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1. Introduction

Integer-valued GARCH (INGARCH) models have proved to be useful in modeling count time series
which are characterized by specific patterns that cannot be accounted for by standard ARMA models
( [1, 5, 18–20, 23, 25, 30, 32, 37–39]). Among the most apparent features of count time series are low
values, overdispersion (the variance is larger than the mean), persistence, asymmetry, and a positive
autocorrelation structure (cf. [19] and [27]). In its general form, the INGARCH model is defined
through a discrete conditional distribution (e.g., Poisson, negative binomial, etc.) with a stochastic
time-varying conditional mean, which depends on past observations through time-invariant parameters.

For count data that also exhibit a seasonal behavior, the periodic INGARCH model – in which
the parameters are taken to be periodic over time – has been found to be attractive ( [7, 14, 16, 29]).
Aknouche et al. [7] proposed periodic stationarity and periodic ergodicity conditions for the first-
order periodic INGARCH(1, 1) model with conditional distributions belonging to the class of Poisson
mixtures. Almohaimeed in [11] extended the result to a higher-order periodic INGARCH(p, q) in a
larger family of distributions whose stochastic order is identical to the mean order ( [3]). These general
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results can be used to support asymptotic inference for periodic INGARCH models used in studying
the asymptotic properties of the Poisson quasi-maximum likelihood estimate (QMLE) and the negative
binomial QMLE ( [1] and [8]).

In spite of the high-level of generality of the periodic INGARCH model in modeling a wide range
of count data, it seems that it is unable to model some other pathological features such as multimodality
and heavy tailedness of the conditional distributions ( [21, 22, 40]). A well-known approach to model
these features is to utilize a finite mixture of distributions (e.g., [4, 10]) leading to a mixture periodic
INGARCH representation. Ouzzani and Bentarzi [35] proposed a Poisson mixture periodic INARCH
model and studied its periodic stationarity in mean properties. However, strict periodic stationarity
and periodic ergodicity have not been considered. Moreover, the model only deals with the Poisson
mixture and the ARCH forms, which can be restrictive.

This paper provides strict periodic stationarity and periodic ergodicity conditions for a general
mixture periodic INGARCH(p, q) model. This model is defined via a finite mixture of discrete
distributions with conditional means depending on past observations through periodic time-varying
parameters. The mixture feature allows for finitely many component specifications corresponding to
the conditional mean and is specified via a finite independent and periodically distributed chain called
the switching (or regime) process. Moreover, the lagged values of the conditional mean in each regime
are governed by the past values of the regime sequence (cf. [4, 9, 26, 34, 40]). Finally, the conditional
mean in each regime is a general (linear or nonlinear) function of past observations. The model thus
allows for a large spectrum of distributions and various conditional mean shapes.

The rest of this paper has the following structure. Section 2 defines the model and the tools needed
for the subsequent Sections. In Section 3, we propose periodic ergodicity conditions for the mixture
periodic INGARCH (henceforth MP-INGARCH). Section 4 extends the results to the case of nonlinear
Lipschitz conditional mean forms. Section 5 illustrates the general results on specific mixture periodic
distributions such as the periodic Poisson mixture INGARCH, and the periodic negative binomial
mixture INGARCH. In addition, a simulation study is carried out to compare the theoretical seasonal
expectations generated by the model and their sample counterparts computed using simulated series.
Main conclusions are indicated in Section 6.

2. Mixture periodic INGARCH model

In the sequel, it is assumed that all random variables and sequences are defined on a probability
space (Ω,F , P) with values in subsets of the integer set N = {0, 1, ...}.

Let us recall some probability properties for periodic processes such as periodic stationarity and
periodic ergodicity. A sequence of random variables {Xt, t ∈ Z} is said to be independent and S -
periodically distributed (ipdS ) if: i) {Xt, t ∈ Z} is independent, and ii) Xt

d
= Xt+kS for all k, t ∈ Z, where

S ≥ 1 is a positive integer called the period, and the symbol " d
=" stands for equality in distribution.

When S = 1, an ipd1 sequence is just an independent and identically distributed (iid) process.
A stochastic process {Yt, t ∈ Z} is said to be strictly periodically stationary with period S ≥ 1 if

all processes {YnS +s, n ∈ Z} (1 ≤ s ≤ S ) are strictly stationary in the ordinary sense. In addition,
{Yt, t ∈ Z} is called S -periodically stationary in mean if E (Yt) is finite (for all t ∈ Z) and is S -periodic
over t. Naturally, strict periodic stationarity implies periodic stationarity in the mean whenever the
seasonal means of the process are finite. The process {Yt, t ∈ Z} is said to be periodically ergodic with
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period S if all sub-processes {YnS +s, n ∈ Z} (s ∈ {1, ..., S }) are ergodic in the usual sense (cf. [6, 17]).
The simplest strictly periodically stationary and periodically ergodic process (with period S ) is an ipdS

sequence.
Let Fλ be a cumulative distribution function (cdf) with discrete support and mean λ =∫ +∞

0
xdFλ (x) > 0. Suppose that Fλ satisfies the following “equal stochastic and mean orders” property

introduced by [3]
λ ≤ λ∗ ⇒ F−λ (u) ≤ F−λ∗(u), ∀u ∈ (0, 1), (2.1)

where F−λ is the generalized inverse of Fλ. The family of distributions satisfying (2.1) is quite
large and contains the one-parameter exponential family such as the Poisson and negative binomial
distributions, and also other interesting distributions (cf. [3]). In [11] proposed a large class of periodic
INGARCH(p, q) models described as follows. An integer-valued process {Yt, t ∈ Z} is said to be a
periodic INGARCH(p, q) of orders p and q (p, q ∈ N), and positive integer period S ≥ 1, if its
conditional distributions are given by

Yt|Ft−1 ∼ Ft,λt , t ∈ Z, (2.2)

where Ft−1 is the σ-algebra generated by {Yt−1,Yt−2, ...}, the cdf Ft,λt := Fλt satisfies (2.1) for all t ∈ Z,
and the conditional mean λt is given by

λt = ωt +

q∑
i=1

αtiYt−i +

p∑
j=1

βt jλt− j, t ∈ Z. (2.3)

The parameters ωt > 0, αti ≥ 0 (i = 1, ..., q) and βt j ≥ 0 ( j = 1, ..., p) are periodic in t with period S in
the sense ωt = ωt+kS , αti = αt+kS ,i and βt j = βt+kS , j for all k, t ∈ Z. In a more compact form, Eq (2.3)
can be written as follows

λnS +s = ωs +

q∑
i=1

αsiYnS +s−i +

p∑
j=1

βs jλnS +s− j, n ∈ Z, 1 ≤ s ≤ S .

In this paper we consider a finite mixture generalization of the periodic INGARCH(p, q) model
(2.2)–(2.3). Let a positive integer L, which refers to the number of regimes (or components). Let also
{∆t, t ∈ Z} be an ipdS sequence of random variables, valued in the finite set {1, ..., L} with distribution
P (∆t = l) = πt (l), where πt (l) ≥ 0,

∑L
l=1 πt (l) = 1, and πt (l) is S -periodic in t in the sense πt+hS (l) =

πt (l) for all t, h and l. The values assumed by ∆t are called components or regimes and the probability
πt (l) is called the mixing proportion along the season or channel t.

A stochastic process {Yt, t ∈ Z} is said to be a mixture periodic INGARCH(p, q) (henceforth MP-
INGARCH(p, q)) model if its conditional distribution is a finite mixture of L mixing distributions, that
is

Yt|Ft−1 ∼ πt (1) Ft,1,λ1,t + · · · + πt (L) Ft,L,λL,t , (2.4)

where Fλ = Ft,l,λ satisfies (2.1) and λt := λ∆t ,t is given by

λt = ωt (∆t) +

q∑
i=1

αti (∆t) Yt−i +

p∑
j=1

βt j (∆t) λt− j. (2.5)
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For all l, the parameters ωt (l) > 0, αti (l) ≥ 0 and βt j (l) ≥ 0 are S -periodic over t in the above sense.
Equation (2.5) can be written in the periodic form

λnS +s = ωs (∆nS +s) +

q∑
i=1

αsi (∆nS +s) YnS +s−i +

p∑
j=1

βs j (∆nS +s) λnS +s− j, n ∈ Z, 1 ≤ s ≤ S ,

where, for instance, ωs (l) (1 ≤ s ≤ S , 1 ≤ l ≤ L) denotes the intercept at season s and regime
l. Naturally, when L = 1, the MP-INGARCH model given by (2.4)–(2.5) reduces to the periodic
INGARCH model defined by (2.2)–(2.3) (cf. [11]).

For identifiability purposes, one can assume that for all 1 ≤ v ≤ S , πv (1) ≥ πv (2) ≥ · · · ≥ πv (L).
See also [2, 34, 40] for time-invariant mixtures corresponding to S = 1. Note, however, that the
identifiability of the mixture INGARCH model is rather important for asymptotic estimation theory
but is not required from a probabilistic point of view.

It is worth noting that the past recent values of λ∆t ,t in (2.5) depend on the past values of the regime
variable ∆t (see also [4, 9, 24, 34]). The likelihood of (2.4)–(2.5) is therefore not simple to obtain as it
depends on the whole path information concerning ∆t. A more general specification is

λt = gt,∆t(Yt−1, . . . ,Yt−q, λt−1, . . . , λt−p), (2.6)

where gt,l (1 ≤ l ≤ L) is [0,∞)-valued, and is S -periodic over t.
Denote by F ∆

t the sigma-field generated by {Yi,∆i+1, i ≤ t}. The distribution given by (2.4) can be
rewritten in function of ∆t as follows

Yt | F
∆

t−1 ∼ Ft,∆t ,λt . (2.7)

Model (2.4)–(2.5) encompasses several important mixtures of distributions such as:
i) The Poisson mixture

πt (1)P
(
λ1,t

)
+ · · · + πt (L)P

(
λL,t

)
. (2.8)

ii) The quadratic negative binomial mixture (Aknouche and Francq, 2022)

πt (1)NB
(
rt (1) , rt(1)

rt(1)+λ1,t

)
+ · · · + πt (L)NB

(
rt (L) , rt(L)

rt(L)+λL,t

)
, (2.9)

where rt (L) > 0 (l = 1, ..., L) is S -periodic over t.
iii) The linear negative binomial mixture

πt (1)NB
(
rt (1) λ1,t,

rt(1)
rt(1)+1

)
+ · · · + πt (L)NB

(
rt (L) λL,t,

rt(L)
rt(L)+1

)
. (2.10)

iv) The mixture of different distributions such as, for example with L = 3,

πt (1)P (λ1t) + πt (2)NB
(
rt (2) , rt(2)

rt(2)+λ2,t

)
+ πt (3)NB

(
rt (3) λ3,t,

rt(3)
rt(3)+1

)
.

3. Periodic ergodicity conditions: the linear conditional mean case

Conditions under which the MP-INGARCH process defined by (2.4) and (2.5) is strictly
periodically stationary and periodically ergodic are now given. Let m = max(p, q) and set

cti =

L∑
l=1

πt (l)
(
αti (l) + βti (l)

)
, i = 1, ...,m.
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Consider the m × m companion matrix At given by

At =



ct1 ct2 · · · ct,m−1 ctm

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


, (3.1)

Let ρ (B) denote the spectral radius of the matrix B, i.e., the maximum absolute eigenvalues of B.
Theorem 3.1. Under

ρ

 S∏
s=1

AS−s+1

 < 1, (3.2)

there exists a strictly periodically stationary, and periodically ergodic process {Yt, t ∈ Z} satisfying

P
(
Yt ≤ y | F ∆

t−1

)
= Ft,∆t ,λt(y), y ∈ R, (3.3)

where Ft,∆t ,λt fulfills (2.1) for all t ∈ Z, and λt satisfies (2.5).
Conversely, if there is a mean periodically stationary process {Yt, t ∈ Z} satisfying (3.3) with E (Yt) <

∞ for all t ∈ Z, then (3.2) holds.
Proof. Let us prove the necessary part of the Theorem. If there exists a mean periodically stationary
process {Yt, t ∈ Z} satisfying (3.2) with E (Yt) = E (λt) for all t, then we have

E (Yt) =

L∑
l=1

πt (l)ωt (l) +

m∑
i=1

L∑
l=1

πt (l)
(
αti (l) + βt j (l)

)
E (Yt−i) . (3.4)

Setting Y t = (E (Yt) , ..., E (Yt−m+1))′ and Bt =
(∑L

l=1 πt (l)ωt (l) , 0, ..., 0
)′

, equality (3.4) can be rewritten
in the following matrix equation

Y t = AtY t−1 + Bt.

By iterating the latter equation S times while using the S -periodicity in-mean of the process, which
implies that E

(
Y t−S

)
= E

(
Y t

)
, we get the following equation

Y t = (At · · · At−S +1) Y t + Ct, (3.5)

where

Ct =

S−1∑
j=0

j−1∏
i=0

At−iBt− j.

Using Lemma A.1 in [4] and Corollary 8.1.29 in [31], equality (3.5) entails

ρ (At · · · At−S +1) < 1,

which in turns is equivalent to (3.2).
We now prove the sufficiency part of the theorem. Let {Ut, t ∈ Z} be an iid uniformly distributed

sequence in [0, 1], independent of {∆t, t ∈ Z}. For all t ∈ Z put

λ(k)
t =

 ωt (∆t) +
q∑

i=1
αti (∆t) Y (k−i)

t−i +
p∑

j=1
βt j (∆t) λ

(k− j)
t− j if k ≥ 1

0 if k ≤ 0,
(3.6)
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and

Y (k)
t =

 F−
t,∆t ,λ

(k)
t

(Ut) if k ≥ 1

0 if k ≤ 0.
(3.7)

If k ≥ 2, combining (3.6) and (3.7) we have

λ(k)
t = ϕt,k(Ut−1, . . . ,Ut−k+1,∆t, ...,∆t−k+1),

where in view of the S -periodicity of the model parameters, the measurable function ϕt,k : [0, 1]k ×

{1, ..., L}k → [0,∞) is S -periodic in t in the sense ϕt,k = ϕhS +t,k for all t, h ∈ Z. Therefore, the processes{
λ(k)

t , t ∈ Z
}

and
{
Y (k)

t , t ∈ Z
}

are strictly periodically stationary and periodically ergodic (e.g., [6]) for

all k. Now, let F (k)
t−1 and F ∗t−1 be the σ-algebras generated by

{
Y (k−i)

t−i ,∆t−i+1, i > 0
}

and {Ui,∆i+1, i < t},
respectively. Since the variable F−λ (U) has the cdf Fλ when U is uniformly distributed in [0, 1], it
follows that

E
(
Y (k)

t | F
(k)

t−1

)
= E

(
Y (k)

t | F
∗

t−1

)
= λ(k)

t

P
(
Y (k)

t ≤ y | F (k)
t−1

)
= P

(
F−

t,∆t ,λ
(k)
t

(Ut) ≤ y | F ∗t−1

)
= Ft,∆t ,λ

(k)
t

(y).

If we establish the following limiting result

λt = lim
k→∞

λ(k)
t , a.s., (3.8)

then the existence of a process satisfying (3.3), with F ∗t−1 in place of F ∆
t−1, is proved. Taking the limit

as k → ∞ on the two sides of the equalities (3.6) and (3.7), we obtain a.s.

Yt = lim
k→∞

Y (k)
t = F−t,∆t ,λt

(Ut).

As λt is F ∆
t−1-measurable, the distribution of Yt given F ∗t−1 is the same as that of Yt given F ∆

t−1. To show
that (3.2) implies (3.8), let us first prove that the sequence

(
λ(k)

t

)
k

is increasing, i.e.,

0 ≤ λ(k−1)
t ≤ λ(k)

t , for all k (3.9)

and that
E

(
Y (k)

t

)
≥ E

(
Y (k−1)

t

)
, for all k. (3.10)

When k ≤ 0, the inequalities (3.9) and (3.10) are obviously satisfied. For k ≥ 1, (3.9) is shown by
induction. If

... ≤ λ(k0−1)
t ≤ λ(k0)

t

is satisfied then from (2.1) we obtain

λ(k0+1)
t = ωt (∆t) +

q∑
i=1

αti (∆t) F−
λ

(k0+1−i)
t−i

(Ut−i) +

p∑
j=1

βt j (∆t) λ
(k0+1− j)
t− j

≥ ωt (∆t) +

q∑
i=1

αti (∆t) F−
λ

(k0−i)
t−i

(Ut−i) +

p∑
j=1

βt j (∆t) λ
(k0− j)
t− j
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= λ(k0)
t .

Since E
(
Y (k)

t

)
= E

(
λ(k)

t

)
exists for any fixed k, we have

E
(
Y (k+1)

t

)
= E

(
λ(k+1)

t

)
≥ E

(
λ(k)

t

)
= E

(
Y (k)

t

)
,

which establishes (3.10). Using (3.9) and (3.10), we have for all k ≥ 1

E
(∣∣∣λ(k)

t − λ
(k−1)
t

∣∣∣) ≤ m∑
i=1

L∑
l=1

πt (l) (αti (l) + βti (l))E
(∣∣∣λ(k−i)

t−i − λ
(k−i−1)
t−i

∣∣∣) . (3.11)

Letting v(k)
t = E

(∣∣∣λ(k)
t − λ

(k−1)
t

∣∣∣) and V (k)
t =

(
v(k)

t , ..., v
(k−m+1)
t−m+1

)′
, inequality (3.11) can be written in the

following matrix form

V (k)
t ≤ AtV

(k−1)
t−1

≤ (At · · · At−S +1) V (k−S )
t−S

= (At · · · At−S +1) V (k−S )
t , (3.12)

where At is given by (3.1), and the equality V (k−S )
t−S = V (k−S )

t , which follows from the S -periodicity of
the coefficients, is used. Under (3.2) and (3.12), we get for all t

V (k)
t → 0 as k → ∞.

Thus the sequence
{
λ(k)

t

}
k

converges in L1 and a.s. In addition, since

λt = lim
k→∞

ϕt,k(Ut−1, . . . ,Ut−k+1,∆t, , ...∆t−k+1)

: = ϕt(Ut−1,Ut−2, . . . ; ∆t,∆t−1, ...),

where ϕt : [0, 1]∞ × {1, ..., L}∞ → [0,∞) is measurable and S -periodic in t, the sequence {λt, t ∈ Z} is
therefore strictly stationary and ergodic in the periodic meaning. �

In view of (3.5) and the S -periodicity of the model parameters, the S unconditional (seasonal)
means of the MP-INGARCHS (p, q) model are given, under the periodic ergodicity condition (3.2), by µ

v
=

(
Im −

S∏
s=1

AS−s+1

)−1 S−1∑
j=0

j−1∏
i=0

Av−iBv− j

E (Yv) = (1, 0, ..., 0)′1×m µv

, v ∈ {1, ..., S } , (3.13)

where Im stands for the identity matrix of order m = max(p, q).

4. MP-INGARCH(p, q) model with non-linear conditional means

This Section extends the periodic ergodicity conditions for the MP-INGARCH(p, q) model when
the conditional mean λt has the more general nonlinear form (2.6). Suppose that for all t ∈ Z, the

AIMS Mathematics Volume 7, Issue 6, 9809–9824.
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S -periodic function gt,l(y1, . . . , yq, λ1, . . . , λp) is Lipschitz, that is for all
(
yi, y′i

)
, i = 1, . . . , q and all(

λ j, λ
′
j

)
, j = 1, . . . , p,

∣∣∣gt,l(y1, . . . , yq, λ1, . . . , λp) − gt,l(y′1, . . . , y
′
q, λ

′
1, . . . , λ

′
p)
∣∣∣ ≤ q∑

i=1

αti (l) |yi − y′i | +
p∑

j=1

βt j (l) |λ j − λ
′
j|, (4.1)

where αti (l) ≥ 0 and βt j (l) ≥ 0 are S -periodic over t. See also [34] and [4] for the non-periodic
INGARCH setting. Let At be defined as in (3.1). The following result shows that condition (3.3) in
which the coefficients of the matrix At are replaced by those of the Lipschitz inequality (4.1), is still
sufficient for the existence of a periodically ergodic process verifying (2.7) and (2.6) (or equivalently
(2.4) and (2.6))
Theorem 4.1. There exists a strictly periodically stationary and periodically ergodic process {Yt, t ∈ Z}
with a conditional distribution given by (2.1) and (2.7), where λt satisfies (2.6) and (4.1), if

ρ (AtAt−1 · · · At−S +1) < 1. (4.2)

Proof. Using similar arguments in the proof of Theorem 3.1, let {Ut, t ∈ Z} be defined as above. Define
for all t ∈ Z

λ(k)
t =

{
gt,∆t(Y

(k−1)
t−1 , . . . ,Y (k−q)

t−q , λ(k−1)
t−1 , . . . , λ

(k−p)
t−p ) if k ≥ 1

0 if k ≤ 0
(4.3)

and let Y (k)
t be given as in (3.7). As for the proof of Theorem 3.1, under (4.2) we show the existence

of a periodically ergodic process satisfying (2.1), (2.7), (2.6), and (4.1). This amounts to show the a.s.
convergence of λ(k)

t given by (4.3) to the limit λt, which is given by (2.6). From (2.7) we have

E
(
|Y (k)

t − Y (k−1)
t |

)
= EE

(
|Y (k)

t − Y (k−1)
t ||λ(k)

t , λ
(k−1)
t

)
= E

(
|λ(k)

t − λ
(k−1)
t |

)
.

From (4.1) it follows that

E
∣∣∣λ(k)

t − λ
(k−1)
t

∣∣∣ ≤ m∑
i=1

L∑
l=1

πt (l) (αti (l) + βti (l))E
∣∣∣λ(k−i)

t−i − λ
(k−i−1)
t−i

∣∣∣ ∀k ≥ 1.

The latter can be rewritten in the following inequality

V (k)
t ≤ At · · · At−S +1V (k−S )

t ,

where V (k)
t is defined as in (3.12). Under (4.2), V (k)

t → 0 from which the Theorem is established. �

5. Illustrations

5.1. On particular mixture periodic distributions

In this subsection, we apply the very general results given by Theorem 3.1 to various special cases.
Example 5.1. (First-order Poisson MP-INGARCH(1, 1) model)

AIMS Mathematics Volume 7, Issue 6, 9809–9824.
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For model (2.8) and (2.5), taking p = q = 1, condition (3.2) becomes

S∏
s=1

L∑
k=1

πt (k)
(
αt−s,1 (k) + βt−s,1 (k)

)
< 1.

If in addition L = 1, the latter reduces to the periodic ergodicity condition given by [7] for the first-order
periodic INGARCH(1, 1) model with a Poisson mixture conditional distribution. See also [13, 33, 35].
Example 5.2. (First-order Negative binomial MP-INGARCH(1, 1) model)

The condition (3.2) also applies to a vaster class of distributions given by (2.1) such as the negative
binomial mixture. We consider here two instances:

- The quadratic negative binomial mixture ( [5]) given by (2.9).
- The linear negative binomial mixture given by (2.10).

Example 5.3. (Non-mixed periodic INGARCH(p, q) model)
When L = 1, the matrix At in condition (3.2) reduces to

At =



αt1 + βt1 αt2 + βt2 · · · αt,m−1 + βt,m−1 αtm + βtm

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


,

which corresponds to the same periodic ergodicity condition given by [11].
Example 5.4. (The iid mixture INGARCH(p, q) model)

When S = 1 the coefficient cti in the matrix given by (3.1) becomes time-invariant, i.e.,

ci =

L∑
l=1

π (l)
(
αi (l) + βi (l)

)
, i = 1, ...,m,

and therefore condition (3.2) reduces to

L∑
l=1

π (l)
m∑

i=1

(
αi (l) + βi (l)

)
< 1,

which is the condition (3.6) given by [4].
Example 5.5. (The standard INGARCH(p, q) model)

When S = L = 1, condition (3.2) reduces to

ρ (A) < 1, (5.1)

where

A =



α1 + β1 α2 + β2 · · · αm−1 + βm−1 αm + βm

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


,
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and αi (i = 1, ..., q) and β j ( j = 1, ..., p) are the conditional mean parameters of the time-invariant
INGARCH(p, q) model corresponding to S = 1. According to Corollary 2.2 in [27], the condition
(5.1) is equivalent to

q∑
i=1

αi +

p∑
j=1

β j < 1,

which is the standard ergodicity condition given by [4].
Example 5.6. (Mixture periodic INARCH(q) models)

When p = 0 in the general model (2.4)–(2.5), we obtain the particular mixture periodic INARCH
model considered by [35]. So our condition (3.2) reduces to their periodic stationarity-in-mean
condition. Note, however, that condition (3.2) also ensures the periodic ergodicity of the model, which
has not been studied by [35]. Moreover, our condition also applies to larger classes of distributions, to
general GARCH lags, and to non-linear conditional mean forms.

5.2. On simulated data: Monte Carlo estimations of the theoretical means

In this Subsection, the veracity of the unconditional mean formula (3.13) (which is based on
condition (3.2) of Theorem 3.1) is assessed through a simulation study. Three mixture periodic
distributions are considered.

i) The first one is the two-component Poisson MP-INGARCH4(1, 1) model with period S = 4,

Yt|Ft−1 ∼ πt (1)P
(
λ1,t

)
+ πt (2)P

(
λ2,t

)
,

the parameters of which are reported in Table 1.
ii) The second one is the two-component (quadratic) negative binomial MP-INGARCH4(1, 1) model

with period S = 4:

Yt|Ft−1 ∼ πt (1)NB
(
rt (1) , rt(1)

rt(1)+λ1,t

)
+ πt (2)NB

(
rt (2) , rt(2)

rt(2)+λ2,t

)
,

where the corresponding parameters are shown in Table 2.
iii) The third case is the three-component Poisson MP-INARCH4(1) model (p = 0) with period

S = 4 (cf. Table 3), given by

Yt|Ft−1 ∼ πt (1)P
(
λ1,t

)
+ πt (2)P

(
λ2,t

)
+ πt (3)P

(
λ3,t

)
.

For each case, 1000 Monte Carlo replications with sample-size T = 800 (hence N = 200) are
simulated, from which the S seasonal sample means Yv = 1

N

∑N−1
n=0 YnS +v, for all 1 ≤ v ≤ S , are

obtained. Then, these seasonal sample means are compared with their seasonal theoretical counterparts
obtained from (3.13) under the periodic stationarity condition (3.2). For the first case, Figure 1 shows
the Boxplots of the 4 seasonal sample means and the corresponding theoretical means in solid line.
Figures 2 and 3 show the same for cases 2 and 3, respectively.
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Table 1. Parameters of the Poisson 2-mixture 4-Periodic INGARCH_4(1,1) model.

l 1 2 E (Yv)
v ωv (1) αv (1) βv (1) πv (1) ωv (2) αv (2) βv (2) πv (2)

1
ω1 (1) α1 (1) β1 (1) π1 (1) ω1 (2) α1 (2) β1 (2) π1 (2)
1 0.1 0.5 0.3 1.5 0.2 0.3 0.7 7.200

2
ω2 (1) α2 (1) β2 (1) π2 (1) ω2 (2) α2 (2) β2 (2) π2 (2)
0.5 0.2 0.3 0.7 0.7 0.1 0.5 0.3 4.499

3
ω3 (1) α3 (1) β3 (1) π3 (1) ω3 (2) α3 (2) β3 (2) π3 (2)
3 0.3 0.1 0.4 4 0.4 0.4 0.6 6.497

4
ω4 (1) α4 (1) β4 (1) π4 (1) ω4 (2) α4 (2) β4 (2) π4 (2)
5 0.4 0.2 0.2 6 0.3 0.6 0.8 11.208

Table 2. Parameters of the 2-component negative binomial MP-INGARCH_4(1,1) model.

l 1 2 E (Yv)

v
ωv (1) αv (1) βv (1) πv (1) ωv (2) αv (2) βv (2) πv (2)
rv (1) rv (2)

1
ω1 (1) α1 (1) β1 (1) π1 (1) ω1 (2) α1 (2) β1 (2) π1 (2)
0.50 0.20 0.30 0.40 0.80 0.10 0.50 0.60 8.909
r1 (1) 2.0 r1 (2) 1.0

2
ω2 (1) α2 (1) β2 (1) π2 (1) ω2 (2) α2 (2) β2 (2) π2 (2)
7.0 0.10 0.40 0.60 8.0 0.35 0.20 0.40 12.353
r2 (1) 4.0 r2 (2) 2.0

3
ω3 (1) α3 (1) β3 (1) π3 (1) ω3 (2) α3 (2) β3 (2) π3 (2)
12.0 0.30 0.20 0.60 10.0 0.45 0.30 0.40 18.512
r3 (1) 0.5 r3 (2) 1.0

4
ω4 (1) α4 (1) β4 (1) π4 (1) ω4 (2) α4 (2) β4 (2) π4 (2)
2.0 0.10 0.60 0.80 3.0 0.40 0.20 0.20 14.794
r4 (1) 15.0 r4 (2) 10.0

Table 3. Parameters of the Poisson 3-mixture 4-Periodic INARCH_4(1,1) model.

l 1 2 3 E (Yv)
v ωv (1) αv (1) πv (1) ωv (2) αv (2) πv (2) ωv (3) αv (3) πv (3)

1
ω1 (1) α1 (1) π1 (1) ω1 (2) α1 (2) π1 (2) ω1 (3) α1 (3) π1 (3)
0.5 0.2 0.4 0.8 0.1 0.3 0.7 0.1 0.3 9.113

2
ω2 (1) α2 (1) π2 (1) ω2 (2) α2 (2) π2 (2) ω2 (3) α2 (3) π2 (3)
7.0 0.1 0.2 8.0 0.35 0.2 9.0 0.1 0.6 12.439

3
ω3 (1) α3 (1) π3 (1) ω3 (2) α3 (2) π3 (2) ω3 (3) α3 (3) π3 (3)
12.0 0.3 0.3 10.0 0.45 0.4 11.0 0.2 0.3 18.775

4
ω4 (1) α4 (1) π4 (1) ω4 (2) α4 (2) π4 (2) ω4 (3) α4 (3) π4 (3)
2.0 0.1 0.2 3.0 0.4 0.5 4.0 0.1 0.3 14.848
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Figure 1. Theoretical and sample seasonal means for the 2-component, 4-periodic Poisson
MP-INGARCH4(1, 1) model.

Figure 2. Theoretical and sample seasonal means for the 2-component, 4-periodic negative
binomial MP-INGARCH4(1, 1) model.

Figure 3. Theoretical and sample seasonal means for the 3-component, 4-periodic Poisson
MP-INGARCH4(1, 1) model.
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From Figures 1–3, it can be seen that the theoretical seasonal means are at the center of their
corresponding Boxplots, which supports the above theoretical calculations. Moreover, the Boxplots
are, in most cases, symmetric and are therefore consistent with the normality assumption, which
follows from the central limit theorem for periodically ergodic processes.

6. Conclusions

In this paper, we examined some probability properties of a general mixture periodic integer-valued
GARCH model, which can be used to model seasonally-varying integer-valued time series data. More
precisely, we proposed strict periodic stationarity (and periodic ergodicity) conditions for a wide
family of mixture distributions whose stochastic order is the same as the mean order (cf. [4]). The
regime sequence driving the mixture feature is assumed to be independent and periodically distributed.
Moreover, the lagged conditional means are governed by the lagged values of the mixture variable,
which makes the model depends on the past of the regime variable. Therefore, the likelihood of the
model is not easy to calculate, but the estimation of the latter can be done using the generalized method
of moments ( [28]), Bayesian MCMC methods ( [12]), or particle filtering ( [36]). On the other hand,
the model we studied is also general from the form of the conditional means which can be linear or
Lipschitz nonlinear.

Various extensions of the proposed model can be proposed. We mention in particular multivariate
mixture periodic models and non-Lipschitz conditional functions such as threshold models.
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