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1. Introduction

Let g > 1 be an integer. For any Dirichlet character y modulo g, the classical Gauss sums G(m, x; q)

is defined as follow:
d ma
G(m, x;q) = Zx(a)e(7),
a=1

where m is any integer, e(y) = ¢*™ and i* = —1.

For convenience, we write 7(y) = G(1,y;¢q). This sum plays a very important role in the study
of elementary number theory and analytic number theory, many number theory problems are closely
related to it. Because of this, many scholars have studied its various properties, and obtained a series
of important results. Perhaps the most important properties of G(m, y; g) are the following two:

(A) If (m, g) = 1, then we have the identity (see [1-3])

G(m, x;q) = x(m)G(L, x; q) = x(m)T(x).

(B) If y is any primitive character modulo ¢, then one has also G(m, x;q) = x(m)t(y) and the
identity |T(y)| = /q.

In addition, let 7 > 1 be any fixed positive integer, then for any prime p with p = 1 mod A, there
must be a Dirichlet character of order 4. From now on, we fix y, to be a primitive character of order n


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022325

5861

modulo p (i.e. ¥ = o, the principal character modulo p, and x’ # x, for all 1 < i < n) throughout
the paper. W. P. Zhang and J. Y. Hu [4] (or B. C. Berndt and R. J. Evans [5]) studied the properties of
some special Gauss sums, and obtained the following interesting results. That is, for any prime p with
p = 1 mod 3, one has the identity

T (x3) + 7 (3) = dp, (1.1)

where d is uniquely determined by 4p = d* + 27b* and d = 1 mod 3.
Z.Y. Chen and W. P. Zhang [6] studied the case of the character of order four modulo p, and proved
the identity

() + 7 (¥y) =2p - @, (1.2)

1[’
wherea:EZ(

The constant @ = a(p) in (1.2) has a special meaning. In fact, we have the identity (for this see
Theorems 4-11 in [7])

p:a2+ﬂzz[%§(a;a)) [%pZ(“m)J (1.3)

where r is any quadratic non-residue modulo p. That is, y,(r) = —

L. Chen [8] obtained another identity for the character of order six modulo p. That is, she proved
the following conclusion:

Let p be a prime with p = 1 mod 6, then one has the identity

) and ) = x» denotes the Legendre’s symbol modulo p.

e+ 7 ) = p%.(clzZ_zp), if p=1mod 12; (14)
6 —i-pi-(d2—2p), if p=7mod 12, '
where i> = —1, d is the same as defined in (1.1).

Some other results involving Gauss sums and character sums can also be found in [9-15], we will
not list them all here.

It is not hard to see from [4, 6, 8] that the number of all such characters in formulaes (1.1), (1.2)
and (1.4) is 2. That is, ¢(3) = ¢(4) = ¢(6) = 2. A natural thing to think about is: What about
the case when the order n satisfies ¢(n) > 2? For example, the character of order 12 modulo p with
p = 1 mod 12. In this case, we have ¢ (12) = 4, and all primitive characters of order 12 modulo p are

X4X3> XaX3> Xax3 and Y 4x3.
In this article, we shall focus on this problem. We use the properties of the classical Gauss sums
and analytic methods to prove the following results:

Theorem 1.1. Let p be an odd prime with p = 1 mod 12, then we have the identities

7 (raxs) + 7° (raxs) + 7° (axs) + 7° (043)
= x3) (=D 2. yp-a-(d®-2p)-(4a® - 3p).

where d is the same as defined in (1.1), and « is the same as defined as in (1.2).
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Theorem 1.2. Let p be an odd prime with p = 1 mod 12, then we have the identity

(73 (Yax3) = 7° (/\/4)_(3))2 =-27- b_2
73 (xax3) + 7 (vaxs)

d>

Theorem 1.3. Let p be an odd prime with p = 1 mod 24, then we have the identity

(76 (rsx3) 7° (Xg)(.%) — 7% (xsx3) 7° (Xg)?a)]z _ b*d
70 (ygx3) T° (Xg)(s) + 70 (XS)_(3) 70 (Xg)a) (d* - 217)2.

For any prime p with p = 1 mod 12 and any integer n > 0, we define

_ " (xax3) 4 " (xaxs) _ ™" (XaX3) + " (Xax3)
™ (axs) T (axs) T (axs) T (XaXs)

G,.(p)

and
™ (Yax3) 7" (Xax3) T (Xax3) | 7" (xaxs)
+ —= = = ———=
™ (vaxs) T (ax3) T (ax;) T (Yaxs)
Then we have the following second order recurrence formulas for G,(p) and H,(p). That is,
we have:

H,(p) =

Theorem 1.4. For any prime p with p = 1 mod 12, we have the second order recurrence formula

d?> -2
Gria(p) = P

“Gui1(p) = Gu(p), n>0,

where the two initial values Go(p) = 2 and G|(p) = %. Therefore,

2 : n 2 _ : n
d 2p+3\/§ldb)+(d 2p 3\/§zdb],n20’i2:_1.

G,(p) = ( o o

Theorem 1.5. Let p be a prime. If p = 1 mod 24, then we have the second order recurrence formula

2a
Hn+2(p) - —=" n+1(p) - Hn(P)’ nz 07

\p

where the two initial values Hy(p) = 2 and H,(p) = f/—"ﬁ Therefore,

a+iﬁ)n+(a—iﬁ

. n>0,i2=-1.
7))

H,(p) = (

If p = 13 mod 24, then we have the second order recurrence formula

2ar
Hn+2(p) = =" n+l(p) - Hn(p)’ nz 0,

\p
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2a

Nt Therefore,

where the two initial values Hy(p) = 2 and H,(p) = —

—a + iﬁ)" N (—a/ —iB

,n>0,i¢=-1,
RS

Hn(p) = (

and g is the same as defined in (1.3).
From these theorems we may immediately deduce the following several interesting corollaries:

Corollary 1.1. Let p be an odd prime with p = 1 mod 12, then we have
_ _ 2
|7° Ocaxs) + 7° (kalts) + 7° (axs) + 7° (eairs) |
2 2
=4.p-a’-(d*-2p) - (42’ - 3p) .

Corollary 1.2. Let p be an odd prime with p = 1 mod 24, then we have

70 (xsx3) T° (X%Xa) + 70 (xsx3) T° (Xg)?3) ) =20

2 (esxs) 7 (1dxs) — 7° (esita) 7° (i) /5. 1l

Corollary 1.3. Let p be an odd prime with p = 1 mod 12, then we have

T (xax3) d*-2p L3 \3db .
= * L.
73 (Yax3) 2p 2p

Corollary 1.4. Let p be an odd prime with p = 1 mod 12, then we have

7 (axs) = ya(-1) - A B i
7 (xax3) Y/
How to determine the plus or minus signs in Corollaries 1.3 and 1.4 is also a meaningful problem.
Interested readers may consider it.

2. Several lemmas

In this section, we first give three simple lemmas. Of course, the proofs of some lemmas need the
knowledge of character sums. They can be found in many number theory books, such as [1-3], here
we do not need to list.

Lemma 2.1. Let p be a prime with p = 1 mod 12, then we have the identity

7 (aX3) N 7 (Yax3) _ d*-2p
3 (vaxs) T (xaXs) p

Proof. Note that 3 = x5 and x3 = )?ﬁ = X2, from the properties of the classical Gauss sums we have
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p-1

p-1 p-1
ZX4X3 (Cl2 - 1) = Z)(4)(3 ((a + 1)2 - 1) = Z)(4)(3(Cl))(4)(3 (a+2)

a=1

b 2
- __)meza)me(a)e( i ))

T(X4)(3)

2b
- X4X3(b))(4)(3(b)e( ): __)Z 2)(3(19)6( )
3

p=)
)(3(2))(2(2) T (Yax3) - T(Xz)(s)
7 (X4X3)

On the other hand, for any integer b with (b, p) = 1, from the identity

a a=1

and note that y3(=1) = 1, y,x2 = x4, we also have

< RS b~ 1)

- 1 B Y Y.(b)e | =——u-—2
Z::; (@ 7 (Taxs) ;;MM( )e( P )
-1

NS}

2.1)

p-l b
e(;l)—1+2(1+)(2(a))€( ) Z)(z(a)e( ) x2(b) - Vp
=0

__ b\ (ba __ b
= @_3) me(b) (7) e 7):rw )me(b)mb)e(p)

Xa(=1) /P - T (xaX3) :
7 (Y4X3) .

(2.2)

From (2.1), (2.2) and note that )(3(2) )(2(2) =X; 2(~1) = 1, we have the identity

7 (X4X3)
T (X4x3)

T (v2x3) = X322 Qxa(=D)p -

or

7 (/Y4/\_/3)
73 (Yax3)

2 (vax3) = x2(2) - xa(=1) - p? -

2_1 -1
Since y»(2) = (=1) and y4(~1) = (=1)'7, so we have

2D xa(-1) = (DT (DT = (DT = 1,

Combining (2.3), (2.4) and formula (1.4) we have the identity

7 (/\{4)?3) + 73 (raxs3)
T (yaxs) T (/\/4/\_/3)

3
pf.
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(2.3)

(2.4)

=7 (xaxs) + 7 (xairs) = p? - (& - 2p)
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or

T (/Y4X3) 7 (Yaxs) _ d*=2p
73 (Yax3) = (XaX3) p
This proves Lemma 2.1.

Lemma 2.2. Let p be an odd prime with p = 1 mod 24, then we have the identity

*(e) (i)
6 (= — 3, _ Y7 d 6 (= — — 3. 77
T (X4X3) p T6 (Xg)(}) an T (X4)(3) p T6 (/\/8)(3)

Proof. From the method of proving Lemma 2.1 we have

& = N ~ bla +2)
ZXSXB (612 - 1) A ;Xs)(s(b) ;X8X3(a)e( ap )

_ 7ysys) S (Zb) 7 (sx3) ( )
= — b b —— b
~Oex 3>b1"“3( ®el, ng)m)z e

X Qxa@) T (esxs) - T (Yax3)
= —— (2.5)
7 (XsX3)

and

b(a* - 1))

p
Z)(s)(a (Clz - 1) = ) )?8)?3(19)@( >

b
=L b\ (b _ —b
e PN CAREO) ZM“’ (5
_ xsDP-T(6X) >
AN 20
Note that x5(2) = 1, x3(=1) = 1, x3(2) = x2(2) = 1, from (2.5) and (2.6) we have

70 (X 3/\_/3)

3) 2.7
70 (y3x3) @7

™ (taxs) = p* -
Substituting Y5 for y3 in (2.7) gives us the identity

6 3
oy =t o)

3, ) 2.8
 (ests) (28)

Now Lemma 2.2 follows from (2.7) and (2.8).

Lemma 2.3. Let p be an odd prime with p = 1 mod 3. Then for any character y modulo p, we have
the identity

1
(') = S 3700 T o) T ()

where )3 is a character of order three modulo p.
Proof. For this see [16] or [17]. The general result can also be found in [18].

AIMS Mathematics Volume 7, Issue 4, 5860-5870.



5866

3. Proofs of the theorems

Now we shall complete the proofs of our all results. First we prove Theorem 1.1. Let p be an odd
prime with p = 1 mod 12, then note that y4(—1) = y,(-1) = (—1)’%,)(‘31 = X1, Tx4) -7 () = xa(=1)-p.
From Lemmas 2.1 and 2.3 we have

5 00aTs) + 7 ) = =2 () ()
- @ ;2” X3 (DT (7). 3.1)
Similarly, we also have
7 (vaxs) + 7° (Wax3) = <=2 - x4(3) - (—l)p“;1 1% (xa) - (3.2)

From (1.2) we have the identity

—_\3 _
8-pt-a’ = (7 (xa) + 7 (0) =7°(va) + 7 (0s) +3p% - 2P -
or
() +7° (s) = 8p* -0’ —6p3 @ =2p* - (4a® - 3p). (3.3)

Since p = 1 mod 12, so x3(3) = x2(3) = (4) = (3) = 1. Therefore, x4(3) = ¥,(3). Combining
(3.1)—(3.3) we have

7° (eaxs) + 7° (raxs) + 7° (axs) +7° (axs)
d2—2 p-1 —

- — P s DT (2 (r) +7° (1)
d2—2 -1 3

= p p a3 (=D - 2p> -a/-(4a/2—3p)

xi3) - (=D)F - 2yp-a-(d® - 2p)- (40> - 3p).

This proves Theorem 1.1.
Now we prove Theorem 1.2. From Lemma 2.1 we have

d’>-2p

7° (xaxs3) + 7° (xax3) = s (xaxs3) - T (raxs3) (3.4)

and
30, = 3 2 A 5
(7° (adts) + T (raxa))” = =T ) T eaxa) (3.5)

Note that 4p — d*> = 27b*, from (3.5) we also have

b2
T (yaxs) - T (xaxs) = =27 - > T (Yaxs) T (haxs).  (3.6)

d>—4
(73 (XaX3) — s ()(4)(3))2 = P
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From (3.5) and (3.6) we may immediately deduce the identity

(7'3 (xaxs) - 7° CV4)(3))2 _ o7, b
7 (YaX3) + 7° (Yax3) d?

This proves Theorem 1.2.
Now we prove Theorem 1.3. From Lemmas 2.1 and 2.2 we have

(2 -2p) _ (D), 2 cm))z PR | P 0w

P Pl Phe)) 0w )

7° (X§)(3) -7 (xsx3) . 70 ()(g)?g) 7% (ys3¥3) .5
70 (X§X3)'T6 (xsx;) 7° (X3X3)'T6 (xsx3) ,
(76 ()(3)(3) 7% (xgxs) + 7° ()(é)@) -7 (X8)73))2
d* - 2p)2 \

= Tz -7° (X8X3)'T6 (xsxs) - 7° (Xé)?g)'TG (xsx3) (3.7)

—_—

and

(7'6 (Xg)(z) 7% (ygxs) = 7° (/\(g)_g) .70 (,\/8}3))2
=27b*d*  (, , 6 6/ 31— 6 —
= 2 T (X8)(3) T (gx3) - T ()(8,\/3) -7 (xsX3) - (3.8)

Combining (3.7) and (3.8) we have the identity

2

(76 (xsx3) 7° (Xg)ﬁ) — 7% (xsx3) 7° (Xg)a)] _ 7 b*d?
70 (ygx3) T° (Xg)m) + 70 (ys)3) T (Xg)a) (d* - 217)2.

This proves Theorem 1.3.

From Lemma 2.1 we have Gy(p) = 2 and G(p) = dz_%. For any integer n > 0, from Lemma 2.1

and the definition of G,(p) we have
d*-2p

*Gur1(p) = Gi(p) - Gui(p)

(73 (X4X3) N T (/\/4)(3)) . (T3n+3 (XaX3) N 3 (X4X3))
T (axs) T (axs)) \T" (axs) T (vax;)
"0 (XaX3) 70 (xax3) + " (x4X3) ™" (X4x3)
D6 (vaxs) | T (vats) | T Caxs) | 7 (raXs)
= Gua(p) + Gu(p),

which implies the second order recurrence formula

d*-2p

Guia(p) = *Gui1(p) = Gu(p), n 2 0.

AIMS Mathematics Volume 7, Issue 4, 5860-5870.
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2_
Let x; and x, denote two roots of the quadratic equation x> — dpi -x+ 1 = 0. Then note that

4p = d* + 27b%, we have
d*=2p+3V3-idb

= and =
X1 2p X

d?>—2p—3+3-idb
2p ’

From the properties of the second order recurrence formula and the initial conditions Go(p) = 2,

Gi(p) = dz;zp , we may immediately deduce the general term

&2 -2p+3\3-idb\ (d*-2p-3V3-idb\
Gu(p) = o + o :

This proves Theorem 1.4.
Similarly, we can also deduce Theorem 1.5. In fact, note that y4(3) - y4(—1) = 1 and 7(x4)7 (x,) =
x4(=1) - p = 7(xax3) T (¥4x3)- From Lemma 2.3 we have

1
7(xy) = > X4(3) - t(xa) - T (rax3) - T (xaxs)

or
P (T) = 700k - T (eals) = pxal=1) :gx; (3.9)
and
T%m:r@m)-r(/mg):p-)a(—n-:ggg. (3.10)
Combining (1.2), (3.9) and (3.10) we have the identity

Now let us divide p into two cases:
If p = 1 mod 24, then y4(—1) = 1. From (3.11) and the method of proving Theorem 1.4 we have
Hy(p) =2, H(p) = f—% and H,,»(p) = % -H,.1(p) — H,(p) for all n > 0. The general term of H,(p) is

i (o e

where £ is defined as in (1.3).

If p = 13 mod 24, then y4(—1) = —1. From (3.11) and the method of proving Theorem 1.4 we have
Hy(p) = 2, Hi(p) = —3—% and H,.»(p) = —3—% - H,,(p) — H,(p) for all n > 0. The general term of
H,(p) is

—a + i,B)" . (—a —iB
VP

These complete the proofs of our all results.

),n>0, P2 =1,

H,(p) = >
2] ( NG
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4. Conclusions

The main results of this paper are to prove some new identities for the classical Gauss sums. For
example, if p is a prime with p = 1 mod 12, then for any character y4 of order four and character y3 of
order three modulo p, we have the identity

7 (ax3) + 7° (xaxs) + 7° (daxs) + 7° (VaX3)
= x3) (DT 2. yp-a-(d®-2p)-(4a® - 3p).

These results not only give the exact values of some special Gauss sums, and they are also some new
contribution to research in related fields.
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