1) process with a seasonal structure, J. Stat. Comput. Sim., 86 (2016), 373–387. http://dx.doi.org/10.1080/00949655.2015.1015127 doi: 10.1080/00949655.2015.1015127
![]() |
[17] |
R. A. Boyles, W. A. Gardner, Cycloergodic properties of discrete-parameter nonstationary stochastic processes, IEEE, Trans. Inform. Theory, 29 (1983), 105–114. http://dx.doi.org/10.1109/TIT.1983.1056613 doi: 10.1109/TIT.1983.1056613
![]() |
[18] |
V. Christou, K. Fokianos, Quasi-likelihood inference for negative binomial time series models, J. Time Ser. Anal., 35 (2014), 55–78. http://dx.doi.org/10.1111/jtsa.12050 doi: 10.1111/jtsa.12050
![]() |
[19] | R. A. Davis, S. H. Holan, R. Lund, N. Ravishanker, Handbook of discrete-valued time series, Boca Raton: CRC Press, 2016. |
[20] |
R. A. Davis, H. Liu, Theory and inference for a class of observation-driven models with application to time series of counts, Stat. Sinica, 26 (2016), 1673–1707. http://dx.doi.org/10.5705/ss.2014.145t doi: 10.5705/ss.2014.145t
![]() |
[21] | M. L. Diop, A. Diop, A. K. Diongue, A mixture integer-valued GARCH model, Revstat-Stat. J., 14 (2016), 245–271. |
[22] |
M. L. Diop, A. Diop, A. Kâ, A negative binomial mixture integer-valued GARCH model, Afrika Statistika, 13 (2018), 1645–1666. http://dx.doi.org/10.16929/as/1645.126 doi: 10.16929/as/1645.126
![]() |
[23] |
P. Doukhan, K. Fokianos, D. Tjøstheim, On weak dependence conditions for Poisson autoregressions, Stat. Probabil. Lett., 82 (2012), 942–948. http://dx.doi.org/10.1016/j.spl.2012.01.015 doi: 10.1016/j.spl.2012.01.015
![]() |
[24] |
P. Doukhan, K. Fokianos, J. Rynkiewicz, Mixtures of nonlinear Poisson autoregressions, J. Time Ser. Anal., 42 (2021), 107–135. http://dx.doi.org/10.1111/jtsa.12558 doi: 10.1111/jtsa.12558
![]() |
[25] |
R. Ferland, A. Latour, D. Oraichi, Integer-valued GARCH process, J. Time Ser. Anal., 27 (2006), 923–942. http://dx.doi.org/10.1111/j.1467-9892.2006.00496.x doi: 10.1111/j.1467-9892.2006.00496.x
![]() |
[26] |
C. Francq, M. Roussignol, Ergodicity of autoregressive processes with Markov-switching and consistency of the maximum-likelihood estimator, Statistics, 32 (1998), 151–173. http://dx.doi.org/10.1080/02331889808802659 doi: 10.1080/02331889808802659
![]() |
[27] | C. Francq, J.-M. Zakoian, GARCH models: structure, statistical inference and financial applications, 2 Eds., John Wiley & Sons, 2019. |
[28] |
C. Francq, J.-M. Zakoian, Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference, Comput. Stat. Data Anal., 52 (2008), 3027–3046. http://dx.doi.org/10.1016/j.csda.2007.08.003 doi: 10.1016/j.csda.2007.08.003
![]() |
[29] |
P. R. Filho, V. A. Reisen, P. Bondon, M. Ispany, M. Melo, F. Sarquis, A periodic and seasonal statistical model for non-negative integer-valued time series with an application to dispensed medications in respiratory diseases, Appl. Math. Model., 96 (2021), 545–558. http://dx.doi.org/10.1016/j.apm.2021.03.025 doi: 10.1016/j.apm.2021.03.025
![]() |
[30] |
K. Fokianos, A. Rahbek, D. Tjøstheim, Poisson autoregression, J. Amer. Stat. Assoc., 140 (2009), 1430–1439. http://dx.doi.org/10.1198/jasa.2009.tm08270 doi: 10.1198/jasa.2009.tm08270
![]() |
[31] | R. Horn, C. R. Johnson, Matrix analysis, 2 Eds., Cambridge University Press, 2013. |
[32] |
Q. Li, H. Chen, F. Zhu, Robust estimation for Poisson integer-valued GARCH models using a new hybrid loss, J. Syst. Sci. Complex., 34 (2021), 1578–1596. http://dx.doi.org/10.1007/s11424-020-9344-0 doi: 10.1007/s11424-020-9344-0
![]() |
[33] | A. Manaa, M. Bentarzi, Periodic negative binomial INGARCH(1, 1) model, Commun. Stat.-Simul. Comput., 2022, in press. http://dx.doi.org/10.1080/03610918.2021.1990329 |
[34] |
H. Mao, F. Zhu, Y. Cui, A generalized mixture integer-valued GARCH model, Stat. Methods Appl., 29 (2020), 527–552. http://dx.doi.org/10.1007/s10260-019-00498-2 doi: 10.1007/s10260-019-00498-2
![]() |
[35] |
F. Ouzzani, M. Bentarzi, On mixture periodic Integer-Valued ARCH models, Commun. Stat.-Simul. Comput., 50 (2021), 3931–3957. http://dx.doi.org/10.1080/03610918.2019.1635155 doi: 10.1080/03610918.2019.1635155
![]() |
[36] |
D. C. H. Wee, F. Chen, W. T. M. Dunsmuir, Likelihood inference for Markov switching GARCH(1, 1) models using sequential Monte Carlo, Economet. Stat., 2 (2022), 50–68. http://dx.doi.org/10.1016/j.ecosta.2020.03.004 doi: 10.1016/j.ecosta.2020.03.004
![]() |
[37] | C. H. Weiss, F. Zhu, A. Hoshiyar, Softplus INGARCH models, Stat. Sinica, 2022, in press. http://dx.doi.org/10.5705/ss.202020.0353 |
[38] | Y. Xu, F. Zhu, A new GJR-GARCH model for \mathbb{Z}-valued time series, J. Time Ser. Anal., 2022, in press. http://dx.doi.org/10.1111/jtsa.12623 |
[39] |
F. Zhu, A negative binomial integer-valued GARCH model, J. Time Ser. Anal., 32 (2011), 54–67. http://dx.doi.org/10.1111/j.1467-9892.2010.00684.x doi: 10.1111/j.1467-9892.2010.00684.x
![]() |
[40] |
F. Zhu, Q. Li, D. Wang, A mixture integer-valued ARCH model, J. Stat. Plan. Infer., 140 (2010), 2025–2036. http://dx.doi.org/10.1016/j.jspi.2010.01.037 doi: 10.1016/j.jspi.2010.01.037
![]() |
1. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Ibrahim Slimane, Kamsing Nonlaopon, Y. S. Hamed, Some new (p, q)-Dragomir–Agarwal and Iyengar type integral inequalities and their applications, 2022, 7, 2473-6988, 5728, 10.3934/math.2022317 | |
2. | Lulu Zhang, Yu Peng, Tingsong Du, On multiplicative Hermite–Hadamard- and Newton-type inequalities for multiplicatively (P,m)-convex functions, 2024, 534, 0022247X, 128117, 10.1016/j.jmaa.2024.128117 |