Research article Special Issues

On the classical Gauss sums and their some new identities

  • Received: 23 October 2021 Revised: 06 January 2022 Accepted: 07 January 2022 Published: 12 January 2022
  • MSC : 11L10, 11L40

  • In this paper, we use the analytic methods and the properties of the classical Gauss sums to study the calculating problems of some Gauss sums involving the character of order $ 12 $ modulo an odd prime $ p $, and obtain several new and interesting identities for them.

    Citation: Wenpeng Zhang, Xiaodan Yuan. On the classical Gauss sums and their some new identities[J]. AIMS Mathematics, 2022, 7(4): 5860-5870. doi: 10.3934/math.2022325

    Related Papers:

  • In this paper, we use the analytic methods and the properties of the classical Gauss sums to study the calculating problems of some Gauss sums involving the character of order $ 12 $ modulo an odd prime $ p $, and obtain several new and interesting identities for them.



    加载中


    [1] T. M. Apostol, Introduction to analytic number theory, New York: Springer, 1976.
    [2] K. Ireland, M. Rosen, A classical introduction to modern number theory, New York: Springer, 1982. https://doi.org/10.1007/978-1-4757-1779-2
    [3] C. D. Pan, C. B. Pan, Goldbach conjecture, Beijing: Science Press, 1992.
    [4] W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Reports, 20 (2018), 73–80.
    [5] B. C. Berndt, R. J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc., 5 (1981), 107–128. https://doi.org/10.1090/S0273-0979-1981-14930-2 doi: 10.1090/S0273-0979-1981-14930-2
    [6] Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. https://doi.org/10.1515/math-2017-0104 doi: 10.1515/math-2017-0104
    [7] W. P. Zhang, H. L. Li, Elementary number theory (Chinese), Xi'an: Shaanxi Normal University Press, 2013.
    [8] L. Chen, On classical Gauss sums and some of their properties, Symmetry, 10 (2018), 1–6. https://doi.org/10.3390/sym10110625 doi: 10.3390/sym10110625
    [9] L. Chen, Z. Y. Chen, Some new hybrid power mean formulae of trigonometric sums, Adv. Differ. Equ., 2020 (2020), 1–9. https://doi.org/10.1186/s13662-020-02660-7 doi: 10.1186/s13662-020-02660-7
    [10] L. Chen, J. Y. Hu, A linear recurrence formula involving cubic Gauss sums and Kloosterman sums, Acta Math. Sinica (Chin. Ser.), 61 (2018), 67–72.
    [11] S. M. Shen, W. P. Zhang, On the quartic Gauss sums and their recurrence property, Adv. Differ. Equ., 2017 (2017), 1–9. https://doi.org/10.1186/s13662-017-1097-2 doi: 10.1186/s13662-017-1097-2
    [12] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. https://doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5
    [13] W. P. Zhang, The fourth power mean of the generalized quartic Gauss sums, J. Shaanxi Normal Univ. Nat. Sci. Ed., 49 (2021), 1–5.
    [14] T. T. Wang, On the fourth power mean of the generalized two-term exponential sums, J. Shaanxi Normal Univ. Nat. Sci. Ed., 49 (2021), 6–12.
    [15] J. Greene, D. Stanton, The triplication formula for Gauss sums, Aequationes Math., 30 (1986), 143–141. https://doi.org/10.1007/BF02189920 doi: 10.1007/BF02189920
    [16] W. P. Zhang, A. Samad, Z. Y. Chen, New identities dealing with Gauss sums, Symmetry, 12 (2020), 1–7. https://doi.org/10.3390/sym12091416 doi: 10.3390/sym12091416
    [17] W. Duke, H. Iwaniec, A relation between cubic exponential and Kloosterman sums, Contemp. Math., 143 (1993), 255–258.
    [18] H. Davenport, H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen F$\ddot{a}$llen, J. Reine Angew. Math., 172 (1935), 151–182. https://doi.org/10.1515/crll.1935.172.151 doi: 10.1515/crll.1935.172.151
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1865) PDF downloads(126) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog