Research article

On distribution properties of cubic residues

  • Received: 09 April 2020 Accepted: 15 July 2020 Published: 23 July 2020
  • MSC : 11A15, 11L40

  • In this paper, we use the elementary methods, the properties of the Gauss sums and the estimate for character sums to study the calculating problems of a certain cubic residues modulo p, and give some interesting identities and asymptotic formulas for their counting functions.

    Citation: Hu Jiayuan, Chen Zhuoyu. On distribution properties of cubic residues[J]. AIMS Mathematics, 2020, 5(6): 6051-6060. doi: 10.3934/math.2020388

    Related Papers:

  • In this paper, we use the elementary methods, the properties of the Gauss sums and the estimate for character sums to study the calculating problems of a certain cubic residues modulo p, and give some interesting identities and asymptotic formulas for their counting functions.


    加载中


    [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer Science & Business Media, 1976.
    [2] W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013.
    [3] W. Narkiewicz, Classical Problems in Number Theory, Polish Scientifc Publishers, WARSZAWA, 1986.
    [4] N. C. Ankeny, The least quadratic non-residue, Ann. Math., 55 (1952), 65-72. doi: 10.2307/1969420
    [5] T. Wang and X. Lv, The quadratic residues and some of their new distribution properties, Symmetry, 12 (2020), 1-8.
    [6] Z. H. Sun, Consecutive numbers with the same Legendre symbol, P. Am. Math. Soc., 130 (2002), 2503-2507. doi: 10.1090/S0002-9939-02-06600-5
    [7] Z. H. Sun, Cubic residues and binary quadratic forms, J. Number Theory, 124 (2007), 62-104. doi: 10.1016/j.jnt.2006.08.001
    [8] Z. H. Sun, Cubic congruences and sums involving $\binom{3k}k$, Int. J. Number Theory, 12 (2016), 143-164.
    [9] Z. H. Sun, On the theory of cubic residues and nonresidues, Acta Arith., 84 (1998), 291-315. doi: 10.4064/aa-84-4-291-335
    [10] F. L. Ţiplea, S. Iftene, G. Teşeleanu, et al. On the distribution of quadratic residues and nonquadratic residues modulo composite integers and applications to cryptography, Appl. Math. Comput., 372 (2020), 1-18.
    [11] R. Peralta, On the distribution of quadratic residues and non-residues nodulo a prime number, Math. Comput., 58 (1992), 433-440. doi: 10.1090/S0025-5718-1992-1106978-9
    [12] S. Wright, Quadratic residues and non-residues in arithmetic progression, J. Number Theory, 133 (2013), 2398-2430. doi: 10.1016/j.jnt.2013.01.004
    [13] W. Kohnen, An elementary proof in the theory of quadratic residues, Bull. Korean Math. Soc., 45 (2008), 273-275.
    [14] P. Hummel, On consecutive quadratic non-residues: a conjecture of Issai Schur, J. Number Theory, 103 (2003), 257-266.
    [15] M. Z. Garaev, A note on the least quadratic non-residue of the integer-sequences, B. Aust. Math. Soc., 68 (2003), 1-11. doi: 10.1017/S0004972700037369
    [16] A. Schinzel, Primitive roots and quadratic non-residues, Acta Arith., 2 (2011), 161-170.
    [17] Y. K. Lau, J. Wu, On the least quadratic non-residue, Int. J. Number Theory, 4 (2008), 423-435. doi: 10.1142/S1793042108001432
    [18] D. S. Dummit, E. P. Dummit, H. Kisilevsky, Characterizations of quadratic, cubic, and quartic residue matrices, J. Number Theory, 168 (2016), 167-179. doi: 10.1016/j.jnt.2016.04.014
    [19] D. S. Xing, Z. F. Cao, X. L. Dong, Identity based signature scheme based on cubic residues, Sci. China Inform. Sci., 54 (2011), 2001-2012. doi: 10.1007/s11432-011-4413-6
    [20] W. L. Su, Q. Li, H. Luo, et al. Lower bounds of Ramsey numbers based on cubic residues, Discrete Math., 250 (2002), 197-209. doi: 10.1016/S0012-365X(01)00283-7
    [21] W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation mod p, Math. Rep., 20 (2018), 73-80.
    [22] A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. U. S. A., 34 (1948), 204-207. doi: 10.1073/pnas.34.5.204
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3386) PDF downloads(237) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog