Research article

On the central limit theorem for the elephant random walk with gradually increasing memory and random step size

  • Received: 28 March 2024 Revised: 11 May 2024 Accepted: 13 May 2024 Published: 24 May 2024
  • MSC : 60F05, 60F25, 60G42, 60G50

  • In this paper, we investigate an extended version of the elephant random walk model. Unlike the traditional approach where step sizes remain constant, our model introduces a novel feature: step sizes are generated as a sequence of positive independent and identically distributed random variables, and the step of the walker at time $ n+1 $ depends only on the steps of the walker between times $ 1, ..., m_n $, where $ (m_n)_{n\geqslant 1} $ is a sequence of positive integers growing to infinity as $ n $ goes to infinity. Our main results deal with the validity of the central limit theorem for this new variation of the standard ERW model introduced by Schütz and Trimper in $ 2004 $.

    Citation: Rafik Aguech. On the central limit theorem for the elephant random walk with gradually increasing memory and random step size[J]. AIMS Mathematics, 2024, 9(7): 17784-17794. doi: 10.3934/math.2024865

    Related Papers:

  • In this paper, we investigate an extended version of the elephant random walk model. Unlike the traditional approach where step sizes remain constant, our model introduces a novel feature: step sizes are generated as a sequence of positive independent and identically distributed random variables, and the step of the walker at time $ n+1 $ depends only on the steps of the walker between times $ 1, ..., m_n $, where $ (m_n)_{n\geqslant 1} $ is a sequence of positive integers growing to infinity as $ n $ goes to infinity. Our main results deal with the validity of the central limit theorem for this new variation of the standard ERW model introduced by Schütz and Trimper in $ 2004 $.



    加载中


    [1] R. Aguech, M. El Elmachkouri, Gaussian fluctuations of the elephant random walk with gradually increasing memory, J. Phys. A Math. Theor., 57 (2024), 065203. https://doi.org/10.1088/1751-8121/ad1c0d doi: 10.1088/1751-8121/ad1c0d
    [2] E. Baur, J. Bertoin, Elephant random walks and their connection to Pólya-type urns, Phys. Rev. E, 94 (2016), 052134. https://doi.org/10.1103/PhysRevE.94.052134 doi: 10.1103/PhysRevE.94.052134
    [3] B. Bercu, A martingale approach for the elephant random walk,, J. Phys. A Math. Theor., 51 (2018), 015201. https://doi.org/10.1088/1751-8121/aa95a6
    [4] B. Bercu, On the elephant random walk with stops playing hide and seek with the Mittag-Leffler distribution, J. Stat. Phys., 189 (2022), 12. https://doi.org/10.1007/s10955-022-02980-w doi: 10.1007/s10955-022-02980-w
    [5] B. Bercu, L. Laulin, On the multi-dimensional elephant random walk, J. Stat. Phys., 175 (2019), 1146–1163. https://doi.org/10.1007/s10955-019-02282-8 doi: 10.1007/s10955-019-02282-8
    [6] C. F. Coletti, R. Gava, G. M. Schutz., Central limit theorem and related results for the elephant random walk, J. Math. Phys., 58 (2017), 053303. https://doi.org/10.1063/1.4983566 doi: 10.1063/1.4983566
    [7] J. Dedecker, X. Q. Fan, H. J. Hu, F. Merlevede, Rates of convergence in the central limit theorem for the elephant random walk with random step sizes, J. Stat. Phys., 190 (2023), 154. https://doi.org/10.1007/s10955-023-03168-6 doi: 10.1007/s10955-023-03168-6
    [8] A. Gut, U. Stadtmuller, The elephant random walk with gradually increasing memory, Statist. Probab. Lett., 189 (2022), 109598. https://doi.org/10.1016/j.spl.2022.109598 doi: 10.1016/j.spl.2022.109598
    [9] S. Janson, Functional limit theorems for multitype branching processes and generalized Polya urns, Stochastic Process. Appl., 110 (2004), 177–245. https://doi.org/10.1016/j.spa.2003.12.002 doi: 10.1016/j.spa.2003.12.002
    [10] N. Kubota, M. Takei, Gaussian fluctuation for superdiffusive elephant random walks, J. Stat. Phys., 177 (2019), 1157–1171. https://doi.org/10.1007/s10955-019-02414-0 doi: 10.1007/s10955-019-02414-0
    [11] L. Laulin, Introducing smooth amnesia to the memory of the elephant random walk, Electron. Commun. Probab., 27 (2022), 1–12. https://doi.org/10.1214/22-ECP495 doi: 10.1214/22-ECP495
    [12] X. H. Ma, M. El Machkouri, X. Q. Fan, On Wasserstein-1 distance in the central limit theorem for elephant random walk, J. Math. Phys., 63 (2022), 013301. https://doi.org/10.1063/5.0050312 doi: 10.1063/5.0050312
    [13] G. Schutz, S. Trimper, Elephants can always remember: exact long-range memory effects in a non-Markovian random walk, Phys. Rev. E, 70 (2004), 045101. https://doi.org/10.1103/PhysRevE.70.045101 doi: 10.1103/PhysRevE.70.045101
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(175) PDF downloads(23) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog