Citation: Hu Jiayuan, Chen Zhuoyu. On distribution properties of cubic residues[J]. AIMS Mathematics, 2020, 5(6): 6051-6060. doi: 10.3934/math.2020388
[1] | T. M. Apostol, Introduction to Analytic Number Theory, Springer Science & Business Media, 1976. |
[2] | W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013. |
[3] | W. Narkiewicz, Classical Problems in Number Theory, Polish Scientifc Publishers, WARSZAWA, 1986. |
[4] | N. C. Ankeny, The least quadratic non-residue, Ann. Math., 55 (1952), 65-72. doi: 10.2307/1969420 |
[5] | T. Wang and X. Lv, The quadratic residues and some of their new distribution properties, Symmetry, 12 (2020), 1-8. |
[6] | Z. H. Sun, Consecutive numbers with the same Legendre symbol, P. Am. Math. Soc., 130 (2002), 2503-2507. doi: 10.1090/S0002-9939-02-06600-5 |
[7] | Z. H. Sun, Cubic residues and binary quadratic forms, J. Number Theory, 124 (2007), 62-104. doi: 10.1016/j.jnt.2006.08.001 |
[8] | Z. H. Sun, Cubic congruences and sums involving $\binom{3k}k$, Int. J. Number Theory, 12 (2016), 143-164. |
[9] | Z. H. Sun, On the theory of cubic residues and nonresidues, Acta Arith., 84 (1998), 291-315. doi: 10.4064/aa-84-4-291-335 |
[10] | F. L. Ţiplea, S. Iftene, G. Teşeleanu, et al. On the distribution of quadratic residues and nonquadratic residues modulo composite integers and applications to cryptography, Appl. Math. Comput., 372 (2020), 1-18. |
[11] | R. Peralta, On the distribution of quadratic residues and non-residues nodulo a prime number, Math. Comput., 58 (1992), 433-440. doi: 10.1090/S0025-5718-1992-1106978-9 |
[12] | S. Wright, Quadratic residues and non-residues in arithmetic progression, J. Number Theory, 133 (2013), 2398-2430. doi: 10.1016/j.jnt.2013.01.004 |
[13] | W. Kohnen, An elementary proof in the theory of quadratic residues, Bull. Korean Math. Soc., 45 (2008), 273-275. |
[14] | P. Hummel, On consecutive quadratic non-residues: a conjecture of Issai Schur, J. Number Theory, 103 (2003), 257-266. |
[15] | M. Z. Garaev, A note on the least quadratic non-residue of the integer-sequences, B. Aust. Math. Soc., 68 (2003), 1-11. doi: 10.1017/S0004972700037369 |
[16] | A. Schinzel, Primitive roots and quadratic non-residues, Acta Arith., 2 (2011), 161-170. |
[17] | Y. K. Lau, J. Wu, On the least quadratic non-residue, Int. J. Number Theory, 4 (2008), 423-435. doi: 10.1142/S1793042108001432 |
[18] | D. S. Dummit, E. P. Dummit, H. Kisilevsky, Characterizations of quadratic, cubic, and quartic residue matrices, J. Number Theory, 168 (2016), 167-179. doi: 10.1016/j.jnt.2016.04.014 |
[19] | D. S. Xing, Z. F. Cao, X. L. Dong, Identity based signature scheme based on cubic residues, Sci. China Inform. Sci., 54 (2011), 2001-2012. doi: 10.1007/s11432-011-4413-6 |
[20] | W. L. Su, Q. Li, H. Luo, et al. Lower bounds of Ramsey numbers based on cubic residues, Discrete Math., 250 (2002), 197-209. doi: 10.1016/S0012-365X(01)00283-7 |
[21] | W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation mod p, Math. Rep., 20 (2018), 73-80. |
[22] | A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. U. S. A., 34 (1948), 204-207. doi: 10.1073/pnas.34.5.204 |