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1. Introduction

Time delay systems are one of the essential systems which occur in applied models such as
biological, chemical, transportation models [1–3]. In recent years by many researchers, these systems
have been studied (see [4–7] and references therein).

Optimal control (OC) of time-delay systems [8–11] is a class of control problems that can not
usually solve exactly. Hence, some usually direct and indirect method has been suggested to solve these
problems numerically. Inoue et al. [12] have proposed a sensitivity approach to obtain the suboptimal
control for linear systems with slight delays in the state. Guinn [13] has sketched a simple method
for obtaining necessary conditions for control problems with a constant delay in the state variable.
In [14], an optimal linear-quadratic regulator for a linear system with multiple time delays in the
control input is propounded. Wu et al. in [15] have extended a computational method for solving an
OC problem governed by a switched dynamical system with time delay. Jamshidi et al. in [16], the
interaction prediction method of large-scale systems is developed for nonlinear systems with multi-
delays in both control and state variables. In [17], an efficient numerical way for finding the solution of
piecewise constant delay systems based on hybrid block-pulse functions and Chebyshev polynomials
is suggested. Hashemi and Asadi [18] have introduced a wavelet collocation approach for finding
the approximate OC of the nonlinear time-delay systems. A suboptimal control was designed using
functional analysis and linear programming theories and optimizing an appropriate cost function by
Kushkouei et al. [19]. In [20], an approximate scheme using Haar wavelets for solving time delayed
OC (TDOC) problems with terminal inequality constraints is presented. Sun and Huang [21] applied
a brand-new nonlinear programming method and line-up competition algorithm based on the principle
of evolution to solve TDOC problems. Kushner and Barnea in [22] proposed a state feedback control
for TDOC problems, including quadratic objective functional and linear delay integro-differential
constraint.

Spectral and pseudospectral methods have been used extensively for smooth and nonsmooth non-
delayed OC problems, and convergence analysis has been proposed by many researchers for these
problems. These methods were developed mainly in the 1970s for solving partial differential equations
arising in fluid dynamics and meteorology [23]. Over the past decade, pseudospectral methods have
been used as one of the most efficient numerical methods for solving constrained nonlinear optimal
control problems [24–26]. The main point in pseudospectral methods is that they avoid the poor
behavior of the classical polynomial interpolation method by removing the restriction to equally
spaced interpolation points. In the pseudospectral method, orthogonal polynomials or interpolating
polynomials are utilized to approximate the control and state variables. The collocation points are
considered the roots of some orthogonal polynomials or their derivatives. In these approximations,
Lagrange polynomials are the trial functions, and the control and state variables at the collocation
points are the unknown coefficients. These methods have some crucial advantages over other methods.
One noticeable advantage of using pseudospectral methods is the high accuracy of pseudospectral
approximations [27, 28]. In [23], it has been demonstrated the pseudospectral methods presented a
convergence rate that is faster than any convergence rate for approximate analytic functions.

Indirect spectral methods for solving OC problems depend on the initial guesses for unknown
variables, and hence a relatively accurate initial guess is needed to converge the technique. Also,
if the OC problem has non-equal constraints, we need to know about the intervals where the optimal
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solution lies on the boundary of the limitations. So, in this paper, we propose a direct Legendre-Gauss-
Lobatto spectral collocation (LGLSC) method for the numerical solution of the TDOC problems and
prove the convergence of the present method by providing some theorems. The considered TDOC
problem includes a dynamical system with delay on both the state and control variables.

This article contains the following sections: In Section 2, the TDOC problem with delay on both
the state and control variables is given. A technique is suggested to convert the TDOC problem into
an equivalent continuous-time problem. We present a direct LGLSC method for numerically solving
the obtained problem in Section 3. Nonlinear programming is also suggested. Section 4 deals with the
existence and convergence of gained approximate solutions to the exact optimal solutions. In Section 5,
four examples are presented to evaluate the method’s performance. The Conclusions are explained in
Section 6.

2. Problem statement

We consider the smooth TDOC problem

Minimize J
(
ζ(·), ϑ(·)

)
= Λ(ζ(T ),T ) +

∫ T

0
h
(
ζ(t), ϑ(t), t

)
dt, (2.1)

subject to

ζ̇(t) = g
(
ζ(t), ζ(t − µ1), ϑ(t), ϑ(t − µ2), t

)
, 0 ≤ t ≤ T, (2.2)

ζ(t) = Φ(t), −µ1 ≤ t ≤ 0, (2.3)
ϑ(t) = Ψ(t), −µ2 ≤ t ≤ 0, (2.4)
e
(
ζ(t), ϑ(t)

)
≤ 0, 0 ≤ t ≤ T, (2.5)

where ζ : [0,T ] → Ω1 ⊆ R
m, ϑ : [0,T ] → Ω2 ⊆ R

p are the state and control variables, respectively,
Λ : Rm × [0,T ] → R, h : Rm × Rp × [0,T ] → R, e : Rm × Rp → Rd, g : R2m × R2p × [0,T ] → Rm

are given continuously differentiable functions, µ1 and µ2 are two constant positive scalars such that
µ1 < µ2 and Φ : [0,T ]→ Rm, Ψ : [0,T ]→ Rp are two arbitrary continuous functions. Every piecewise
continuous function ϑ(·) on [0,T ] is said an admissible control for TDOC problems (2.1)–(2.5). Also,
related to the existence of optimal solution for OC problems we refer the reader to [29–31].

The aim is to find state ζ(t) =
(
ζ1(t), ζ2(t), . . . , ζm(t)

)
and admissible control ϑ(t) =(

ϑ1(t), ϑ2(t), . . . , ϑp(t)
)

on interval [0,T ] so that objective functional (2.1) be minimized. We assume
that sets Ω1 and Ω2 are compact. Here, we propose a LGLSC method to solve TDOC problems (2.1)–
(2.5). At first, by replacing the delay functions Φ(t) for t ∈ [0, µ1], and Ψ(·) for t ∈ [0, µ2] in dynamical
systems, we receive the following equivalent system.

Minimize J
(
ζ(·), ϑ(·)

)
= Λ(ζ(T ),T ) +

∫ T

0
h
(
ζ(t), ϑ(t), t

)
dt, (2.6)

AIMS Mathematics Volume 7, Issue 6, 9789–9808.



9792

subject to

ζ̇(t) =



g
(
ζ(t),Φ(t − µ1), ϑ(t),Ψ(t − µ2), t

)
, 0 ≤ t ≤ µ1,

g
(
ζ(t), ζ(t − µ1), ϑ(t),Ψ(t − µ2), t

)
, µ1 < t ≤ µ2,

g
(
ζ(t), ζ(t − µ1), ϑ(t), ϑ(t − µ2), t

)
, µ2 < t ≤ T,

(2.7)

e
(
ζ(t), ϑ(t)

)
≤ 0, 0 ≤ t ≤ T, (2.8)

ζ(0) = Φ(0), ϑ(0) = Ψ(0). (2.9)

It is easy to show that TDOC problems (2.6)–(2.9) is equivalent to problems (2.1)–(2.5).

3. Implementation of the LGLSC method

Now, suppose τ0 < τ1 < · · · < τM are the Legendre-Gauss-Lobatto (LGL) points on the interval
[−1, 1], which they are roots of (τ2 − 1)ṖM(τ), wherein PM(·) denotes the Legendre polynomial of
degree M which defined by the following recursive relation

(i + 1)Pi+1(τ) = (2i + 1)τPi(τ) − iPi−1(τ), i ≥ 1,

where P0(τ) = 1 and P1(τ) = τ for τ ∈ [−1, 1].
To discretize the problems (2.6)–(2.9), we transform the LGL points to the interval [0,T ] by

transformation

t j =
T (τ j + 1)

2
, j = 0, 1, . . . ,M. (3.1)

Also, we approximate the state and control variables on the interval [0,T ], as follows

ζ(t) ' ζM(t) =

M∑
i=0

ζ̄iLi(t), ϑ(t) ' ϑM(t) =

M∑
i=0

ϑ̄iLi(t), 0 ≤ t ≤ T, (3.2)

where
ζ(ti) ' ζM(ti) = ζ̄i, ϑ(ti) ' ϑM(ti) = ϑ̄i, (3.3)

are known coefficients and Li(·) is the Lagrange polynomial of degree M, defined by

Li(t) =

M∏
j=0, j,i

t − t j

ti − t j
, i = 0, 1, . . .M. (3.4)

Moreover, the derivative of the state variable is approximated at the LGL points as

ζ̇(ti) '
M∑
j=0

ζ(t j)L̇ j(ti) =

M∑
j=0

ζ̄ jDi j, i = 0, 1, . . .M, (3.5)

where D is the derivative matrix, defined as follows (see [32] for details)
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Di j =



2
T
.
−M(M + 1)

4
, i = j = 0,

2
T
.
M(M + 1)

4
, i = j = M,

P̂M(ti)
P̂M(t j)

.
1

ti − t j
, i , j,

0, otherwise.

where P̂M(tp) = PM
(T

2
τp +

T
2
)

for p = 0, 1, . . . ,M.
Now, the integral term in the cost functional (2.1) can be approximated with the following lemma.

Lemma 3.1. (see Theorem 3.29 in [33] and Lemma 2 in [35]) Assume that {ti}
M
i=0 are the shifted LGL

points on interval [0,T ]. Then for any continuous function η(·) on [0,T ] we have∫ T

0
η(t)dt = lim

M→∞

T
2

M∑
i=0

wiη(ti),

where {wi}
M
i=0 are the LGL weights as

wi =
2

M(M + 1)[PM(2ti
T − 1)]2

, i = 0, 1, . . . ,M. (3.6)

By applying relations (3.2), (3.3), (3.5), and Lemma (3.1), the TDOC problems (2.1)–(2.5), are
converted into the following nonlinear programming (NLP) problem:

Minimize J̄M(ζ̄, ϑ̄) = Λ(ζ̄M, tM) +
T
2

M∑
l=0

wlh(ζ̄l, ϑ̄l, tl), (3.7)

subject to
M∑
j=0

ζ̄ jDi j = g
(
ζ̄i,Φ(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti

)
, i = 0, 1, . . . , lµ1 , (3.8)

M∑
j=0

ζ̄ jDi j = g
(
ζ̄i,

M∑
j=0

ζ̄ jL j(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti
)
, i = lµ1 + 1, . . . , lµ2 , (3.9)

M∑
j=0

ζ̄ jDi j = g
(
ζ̄i,

M∑
j=0

ζ̄ jL j(ti − µ1), ϑ̄i,

M∑
j=0

ϑ̄ jL j(ti − µ2), ti
)
, i = lµ2 + 1, . . . ,M, (3.10)

e
(
ζ̄i, ϑ̄i

)
≤ 0, i = 0, 1, . . . ,M, (3.11)

ζ(0) = Φ(0), ϑ(0) = Ψ(0). (3.12)

Here, we choose the indexes lµ1 and lµ2 such that satisfies in tlµ1
≤ µ1 < tlµ1 +1 < tlµ2

≤ µ2 < tlµ2 +1 < tM =

T .
We solve the NLP problems (3.7)–(3.12) and find an approximate optimal solution to the TDOC

problems (2.1)–(2.5).
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4. Convergence analysis

In the following, we intend to prove the convergence of the proposed method. We can show that the
sequence of obtained interpolating polynomials is converged to an optimal solution.

The Sobolev space Wn,∞
m for n ≥ 2 and m ≥ 1 with its norm that defined below, contains all functions

ξ : [0,T ] → Rm whose the derivative ξ( j)(·) for every 0 ≤ j ≤ n lie in L∞ space. The norm of space
Wn,∞

m is as∥∥∥ξ(·)∥∥∥
n,∞

= sup
j=0,1,...,n

∥∥∥ξ( j)(·)
∥∥∥

L∞
= sup

j=0,1,...,n

(
sup

0≤t≤T

∥∥∥ξ( j)(t)
∥∥∥
∞

)
= sup

j=0,1,...,n

(
sup

0≤t≤T

(
sup

i=1,2,...,m

∣∣∣ξ( j)
i (t)

∣∣∣)),
where ξ( j)

i (·) is the i − th component of vector function ξ( j)(·). In fact, the Sobolev space is defined as

Wn,∞
m = {ξ : [0,T ]→ Rm,

∥∥∥ξ(·)∥∥∥
n,∞

< ∞}.

Lemma 4.1. ( [34]) For any given function ξ(·) ∈ Wn,∞
m , there is a polynomial sM(·) of degree M or

less, so that ∥∥∥ξ(·) − sM(·)
∥∥∥

n,∞
≤ BB0M−n,

where B is a constant independent of M and B0 =
∥∥∥ξ(·)∥∥∥

n,∞
.

The NLP problems (3.7)–(3.12) can be easily to guarantee the feasibility as follows

Minimize J̄M
(
ζ̄, ϑ̄

)
= Λ(ζ̄M, tM) +

T
2

M∑
l=0

wlh
(
ζ̄l, ϑ̄l, tl

)
, (4.1)

subject to∥∥∥∥∥ M∑
j=0

ζ̄ jDi j − g
(
ζ̄i,Φ(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti

)∥∥∥∥∥
∞

≤ (M − 1)
3
2−n, i = 0, 1, . . . , lµ1 , (4.2)

∥∥∥∥∥ M∑
j=0

ζ̄ jDi j − g
(
ζ̄i,

M∑
j=0

ζ̄ jL j(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti
)∥∥∥∥∥
∞

≤ (M − 1)
3
2−n, i = lµ1 + 1, . . . , lµ2 , (4.3)

∥∥∥∥∥ M∑
j=0

ζ̄ jDi j − g
(
ζ̄i,

M∑
j=0

ζ̄ jL j(ti − µ1), ϑ̄i,

M∑
j=0

ϑ̄ jL j(ti − µ2), ti
)∥∥∥∥∥
∞

≤ (M − 1)
3
2−n, i = lµ2 + 1, . . . ,M,

(4.4)

e
(
ζ̄i, ϑ̄i

)
≤ (M − 1)

3
2−n.1, i = 0, 1, . . . ,M, (4.5)

∥∥∥ζ̄0 − Φ(0)
∥∥∥
∞
≤ (M − 1)

3
2−n,

∥∥∥ϑ̄0 − Ψ(0)
∥∥∥
∞
≤ (M − 1)

3
2−n, (4.6)

where 1 denotes [1, 1, . . . , 1]T .

Theorem 4.1. ( [35]) Suppose that (ζ(·), ϑ(·)) for n ≥ 2 is a feasible solution for the problems (3.7)–
(3.12) where ζ(·) ∈ Wn,∞

m . Then there exists M1 ∈ N so that for any M > M1, problems (4.1)–(4.6) has
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a feasible solution ζ̄ = (ζ̄0, ζ̄1, . . . , ζ̄M) and ϑ̄ = (ϑ̄0, ϑ̄1, . . . , ϑ̄M). Furthermore, the feasible solution
satisfies

ϑ̄i = ϑ(ti),
∥∥∥ζ(ti) − ζ̄i

∥∥∥
∞
≤ L(M − 1)1−n, i = 0, 1, . . .M, (4.7)

where {ti}
M
i=0 are the LGL points and L is a positive constant independent of M.

Proof. According to Lemma (4.1), there exists a polynomial s(·) of degree (M − 1) and a constant B1

independent of M, so that ∥∥∥ζ̇(·) − s(·)
∥∥∥

n,∞
≤ B1(M − 1)1−n.

We defined

ζM(t) =

∫ t

0
s(η)dη + φ(0), ϑM(t) = ϑ(t), 0 ≤ t ≤ T.

So we get
ζ̇M(t) = s(t), ζM(0) = φ(0).

Therefore∥∥∥ζ(·) − ζM(·)
∥∥∥

L∞
=

∥∥∥∥∥ ∫ t

0
(ζ̇(v) − s(v))dv

∥∥∥∥∥
L∞
≤

∫ t

0

∥∥∥ζ̇(·) − s(·)
∥∥∥

L∞
dv ≤

∫ t

0

∥∥∥ζ̇(·) − s(·)
∥∥∥

n,∞
dv

≤ B1(M − 1)1−n
∫ t

0
dv ≤ B1T (M − 1)1−n. (4.8)

Now, we show that (ζ̄i, ϑ̄i) = ( ¯ζM(ti), ϑ(ti)) for i = 0, 1, . . . ,M satisfy the constraints of problems (4.1)–
(4.6). Since functions g and h are continuously differentiable on compact sets Ω2

1 × Ω2
2 × [0,T ] and

Ω1 ×Ω2 × [0,T ], respectively, there exist constants N1, N2 and N3 such that

∣∣∣∣∣g(ξ1, ξ2, ξ3, ξ4, t) − g(η1, η2, η3, η4, t)
∣∣∣∣∣ ≤ N1

(∥∥∥ξ1 − η1

∥∥∥
∞

+
∥∥∥ξ2 − η2

∣∣∣
∞

+
∥∥∥ξ3 − η3

∥∥∥
∞

+
∥∥∥ξ4 − η4

∥∥∥
∞

)
, (4.9)∣∣∣∣∣h(ξ1, ξ3, t) − h(η1, η3, t)

∣∣∣∣∣ ≤ N2

(∥∥∥ξ1 − η1

∥∥∥
∞

+
∥∥∥ξ3 − η3

∥∥∥
∞

)
, (4.10)∥∥∥∥∥e(ξ1, ξ3) − e(η1, η3)

∥∥∥∥∥
∞

≤ N3

(∥∥∥ξ1 − η1

∥∥∥
∞

+
∥∥∥ξ3 − η3

∥∥∥
∞

)
, (4.11)

for all (ξ1, ξ2, ξ3, ξ4, t) and (η1, η2, η3, η4, t) in Ω2
1 × Ω2

2 × [0,T ]. Further, since ζM(·) is a polynomial of
degree less than or equal to M, it’s derivative at the LGL points can be written as

ζ̇M(ti) =

M∑
j=0

ζ̄ jDi j, i = 0, 1, . . . ,M. (4.12)

Hence, by (4.8)–(4.12) for i = 0, 1, . . . , lµ1 we have

∥∥∥∥∥ M∑
j=0

ζ̄ jDi j − g
(
ζ̄i,Φ(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti

)∥∥∥∥∥
∞

≤
∥∥∥ζ̇M(ti) − ζ̇(ti)

∥∥∥
∞

+
∥∥∥ζ̇(ti) − g

(
ζ̄i,Φ(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti

)∥∥∥
∞

AIMS Mathematics Volume 7, Issue 6, 9789–9808.



9796

=
∥∥∥s(ti) − ζ̇(ti)

∥∥∥
∞

+
∥∥∥g

(
ζ(ti),Φ(ti − µ1), ϑ(ti),Ψ(ti − µ2), ti) − g(ζ̄i,Φ(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti

)∥∥∥
∞

≤ B1(M − 1)1−n + N1
(∥∥∥ζ(ti) − ζ̄i

∥∥∥
∞

+
∥∥∥ϑ(ti) − ϑ̄i

∥∥∥
∞

)
≤ B1(M − 1)1−n + N1B1T (M − 1)1−n

= B1(M − 1)1−n(1 + N1T
)
,

for i = lµ1 + 1, . . . , lµ2 we get∥∥∥∥∥ M∑
j=0

ζ̄ jDi j − g
(
ζ̄i,

M∑
j=0

ζ̄ jL j(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti
)∥∥∥∥∥
∞

≤
∥∥∥ζ̇M(ti) − ζ̇(ti)

∥∥∥
∞

+
∥∥∥ζ̇(ti) − g

(
ζ̄i, ζM(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti

)∥∥∥
∞

≤
∥∥∥ζ̇M(ti) − ζ̇(ti)

∥∥∥
∞

+
∥∥∥g

(
ζ(ti), ζ(ti − µ1), ϑ(ti),Ψ(ti − µ2), ti

)
− g

(
ζ̄i, ζM(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti

)∥∥∥
∞

≤ B1(M − 1)1−n + N1

(∥∥∥ζ(ti) − ζ̄i

∥∥∥
∞

+
∥∥∥ζ(ti − µ1) − ζM(ti − µ1)

∥∥∥
∞

+
∥∥∥ϑ(ti) − ϑ̄i

∥∥∥
∞

)
≤ B1(M − 1)1−n + N1

(
B1T (M − 1)1−n + B1T (M − 1)1−n)

= B1(M − 1)1−n(1 + 2N1T
)
,

and for i = lµ2 + 1, . . . ,M we obtain∥∥∥∥∥ M∑
j=0

ζ̄ jDi j − g
(
ζ̄i,

M∑
j=0

ζ̄ jL j(ti − µ1), ϑ̄i,

M∑
j=0

ϑ̄ jL j(ti − µ2), ti
)∥∥∥∥∥
∞

≤
∥∥∥ζ̇M(ti) − ζ̇(ti)

∥∥∥
∞

+
∥∥∥ζ̇(ti) − g

(
ζ̄i, ζM(ti − µ1), ϑ̄i, ϑM(ti − µ2), ti

)∥∥∥
∞

≤
∥∥∥ζ̇M(ti) − ζ̇(ti)

∥∥∥
∞

+
∥∥∥g

(
ζ(ti), ζ(ti − µ1), ϑ(ti), ϑ(ti − µ2), ti

)
− g

(
ζ̄i, ζM(ti − µ1), ϑ̄i, ϑN(ti − µ2), ti

)∥∥∥
∞

≤ B1(M − 1)1−n + N1

(∥∥∥ζ(ti) − ζ̄i

∥∥∥
∞

+
∥∥∥ζ(ti − µ1) − ζM(ti − µ1)

∥∥∥
∞

+
∥∥∥ϑ(ti) − ϑ̄i

∥∥∥
∞

+
∥∥∥ϑ(ti − µ2) − ϑM(ti − µ2)

∥∥∥
∞

)
≤ B1(M − 1)1−n + N1

(
B1T (M − 1)1−n + B1T (M − 1)1−n)

= B1(M − 1)1−n(1 + 2N1T
)
.

About (4.5), by (2.9) and (4.11) we gain (for i = 0, 1, . . . ,N)

e
(
ζ̄i, ϑ̄i

)
= e

(
ζ̄i, ϑ(ti)

)
≤ e

(
ζ(ti), ϑ(ti)

)
+ N3‖ζ̄i − ζ(ti)‖∞.1 ≤ N3‖ζ̄i − ζ(ti)‖∞.1 ≤ N3B1T (M − 1)1−n.1.

Therefore with choosing M1 ∈ N, so that max
{
B1

(
1 + 2N1T

)
,N3B1T

}
≤ (M − 1)

1
2 , we get∥∥∥∥∥ M∑

j=0

ζ̄ jDi j − g
(
ζ̄i,Φ(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti

)∥∥∥∥∥
∞

≤ (M − 1)
3
2−n, i = 0, 1, . . . , lµ1 ,

∥∥∥∥∥ M∑
j=0

ζ̄ jDi j − g
(
ζ̄i,

M∑
j=0

ζ̄ jL j(ti − µ1), ϑ̄i,Ψ(ti − µ2), ti
)∥∥∥∥∥
∞

≤ (M − 1)
3
2−n, i = lµ1 + 1, . . . , lµ2 ,

∥∥∥∥∥ M∑
j=0

ζ̄ jDi j − g
(
ζ̄i,

M∑
j=0

ζ̄ jL j(ti − µ1), ϑ̄i,

M∑
j=0

ϑ̄ jL j(ti − µ2), ti
)∥∥∥∥∥
∞

≤ (M − 1)
3
2−n, i = lµ2 + 1, . . . ,M,

e
(
ζ̄i, ϑ̄i

)
≤ (M − 1)

3
2−n.1, i = 0, 1, . . . ,M,

for all M ≥ M1. Moreover ζ̄0 = Φ(0) and ϑ̄0 = Ψ(0). Thus (ζ̄, ϑ̄) satisfies (4.2)–(4.6). �
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Now, assume {(ζ̄∗i , ϑ̄
∗
i )}Mi=0 is an optimal solution to the problems (4.1)–(4.6). Define

ζ∗M(t) =

M∑
i=0

ζ̄∗i Li(t), t ∈ [0,T ], (4.13)

ϑ∗M(t) =

M∑
i=0

ϑ̄∗i Li(t), t ∈ [0,T ], (4.14)

where Li(t) is the Lagrange interpolating polynomial. We have a sequence of direct responses
{(ζ̄∗i , ϑ̄

∗
i ), i = 0, 1, . . . ,M}∞M=M1

and their sequence of interpolating polynomials {(ζ∗M(·), ϑ∗M(·))}∞M=M1
.

Theorem 4.2. Let {
(
ζ̄∗i , ϑ̄

∗
i
)
, i = 0, 1, . . . ,M}∞M=M1

be a sequence of optimal solution of problems (4.1)–
(4.6) and {(ζ∗M(·), ϑ∗M(·))}∞M=M1

be their interpolating sequence. It is supposed that the sequence
{
(
ζ̄∗0 , ζ̇

∗
M(·), ϑM(·)

)
}∞M=M1

has a subsequence that uniformly converges to {ζ∞0 , q(·), ϑ∗(·)} where ϑ∗(·)
and q(·) are continuous functions and ζ∞0 ∈ Rm. Then (ζ∗(·), ϑ∗(·)) is an optimal solution to the
problems (2.6)–(2.9), where

ζ∗(t) =

∫ t

0
q(τ)dτ + ζ∞0 , 0 ≤ t ≤ T. (4.15)

Proof. By assumptions of Theorem (4.2), there is a subsequence {
(
ζ̇∗M j

(·), ϑ∗M j
(·)

)
}∞j=1 of sequence

{
(
ζ̇∗M(·), ϑ∗M(·)

)
}∞M=M1

such that lim
j→∞

M j = ∞ and

lim
j→∞

(
ζ̇∗M j

(·), ϑM j(·)
)

=
(
q(·), ϑ∗(·)

)
. (4.16)

By (4.15) and (4.16), we can get
lim
j→∞

ζ̇∗M j
(·) = ζ̇∗(·).

The proof has including three steps. At first, we illustrate that
(
ζ∗(·), ϑ∗(·)

)
is a feasible solution to

the problems (2.6)–(2.9). Afterward, we prove the convergence of the objective functional J̄M j(ζ̄
∗, ϑ̄∗)

to the continuous objective functional J(ζ∗(·), ϑ∗(·)), and eventually illustrate that (ζ∗(·), ϑ∗(·)) is an
optimal solution of problems (2.6)–(2.9).

Step 1. Suppose that ζ∗(·) and ϑ∗(·) don’t satisfy the constraint of the problems (2.6)–(2.9). Hence,
there is a time t̄ ∈ [0,T ] so that

ζ̇∗(t̄) − η
(
ζ∗(t̄), ζ∗(t̄ − µ1),Φ(t̄ − µ1), ϑ∗(t̄), ϑ∗(t̄ − µ2),Ψ(t̄ − µ2), t̄

)
, 0, (4.17)

or
ζ∗(0) − Φ(0) , 0, (4.18)

where

η
(
ζ∗(t), ζ∗(t − µ1),Φ(t − µ1), ϑ∗(t), ϑ∗(t − µ2),Ψ(t − µ2), t) =



g
(
ζ∗(t),Φ(t − µ1), ϑ∗(t),Ψ(t − µ2), t

)
, 0 ≤ t ≤ µ1,

g
(
ζ∗(t), ζ∗(t − µ1), ϑ∗(t),Ψ(t − µ2), t

)
, µ1 < t ≤ µ2,

g
(
ζ∗(t), ζ∗(t − µ1), ϑ∗(t), ϑ∗(t − µ2), t

)
, µ2 < t ≤ T.
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Since collocation points {ti}
∞
i=0 are dense in [0,T ], there is a subsequence iM j such that 0 < iM j < M j

and lim
j→∞

tiM j
= t̄. Thus

ζ̇∗(t̄) − η
(
ζ∗(t̄), ζ∗(t̄ − µ1),Φ(t̄ − µ1), ϑ∗(t̄), ϑ∗(t̄ − µ2),Ψ(t̄ − µ2), t̄

)
= lim

j→∞

(
ζ̇M j(tiM j

) − η
(
ζM j(tiM j

), ζM j(tiM j
− µ1),Φ(tiM j

− µ1), ϑM j(tiM j
), ϑM j(tiM j

− µ2),Ψ(tiM j
− µ2), tiM j

))
, 0.

(4.19)

On the other hand, lim
j→∞

(M j − 1)
3
2−n = 0. Therefore with constraints of the problems (4.2)–(4.6), we

have

lim
j→∞

(
ζ̇M j(tiM j

) − η
(
ζM j(tiM j

), ζM j(tiM j
− µ1),Φ(tiM j

− µ1), ϑM j(tiM j
), ϑM j(tiM j

− µ2),Ψ(tiM j
− µ2), tiM j

))
= 0,

which is a contradiction to (4.19). By a similar process, we can show that ζ∗(0) = Φ(0). We have

0 = lim
M→∞

(M − 1)
3
2−n ≥ lim

M→∞

∥∥∥ζ̄∗0 − Φ(0)
∥∥∥ =

∥∥∥ lim
M→∞

(ζ̄∗0 − Φ(0))
∥∥∥ =

∥∥∥ζ∞0 − Φ(0)
∥∥∥ ≥ 0. (4.20)

Hence, ζ∗(0) = Φ(0). Thus
(
ζ∗(·), ϑ∗(·)

)
is a feasible solution for the problems (2.6)–(2.9). The path

constraint can be proved by the same contradiction argument, so

e
(
ζ∗(·), ϑ∗(·)

)
≤ 0. (4.21)

Step 2. In Step 2, we attend to demonstrate that

lim
j→∞

J̄M j(ζ̄
∗∗, ϑ̄∗∗) = J(ζ∗(·), ϑ∗(·)), (4.22)

wherein

J̄M j(ζ̄
∗∗, ϑ̄∗∗) = Λ(ζ̄∗∗M j

, tM j) + (
T
2

)
M j∑
l=0

wlh(ζ̄∗∗l , ϑ̄
∗∗
l , tl),

J(ζ∗(·), ϑ∗(·)) = Λ(ζ∗(T ),T ) +

∫ T

0
h
(
ζ∗(t), ϑ∗(t), t

)
dt.

Since (ζM j(·), ϑM j(·)) converges to (ζ∗(·), ϑ∗(·)) uniformly, we have

lim
j→∞

∥∥∥ζM j(ti) − ζ∗(ti)
∥∥∥
∞

= lim
j→∞

∥∥∥ζ̄∗∗i − ζ
∗(ti)

∥∥∥
∞

= 0, (4.23)

lim
j→∞

∥∥∥ϑM j(ti) − ϑ∗(ti)
∥∥∥
∞

= lim
j→∞

∥∥∥ϑ̄∗∗i − ϑ∗(ti)
∥∥∥
∞

= 0, (4.24)

uniformly in i. Also, we have∫ T

0
h
(
ζ∗(t), ϑ∗(t), t

)
dt = lim

j→∞
(
T
2

)
M j∑
l=0

wlh
(
ζ∗(tl), ϑ∗(tl), tl

)
.
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Therefore

∫ T

0
h
(
ζ∗(t), ϑ∗(t), t

)
dt = (

T
2

) lim
j→∞

( M j∑
l=0

wlh(ζ̄∗∗l , ϑ̄
∗∗
l , tl) +

M j∑
i=0

wi

(
h(ζ∗(tl), ϑ∗(tl), tl) − h(ζ̄∗∗l , ϑ̄

∗∗
l , tl)

))
.

According to the relation
∑M

i=0 wi = 2 and also the uniform convergence of (4.23) and (4.24), and
by (4.10), we have

lim
j→∞

∥∥∥∥∥ M j∑
l=0

wl

(
h
(
ζ∗(tl), ϑ∗(tl), ti

)
− h

(
ζ̄∗∗l , ϑ̄

∗∗
l , tl

))∥∥∥∥∥
∞

≤ lim
j→∞

N2

M j∑
i=0

wl

(∥∥∥ζ∗(tl) − ζ̄∗∗l

∥∥∥
∞

+
∥∥∥(ϑ∗(tl) − ϑ̄∗∗l

∥∥∥
∞

)
= 0,

where N2 is the Lipschitz constant of function h. Thus

∫ T

0
h
(
ζ∗(t), ϑ∗(t), t

)
dt = lim

j→∞

T
2

M j∑
l=0

wlh
(
ζ̄∗∗l , ϑ̄

∗∗
l , tl

)
. (4.25)

Also, we have
lim
j→∞

Λ(ζ̄∗∗M j
, tM j) = Λ(ζ∗(T ),T ). (4.26)

Step 3. Suppose
(
ζ∗∗(·), ϑ∗∗(·)

)
is an optimal solution of problems (2.6)–(2.9) with the feature that

ζ∗∗(·) ∈ Wn,∞
m for n ≥ 2. Pursuant to Theorem (4.1), there exists a sequence of feasible solution,

{ζ̂M(·), ϑ̂M(·)}∞M=M1
, of problems (2.6)–(2.9) that converges uniformly to

(
ζ∗∗(·), ϑ∗∗(·)

)
. Now, by

optimality of (ζ∗∗(·), ϑ∗∗(·)) and (ζ̄∗∗i , ϑ̄
∗∗
i ), we have

J
(
ζ∗∗(·), ϑ∗∗(·)

)
≤ J

(
ζ∗(·), ϑ∗(·)

)
= lim

j→∞
J̄M j(ζ̄

∗∗, ϑ̄∗∗) ≤ lim
i→∞

J̄M j(ζ̂, ϑ̂), (4.27)

where
ζ̂ =

(
ζ̂M(t0), ζ̂M(t1), ..., ζ̂M(tM j)

)
, ϑ̂ =

(
ϑ̂M(t0), ϑ̂M(t1), ..., ϑ̂M(tM j)

)
Using similar reasoning as in Step 2, it is easy to offer that

J(ζ∗∗(·), ϑ∗∗(·)) = lim
j→∞

J̄M j(ζ̂, ϑ̂). (4.28)

Inasmuch as
(
ζ̂M(·), ϑ̂M(·)

)∞
M=M1

converge uniformly to
(
ζ∗∗(·), ϑ∗∗(·)

)
, Eqs (4.27) and (4.28) present that

J
(
ζ∗∗(·), ϑ∗∗(·)

)
= J

(
ζ∗(·), ϑ∗(·)

)
.

It is equivalent to saying that
(
ζ∗(·), ϑ∗(·)

)
is an optimal solution that achieves the optimal cost. By

Steps 1–3,
(
ζ∗(·), ϑ∗(·)

)
is an optimal solution to the OC problems (2.6)–(2.9).

�
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5. Numerical simulation

To evaluate the performance and the superiority of the proposed method, we present some numerical
examples and compare the results with those of others. Here, we employ the FMINCON command
in MATLAB software to find the solutions of the corresponding NLP problems (3.7)–(3.12). All
calculations are run on a Core i3 PC Laptop with 2.5 GHz of CPU and 4 GB RAM.

Example 5.1. In this example, we solve the TDOC problem related to harmonic oscillator described
in [36, 37]. The problem is as follows

Minimize J = 5ζ2
1 (2) +

1
2

∫ 2

0
ϑ2(t)dt,

subject to

ζ̇1(t) = ζ2(t), 0 ≤ t ≤ 2,
ζ̇2(t) = −ζ1(t) − ζ2(t − 1) + ϑ(t), 0 ≤ t ≤ 2,
ζ2(t) = 0, −1 ≤ t ≤ 0,
ζ1(0) = 10.

The optimal solutions to this problem are

J∗ = 3.399118,

ϑ∗(t) =

 α sin(2 − t) + (
α

2
)(1 − t) sin(t − 1), 0 ≤ t ≤ 1,

α sin(2 − t), 1 ≤ t ≤ 2,

where α ≈ 2.5599. The corresponding NLP problems (3.7)–(3.12) can be written as follow

Minimize J = 5ζ2
1 (2) +

1
2

M∑
i=0

wiϑ̄
2
i , (5.1)

subject to
M∑
j=0

ζ̄1 j Di j − ζ̄2i = 0, i = 0, 1, . . . ,M, (5.2)

M∑
j=0

ζ̄2 j Di j − (−ζ̄1i + ϑ̄i) = 0, i = 0, 1, . . . , lµ1 , (5.3)

M∑
j=0

ζ̄2 j Di j − (−ζ̄1i −

M∑
j=0

ζ̄2 j L j(ti − 1) + ϑ̄i) = 0, i = lµ1 + 1, . . . ,M, (5.4)

ζ1(0) = 10. (5.5)

We solve the problems (5.1)–(5.5). In Table 1, the results are given for objective functional J. In
Figures 1 and 2 are illustrated the approximate solutions for control and states variables. Furthermore,
we compare our results with those of other methods. The CPU time of our method for M = 8 is 1.9187
second.
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Table 1. Approximate optimal values of objective functional J and |J − J∗| for Example 1.

Method presented method method [38] method [36] method [37] method [39]

J 3.39911366 3.3208 3.399070 3.384700 3.3991

M = 8 N = 2,M = 2 N = 2,M = 9

|J − J∗| 4.3 × 10−6 7.8 × 10−2 4.8 × 10−5 1.4 × 10−2 1.8 ∗ 10−5

Figure 1. The obtained approximate for optimal state variable ζ1(·) and ζ2(·) with M = 8, for
Example 1.

Figure 2. The obtained approximate for optimal control variable ϑ(·) with M = 8, for
Example 1.

Now, we add the following inequality constraints to the above problem

ζ1(2) ≥ 2, ζ2(2) ≤ −5.
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Again, we solve the problem with these constraints. The results of the proposed method and those
of several other methods are presented in Table 2.

Table 2. Approximate optimal values of objective functional J for Example 1.

Method presented method method [38] method [40]

J 30.434982 31.2759 31.303

M = 8 M = 2,N = 2

Example 5.2. Consider the following TDOC problem [41]

Minimize J =
1
8

∫ 1

0

(
ζ2(t) + ϑ2(t)

)
dt,

subject to

ζ̇(t) = 0.25
(
ζ(t) + ϑ(t −

0.1
4

) + ϑ(t)
)
, 0 ≤ t ≤ 1,

ϑ(t) = 0, −
0.1
4
≤ t ≤ 0,

ζ(0) = 1.

In Table 3, we are reported the results of J with different values of M, also we compare our results
with the those of method [41]. The obtained approximations of optimal state and control variables are
shown in Figure 3.

Table 3. Approximate optimal values of objective functional J with different values of M for
Example 2.

Method J

presented method
M = 3 0.15175412

M = 4 0.14953759

M = 5 0.14858035

M = 6 0148359750

M = 7 0.14763888

method [41]
N = 4 0.154268
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Figure 3. The obtained approximate for optimal state variable ζ(·) and ϑ(·) with M = 4, for
Example 2.

Example 5.3. Cosider the following TDOC problem [38].

Minimize J =
1
2
ζ2(T ) +

1
2

∫ T

0
(ζ2(t) + ϑ2(t))dt,

subject to

ζ̇(t) = ζ(t)sin(ζ(t)) + ζ(t − 1) + ϑ(t), 0 ≤ t ≤ T,

ζ(t) = 10, −1 ≤ t ≤ 0,

where T = 2. We use the corresponding NLP (3.7)–(3.12) to solve this problem. The obtained
approximate optimal values of J are given in Table 4. Compared with other works [38, 40, 42], the
results show that the present method has better solutions.

The obtained approximate optimal solutions are illustrated in Figure 4.

Table 4. Approximate optimal values of objective functional J with different values of M for
Example 3.

Method J

presented method
M = 4 162.16538051

M = 6 161.70416416

M = 8 161.70813622

method [38]
N = 2,M = 2 161.94

method [40]
162.001

method [42]
162.104
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Figure 4. The obtained approximate for optimal state variable ζ(·) and ϑ(·) with M = 6, for
Example 3.

Example 5.4. Consider the following system

Minimize J =
1
2

∫ 2

0
(ζ2(t) + ϑ2(t))dt,

subject to

ζ̇(t) = ζ(t − µ) + ϑ(t), 0 ≤ t ≤ 2,
ζ(t) = 1, −µ ≤ t ≤ 0,

here, we have a delay in state and µ = 1. We solve the problem with the method presented in this
article, then compare those results with results [41]. Approximate values of J and CPUtime are given
in Table 5. The curves of obtained approximate solutions are illustrated in Figure 5.

Table 5. Approximate optimal values of objective functional J and CPUtime with different
values of M for Example 4.

Method J CPUtime(S ec)

presented method
M = 4 1.70863830 1.719

M = 5 1.59019028 0.383

M = 8 1.65518595 0.651

M = 10 1.64349367 0.950

M = 12 1.63409908 1.010

method [41]
N = 20 1.647453 4.358
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Figure 5. The obtained approximate for optimal state variable ζ(·) and ϑ(·) with M = 10, for
Example 4.

6. Conclusions

In this paper, we introduced an extended spectral method based on the operational matrix of
derivatives for solving the TDOC problems with delay on both control and state variables. One of
the method’s advantages is its complexity is much lower than the other methods utilized to solve the
TDOC problems. Also, numerical results showed that our proposed method for TDOC problems has a
higher convergence rate than other methods presented in [37–42].

For future works, we intend to extend the proposed method in this paper for solving the nonsmooth
TDOC problems.
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2002.

5. E. Witrant, E. Fridman, O. Sename, L. Dugard, Recent results on time-delay systems, Springer
International, 2016.

AIMS Mathematics Volume 7, Issue 6, 9789–9808.

http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2015.09.358
http://dx.doi.org/http://dx.doi.org/10.1155/2015/246351
http://dx.doi.org/https://doi.org/10.1016/j.jesit.2014.07.006


9806

6. V. B. Kolmanovskii, A. D. Myshkis, Introduction to the theory and applications of functional
differential equations, NewYork: Kluwer, 1999.

7. M. M. Zavarei, M. Jamshidi, Time-delay systems: Analysis, optimization and applications,
Amsterdam, The Netherlands: North Holland, 1987.

8. W. H. Kwon, P. Park, Stabilizing and optimizing control for time-delay systems, Springer
International, 2019. https://doi.org/10.1007/978-3-319-92704-6

9. O. Santos, S. Mondie, On the optimal control of time delay systems: A
complete type functionals approach, IEEE Conf. Decis. Control, 2007, 6035–6040.
https://doi.org/10.1109/CDC.2007.4434086

10. H. R. Sharif, M. A. Vali, M. Samavat, A. A. Gharavisi, A new algorithm for optimal control of
time-delay systems, J. Appl. Math. Sci., 5 (2011), 595–606.

11. S. Dadebo, R. Luus, Optimal control of time-delay systems by dynamic programming, J. Optim.
Control Appl. Method., 13 (1992), 29–41.

12. K. Inoue, H. Akashi, K. Ogino, Y. Sawaragi, Sensitivity approaches to optimization of
linear systems with time delay, J. Autom., 7 (1971), 671–679. https://doi.org/10.1016/0005-
1098(71)90005-7

13. T. Guinn, Reduction of delayed optimal control problems to nondelayed problems, J. Optim. Theor.
Appl., 18 (1976), 371–377.

14. M. Basin, J. R. Gonzalez, Optimal control for linear systems with multiple time delays in control
input, IEEE T. Autom. Contr., 51 (2006), 91–97.

15. C. Wu, K. L. Teo, R. Li, Y. Zhao, Optimal control of switched systems with time delay, J. Appl.
Math. Lett., 19 (2006), 1062–1067.

16. M. Jamshidi, C. M. Wang, A computational algorithm for large-scale nonlinear time-delay systems,
IEEE Trans. Syst. Man Cy., 1 (1984), 2–9.

17. H. R. Marzban, M. Shahsiah, Solution of piecewise constant delay systems using hybrid of block-
pulse and Chebyshev polynomials, J. Optim. Control Appl. Method., 32 (2011), 647–659.

18. A. H. Borzabadi, S. Asadi, A wavelet collocation method for optimal control of non-
linear time-delay systems via Haar wavelets, J. Math. Control Inform., 32 (2015), 41–54.
https://doi.org/10.1093/imamci/dnt032 .

19. A. J. Koshkouei, M. H. Farahi, K. J. Burnham, An almost optimal control design
method for nonlinear time-delay systems, Int. J. Control, 85 (2012), 147–158.
http://dx.doi.org/10.1080/00207179.2011.641158

20. A. Nazemi, M. Mansoori, Solving optimal control problems of the time-delayed systems by Haar
wavelet, J. Vib. Control, 22 (2016), 2657–2670. http://dx.doi.org/10.1177/1077546314550698

21. D. Y. Sun, T. C. Huang, The solutions of time-delayed optimal control problems by the
use of modified line-up competition algorithm, J. Taiwan Inst. Chem. E., 41 (2010), 54–64.
https://doi.org/10.1016/j.jtice.2009.04.013 .

22. H. J. Kushner, D. I. Barnea, On the control of a linear functional-differential equation with quadratic
cost, SIAM J. Control, 8 (1970), 257–272.

AIMS Mathematics Volume 7, Issue 6, 9789–9808.

http://dx.doi.org/https://doi.org/10.1007/978-3-319-92704-6
http://dx.doi.org/https://doi.org/10.1109/CDC.2007.4434086
http://dx.doi.org/https://doi.org/10.1016/0005-1098(71)90005-7
http://dx.doi.org/https://doi.org/10.1016/0005-1098(71)90005-7
http://dx.doi.org/https://doi.org/10.1093/imamci/dnt032
http://dx.doi.org/http://dx.doi.org/10.1080/00207179.2011.641158
http://dx.doi.org/http://dx.doi.org/10.1177/1077546314550698
http://dx.doi.org/https://doi.org/10.1016/j.jtice.2009.04.013


9807

23. C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral method in fluid dynamics, Springer,
New York, 1988.

24. P. Lu, H. Sun, B. Tsai, Closed-loop endoatmospheric ascent guidance, J. Guid. Control Dynam.,
26 (2003), 283–294. https://doi.org/10.2514/2.5045

25. R. E. Stevens, W. Wiesel, Large time scale optimal control of an electrodynamic tether satellite, J.
Guid. Control Dynam., 32 (2008), 1716–1727. https://doi.org/10.2514/1.34897

26. P. Wiliams, B. Lansdorp, W. Ockels, Optimal crosswind towing and power generation with tethered
kites, J. Guid. Control Dynam., 31 (2008), 81–93. https://doi.org/10.2514/1.30089

27. F. Fahroo, I. M. Ross, Costate estimation by a Lagrange pseudospectral, J. Guid. Control Dynam.,
24 (2001), 270–277. https://doi.org/10.2514/2.4709

28. G. Xiao, Z. Ming, Direct trajectory optimization based on a mapped Chebyshev pseudospectral
method, J. Aeronautics, 26 (2013), 401–412. https://doi.org/10.1016/j.cja.2013.02.018

29. L. D. Berkovitz, Optimal control theory, New York: Springer, 1974.

30. A. D. Ioffe, V. M. Tichomirov, Theory of extremal problems, Amsterdam, The Netherlands: North
Holland, 1979.

31. H. O. Fattorini, Infinite dimensional optimization and control theory, UK: Cambridge Univ. Press,
1999.

32. I. M. Ross, Q. Gong, W. Kang, A pseudospectral method for the optimal control of
constrained feedback linearizable systems, IEEE T. Autom. Contr., 51 (2006), 1115–1129.
https://doi.org/10.1109/TAC.2006.878570

33. J. Shen, T. Tang, L. Wang, Spectral methods: Algorithms, analysis and applications, Springer, 41
(2011).

34. B. Fornberg, A practical guide to pseudospectral methods, Cambridge University Press, 1998.

35. Q. Gong, I. M. Ross, W. Kang, F. Fahroo, Connections between the covector mapping theorem and
convergence of pseudospectral methods for optimal control, J. Comput. Optim. Appl., 41 (2008),
307–335. https://doi.org/10.1007/s10589-007-9102-4

36. M. Dadkhah, M. H. Farahi, Numerical solution of time delay optimal control problems by hybrid
of block-pulse functions and Bernstein polynomials, IMA J. Math. Control I., 35 (2018), 451–477.
https://doi.org/10.1093/imamci/dnw057

37. S. Effati, S. A. Rakhshan, S. Saqi, Formulation of Euler-Lagrange equations for multidelay
fractional optimal control problem, J. Comput. Nonlinear Dynam., 13 (2018), 1–10.
https://doi.org/10.1115/1.4039900

38. A. Nazemi, M. M. Shabani, Numerical solution of the time-delayed optimal control
problems with hybrid functions, IMA J. Math. Control I., 32 (2015), 623–638.
https://doi.org/10.1093/imamci/dnu012

39. K. L. Teo, K. H. Wong, D. J. Clements, Optimal control computation for nonlinear time-lag systems
with linear terminal constraints, J. Optim. Theor. Appl., 44 (1984), 509–526.

40. A. Y. Lee, Numerical solution of time-delayed optimal control problems with terminal inequality
constraints, J. Control Appl. Method., 14 (1993), 203–210.

AIMS Mathematics Volume 7, Issue 6, 9789–9808.

http://dx.doi.org/https://doi.org/10.2514/2.5045
http://dx.doi.org/https://doi.org/10.2514/1.34897
http://dx.doi.org/https://doi.org/10.2514/1.30089
http://dx.doi.org/https://doi.org/10.2514/2.4709
http://dx.doi.org/https://doi.org/10.1016/j.cja.2013.02.018
http://dx.doi.org/https://doi.org/10.1109/TAC.2006.878570
http://dx.doi.org/https://doi.org/10.1007/s10589-007-9102-4
http://dx.doi.org/https://doi.org/10.1093/imamci/dnw057
http://dx.doi.org/https://doi.org/10.1115/1.4039900
http://dx.doi.org/https://doi.org/10.1093/imamci/dnu012


9808
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