In this paper, the fourth power mean values of the generalized quadratic Gauss sums associated with the $ 3 $-order and $ 4 $-order Dirichlet characters are given by using the properties of the Dirichlet characters and Gauss sums.
Citation: Xuan Wang, Li Wang, Guohui Chen. The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters[J]. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864
In this paper, the fourth power mean values of the generalized quadratic Gauss sums associated with the $ 3 $-order and $ 4 $-order Dirichlet characters are given by using the properties of the Dirichlet characters and Gauss sums.
[1] | T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976. |
[2] | N. Bag, R. Barman, Higher order moments of generalized quadratic Gauss sums weighted by $L$-functions, Asian J. Math., 25 (2021), 413–430. |
[3] | N. Bag, A. Rojas-León, W. P. Zhang, An explicit evaluation of $10$-th power moment of quadratic Gauss sums and some applications, Funct. Approx. Comment. Math., 66 (2022), 253–274. http://dx.doi.org/10.7169/facm/1995 doi: 10.7169/facm/1995 |
[4] | N. Bag, A. Rojas-León, W. P. Zhang, On some conjectures on generalized quadratic Gauss sums and related problems, Finite Fields Appl., 86 (2023), 102131. https://doi.org/10.1016/j.ffa.2022.102131 doi: 10.1016/j.ffa.2022.102131 |
[5] | B. C. Berndt, R. J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc., 5 (1981), 107–128. |
[6] | L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034 |
[7] | Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. https://doi.org/10.1515/math-2017-0104 doi: 10.1515/math-2017-0104 |
[8] | K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, New York: Springer-Verlag, 1982. |
[9] | X. X. Li, X. F. Xu, The fourth power mean of the generalized two-term exponential sums and its upper and lower bound estimates, J. Inequal. Appl., 2013 (2013), 504. https://doi.org/10.1186/1029-242X-2013-504 doi: 10.1186/1029-242X-2013-504 |
[10] | X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. https://doi.org/10.3390/math7100907 doi: 10.3390/math7100907 |
[11] | X. X. Lv, W. P. Zhang, The generalized quadratic Gauss sums and its sixth power mean, AIMS Math., 6 (2021), 11275–11285. http://dx.doi.org/10.3934/math.2021654 doi: 10.3934/math.2021654 |
[12] | H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81. |
[13] | W. P. Zhang, Moments of generalized quadratic Gauss sums weighted by $L$-functions, J. Number Theory, 92 (2002), 304–314. https://doi.org/10.1006/jnth.2001.2715 doi: 10.1006/jnth.2001.2715 |
[14] | W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Rep., 20 (2018), 70–76. |
[15] | W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013. |
[16] | W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin. English Ser., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8 |