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Abstract: In this paper, we investigate an extended version of the elephant random walk model.
Unlike the traditional approach where step sizes remain constant, our model introduces a novel feature:
step sizes are generated as a sequence of positive independent and identically distributed random
variables, and the step of the walker at time n+1 depends only on the steps of the walker between times
1, ...,mn, where (mn)n⩾1 is a sequence of positive integers growing to infinity as n goes to infinity. Our
main results deal with the validity of the central limit theorem for this new variation of the standard
ERW model introduced by Schütz and Trimper in 2004.
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1. Introduction

The elephant random walk (ERW) represents a unique form of one-dimensional random walk along
integers, notable for its retention of complete memory regarding its entire past trajectory. Schütz and
Trimper [13] introduced the ERW as a means to investigate the memory effects inherent in a non-
Markovian random walk. This model is inspired by the notion that elephants possess an exceptional
memory, embodying the popular belief that elephants never forget their paths. It is well known that
the asymptotic properties of the ERW depend on its memory parameter p ∈ [0, 1]. More precisely, the
ERW exhibits three regimes: the diffusive regime for 0 ⩽ p < 3/4, the critical regime for p = 3/4,
and the superdiffusive regime of 3/4 < p ⩽ 1. Many interesting limit theorems are already known for
the ERW. In particular, n−1S n → 0 a.s. for any p ∈]0, 1[ and n−1/2S n → N(0, (3− 4p)−1) in distribution
in the diffusive regime. In the critical regime, we have (n log n)−1/2S n → N(0, 1) in distribution and
n1−2pS n → L almost surely and in L4 in the superdiffusive regime. The reader can refer to Baur and
Bertoin [2], Bercu [3, 4], Bercu and Laulin [5], Kubota and Takei [10], Coletti, Gava, and Schütz [6],
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Laulin [11] and the references therein and to Ma et al. [12] and Dedecker et al. [7] for contributions to
the rate of convergence in the central limit theorem of the ERW in the diffusive and critical regimes.
Since the seminal paper by Schütz and Trimper [13], many variants of the ERW have been introduced
in this literature. Aguech et al. [1] extended the results of Bercu [3] and Kubota and Takei [10] in the
case where the memory of the elephant is increasing (see Gut and Stadtmuller [8]): At any step n, the
elephant remembers only the steps at times 1, . . . ,mn, where mn is a non-decreasing integer sequence
such that mn < n and limn mn/n = θ ∈ [0, 1] and limn mn = +∞. In this paper, we combine the
results in [7] and [1], and we assume that the size of the step of the elephant is random and with a non-
decreasing memory mn. More precisely, suppose we have an ascending sequence of integers denoted
as mn, where each mn is less than or equal to n. Let (Un)n⩾1 be a sequence of uniformly distributed
random variables on the set {1, . . . ,mn}, and let (Vn)n⩾1 denote a sequence of random variables with
values either −1 or 1 such that P(Vn = 1) = p for some fixed p ∈]0, 1[. In [7], the authors assume that
the size of the step of the elephant is a sequence (Zn)n⩾1 of independent identically distributed random
variables with finite variance σ2 = V(Z1), and they assume that the sequences of random variables
(Un)n⩾1, (Vn)n⩾1, and (Zn)n⩾1 are independent. Denote by X1 the first step of the elephant and assume
that X1 is a random variable such that P(X1 = 1) = 1 − P(X1 = −1) = r for some fixed r ∈ [0, 1].
For any integer n ⩾ 0, we denote by S n the position of the elephant at time n. Following [7], we have
S 0 = 0, and for any integer n ⩾ 1,

S n =

n∑
i=1

XiZi,

where, for all n ≥ 1,

Xn+1 = VnXUn =

XUn , with probability p,

−XUn , with probability 1 − p,

and recall that Un is uniformly distributed on {1, . . . ,mn} for any n ⩾ 1. Without loss of generality,
one can assume that E(Zn) = 1 for any n ⩾ 1, and consequently, the following decomposition will be
usefull: For any n ⩾ 1,

S n = Tn + Hn,

with

Tn =

n∑
k=1

Xi and Hn =

n∑
k=1

Xi (Zi − 1) .

Denote a1 = 1, and for any n ≥ 2,

an =
Γ(n)Γ(2p)
Γ(n + 2p − 1)

and vn =

n∑
i=1

a2
i ,

where Γ(s) =
∫ ∞

0
ts−1e−tdt, s > 0, is the Gamma function. For mn = n, Dedecker et al. [7] proved the

following result:

Theorem 1.1. [7, Theorems 2.1 and 3.1] Assume that p ∈ (0, 1] and E
[
Z2

]
< +∞.

(1) If p ∈ (0, 3/4], then
anS n − (2r − 1)√

vn + na2
nσ

2

d
−−−−−→

n→∞
N

(
0, 1

)
.
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(2) If p ∈ (3/4, 1], then
S n

n2p−1

a.s
−−−−−→

n→∞
L,

where L is a non-denerate and non-Gaussian random variable.

Remark 1.1. An important observation regarding the model investigated by Dedecker et al. [7] is
its strong connection with the urn model. Specifically, the model operates as follows: Initially, an
urn contains one white ball and one black ball. At each step n, a ball is randomly drawn from the
urn. Subsequently, the drawn ball is replaced, with the addition of YnZn balls of the same color and
(1 − Yn)Zn balls of the opposite color, where Yn has a Bernoulli distribution with parameter p and is
independent of Zn. The addition matrix for this urn is random and is given by

Dn =


YnZn (1 − Yn) Zn

(1 − Yn) Zn YnZn

 .
Some of the results of Dédecker et al. [7] and some extra results, can be obtained using this connection
from [9], where, if we denote by Wn and Bn, respectively, the number of white and black balls at
time n, the position of the elephant at step n can be given, due to this connection, by S n = Wn − Bn.
This connection with the Pólya urn model is not possible if we consider gradually increasing memory
random walks: Practically, it is not possible at step n to draw a ball only from the first mn added balls.

It is important to note that Theorem 1.1 holds in the particular case of mn = n. Our aim in this
work is to extend Theorem 1.1 to the case where mn ⩽ n such that mn/n → θ for some θ ∈ [0, 1].
Additionally, for p > 3/4 (superdiffusive case), we are going to give the asymptotic distribution for
the fluctuation of the elephant random walk around the random variable τL, where L is defined in
Theorem 1.1 and τ in Theorem 2.1.

2. Results

First case: Diffusive regime (0 < p < 3/4)
Our first result concerns the case where p ∈ (0, 3/4) and we give the asymptotic distribution of the

elephant random walk.

Theorem 2.1. Let θ ∈ [0, 1] such that limn→∞mn = +∞, and mn/n → θ as n goes to infinity, and
suppose that p ∈ (0, 3/4). Assume that (Zn)n⩾1 is iid positive with mean 1 and variance σ2, and denote

τ = θ + (1 − θ) (2p − 1) and σ2
1 =

τ2

3 − 4p
+ θ (1 − θ) .

Then,
√

mn

n
S n

d
−−−−−→

n→∞
N

(
0, σ2

1 + θσ
2
)
.

Remark 2.1. If the step size is deterministic, then σ = 0, and we obtain the result in [1]. If θ = 1, we
obtain the result in [7].
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Proof of Theorem 2.1. Let

S̄ n :=
√

mn

n
S n =

√
mn

n
Hn +

√
mn

n
Tn =: An + Bn.

By [1], we know that for 0 < p < 3/4, we have

Bn =

√
mn

n
Tn

d
−−−−−→

n→∞
N

(
0, σ2

1

)
, (2.1)

with

σ2
1 = θ(1 − θ) +

τ2

3 − 4p
and τ2 = θ + (1 − θ)(2p − 1).

For all t ∈ R, denote φn(t) = E
[
eitS̄ n

]
and consider the σ-algebra F = σ

(
Xi, Ui, Vi, i ∈ N

)
. So, for any t

in R, we have
φn(t) = E

[
exp (it {An + Bn})

]
= E

[
E
[
exp (itAn) |F

]
exp (itBn)

]
.

Since the random variables (Zi − 1)i are iid centered with finite variance σ2 and that X2
i = 1 a.s., we get

1
√

n

n∑
i=1

Xi (Zi − 1)
d

−−−−−→
n→∞

N
(
0, σ2

)
. (2.2)

In fact, if we denote

Rn =
1
√

n

n∑
i=1

Xi (Zi − 1) and Φn(t) = E
[
exp (itRn)

]
,

then,

Φn(t) = E
[
E

[
exp (itRn) | F

]]
= E

 n∏
k=1

E

[
exp

(
i

t
√

n
Xk (Zk − 1)

)∣∣∣∣∣∣ F
]

= E

 n∏
k=1

E

[
exp

(
i

t
√

n
Xk (Z1 − 1)

)∣∣∣∣∣∣ F
]

= E

 n∏
k=1

E

[(
1 + i

t
√

n
Xk (Z1 − 1) −

t2

2n
(Z1 − 1)2 + o

(
1
n

))∣∣∣∣∣∣ F
]

= E

 n∏
k=1

(
1 −

t2σ2

2n
+ o

(
1
n

))
=

(
1 −

t2σ2

2n
+ o

(
1
n

))n

→ exp
(
−

t2σ2

2

)
,

where in the last three equations, the o− term depends on the moment of order two of Z1, which is
finite by assumption.

Using (2.2), we obtain

An =

√
mn
√

n
Hn
√

n
d

−−−−−→
n→∞

N
(
0, θσ2

)
.

AIMS Mathematics Volume 9, Issue 7, 17784–17794.



17788

As a first conclusion, we have

lim
n→∞
E
[
exp (itAn) |F

]
= exp

(
−
θσ2t2

2

)
= φ

(√
θσt

)
.

where φ is the characteristic function of the standard normal law. On the other hand, for any n ⩾ 1 and
any t ∈ R,

φn(t) = E
[(
E
[
exp (itAn) |F

]
− φ

(√
θσt

) )
exp (itBn)

]
+ φ

(√
θσt

)
E
[
exp (itBn)

]
.

Using (2.1) and noting that

lim
n→+∞

∣∣∣∣E[(E[exp (itAn) |F
]
− φ

(√
θσt

) )
exp (itBn)

] ∣∣∣∣ ≤ lim
n
E
[∣∣∣∣E[exp (itAn) |F

]
− φ

(√
θσt

) ∣∣∣∣] = 0,

we derive [1]

lim
n→+∞

φn(t) = φ
(√
θσt

)
φ (σ1t) = exp

(
−(θσ2 + σ2

1)t2

2

)
.

The proof of Theorem 2.1 is complete. □

Second case: Critical regime (p = 3/4)
Assume that p = 3/4 and consider the decompositon

S n = S mn + Dmn, n, where Dmn, n =

n∑
k=mn+1

XkZk.

Theorem 2.2. Let θ ∈ [0, 1] such that mn/n → θ as n goes to infinity, and suppose that p = 3/4. If
(Zn)n⩾1 are iid positive with mean 1 and finite variance σ2, then

√
mnS n

n
√

ln mn

d
−−−−−→

n→∞
N

(
0,

(1 + θ)2

4

)
.

Remark 2.2. Notice that in this case, the step size does not influence the asymptotic behavior of the
normalized position of the elephant. This is due to the fact that the normalized remainder term Dmn, n

converges to 0 in probability.

Proof of Theorem 2.2. From [7], we know that

S mn
√

mn ln mn

d
−−−−−→

n→∞
N

(
0, 1

)
.

Moreover, given Fmn := σ(Xi ; i ⩽ mn), for any k ⩾ mn + 1, we have

P
[
Xk = 1|Fmn

]
=

(
1
2
+

1
4mn

Tm

)
and P

[
Xk = −1|Fmn

]
=

(
1
2
−

1
4mn

Tm

)
.

Note also that, given Fmn , the random variables (XkZk)mn+1≤k≤n are i.i.d. In the other part, we have the
following decomposition:

S̃ n :=
√

mnS n

n
√

ln mn
= An + Bn,
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where

An :=
mn

n
S mn

√
mn ln mn

and Bn :=
√

mnDmn, n

n
√

ln mn
.

For any t ∈ R and any n ⩾ 1, we denote ϕn(t) = E
[
exp

(
itS̃ n

)]
and Gn := σ (Z1, · · · ,Zn). Then, we have

ϕn(t) = E
[
E
[
exp (itAn) exp (itBn) |Fmn

∨
Gmn

]]
= E

[
exp (itAn)E

[
exp (itBn) |Fmn

∨
Gmn

]]
= E

[
exp (itAn)

(
E

[
exp

(
it
√

mn

n
√

ln mn
Xmn+1Z1

)
|Fmn

] )(n−mn)
]
.

Using the conditional distribution of Xmn+1 given Fmn , we obtain

E

[
exp

(
it
√

mn

n
√

ln mn
Xmn+1Z1

)
|Fmn

]
=

(
1
2
+

1
4mn

Tmn

)
E

[
exp

(
it
√

mn

n
√

ln mn
Z1

)]
+

(
1
2
−

1
4mn

Tmn

)
E

[
exp

(
−

it
√

mn

n
√

ln mn
Z1

)]
=

(
1
2
+

1
4mn

Tmn

) [
1 +

it
√

mn

n
√

ln mn
µ1 −

t2mn

n2 ln mn
µ2 + o

(
m3/2

n

n3 ln m3/2
n

)]
+

(
1
2
−

1
4mn

Tmn

) [
1 −

it
√

mn

n
√

ln mn
µ1 −

t2mn

n2 ln mn
µ2 + o

(
m3/2

n

n3 ln m3/2
n

)]
=1 +

itµ1

2n
Tmn

√
mn ln mn

−
t2mn

n2 ln mn
µ2 + o

(
m3/2

n

n3 ln m3/2
n

)
+

Tmn

mn
× o

(
m3/2

n

n3 ln m3/2
n

)
,

and recall that m−1
n Tmn

a.s.
−−−−→
n→+∞

0 (see [3]) and |m−1
n Tmn | ⩽ 1 a.s. Then, for n sufficiently large

(
E

[
exp

(
it
√

mn

n
√

ln mn
Xmn+1Z1

)
|Fmn

])(n−mn)

=

(
1 +

itµ1

2n
Tmn

√
mn ln mn

−
t2mn

n2 ln mn
µ2 +

(
1 +

Tmn

mn

)
× o

(
m3/2

n

n3 ln m3/2
n

))(n−mn)

= exp
[
(n − mn) ln

(
1 +

itµ1

2n
Tmn

√
mn ln mn

−
t2mn

n2 ln mn
µ2 + o

(
m3/2

n

n3

))]
= exp

[
itµ1(n − mn)

2n
Tmn

√
mn ln mn

−
t2mn(n − mn)

n2 ln mn
µ2 + o

(
m3/2

n

n2

)]
≈ exp

[
itµ1(n − mn)

2n
Tmn

√
mn ln mn

]
.

Then, the characteristic function ϕn(t) has an asymptotic expression
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ϕn(t) =E
[
exp (itAn) exp

(
itµ1(n − mn)

2n
Tmn

√
mn ln mn

)]
=E

[
exp

(
it

mn

n

(
Tmn

√
mn ln mn

+
Hmn

√
mn ln mn

))
exp

(
itµ1(n − mn)

2n
Tmn

√
mn ln mn

)]
=E

[
exp

(
it

mn + n
2n

Tmn
√

mn ln mn
+ it

mn

n
Hmn

√
mn ln mn

)]
=E

[
exp

(
it

mn + n
2n

Tmn
√

mn ln mn

)
E

[
exp

(
it

mn

n
Hmn

√
mn ln mn

)
|F

]]
.

Since

lim
n→∞
E

[
exp

(
it

mn

n
Hmn

√
mn ln mn

)
|F

]
= 1,

we deduce that

lim
n→∞

ϕn(t) = lim
n→∞
E

[
exp

(
it

mn + n
2n

Tmn
√

mn ln mn

)]
.

Finally, by [3], we conclude

lim
n→∞
E

[
exp

(
it

mn + n
2n

Tmn
√

mn ln mn

)]
= exp

(
−

t2

2
(θ + 1)2

4

)
.

The proof of Theorem 2.2 is complete. □

Third case: Superdiffusive regime (p > 3/4)
In this section, we consider the case, where p ∈ (3/4, 1), called the superdifusive regime. First, we

give the almost sure convergence of S n.

Theorem 2.3. Let θ ∈ [0, 1] such that mn/n→ θ as n goes to infinity, and suppose that p ∈ (3/4, 1). If
(Zn)n⩾1 are iid positive with mean 1 and finite variance σ2, then

m2(1−p)
n

n
S n

a.s
−−−−−→

n→∞
(θ + (2p − 1) (1 − θ)) L,

where L is a non-Gaussian random variable.

Proof of Theorem 2.3. Recall that

S n = S mn + Dmn, n, where Dmn, n =

n∑
k=mn+1

XkZk,

and consequently,
m2(1−p)

n

n
S n =

mn

n
S mn

m2p−1
n

+
m2(1−p)

n

n
Dmn, n.

From [7], we know that
mn

n
S mn

m2p−1
n

a.s
−−−−−→

n→∞
θL.
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On the other hand, according to Fmn , the sequence of random variables (XiZi)mn+1≤i≤n is i.i.d., and for
all i ≥ mn + 1,

E
[
XiZi|Fmn

]
= E

[
Xi|Fmn

]
E[Zi] = (2p − 1)

Tmn

mn
.

Applying the strong law of large numbers condionally to Fm, for n large, we have

Dmn, n

n − mn
=

1
n − mn

n∑
k=mn+1

XkZk ≈ (2p − 1)
Tmn

mn
a.s.

Then, almost surely, for n large

m2(1−p)
n

n
Dmn, n =

n − mn

n
m2(1−p)

n
1

n − mn
Dmn, n ≈

n − mn

n
m2(1−p)

n
Tmn

mn
≈ (1 − θ) (2p − 1) L. □

The following result shows that the fluctuations of the elephant random walk are still gaussian around
the random variable L as given in Theorem 2.3.

Theorem 2.4. Let θ ∈ [0, 1] such that mn/n→ θ as n goes to infinity, and suppose that p ∈ (3/4, 1). If
(Zn)n⩾1 are iid positive with mean 1 and finite variance σ2, then√

m4p−3
n

S nm2(1−p)
n

n
− τL

 d
−−−−−→

n→∞
N

(
0, λ2 + θσ2

)
,

where

λ2 =
τ2

4p − 3
−
τ
(
θ2p−1 − θ

)
1 − p

+ θ (1 − θ) and τ = θ + (1 − θ) (2p − 1) .

Remark 2.3. This result generalizes the result obtained in [7], it precises in addition the asymptotic
distribution of the fluctuation, and coincides with the result of Aguech et al. [1], in the case where
σ = 0.

Proof of Theorem 2.4. We start again with the following decomposition:

S n =

n∑
k=1

Xk +

n∑
k=1

Xk (Zk − 1) = Tn + Hn.

First, using [1], if
√

m4p−3
n |n−1mn − θ| → 0, then√

m4p−3
n

S nm2(1−p)
n

n
− τL

 d
−−−−−→

n→∞
N

(
0, λ2

)
.

Moreover, we have√
m4p−3

n

S nm2(1−p)
n

n
− τL

 = √
m4p−3

n

Tnm2(1−p)
n

n
− τL

 + √mn

n

n∑
k=1

Xk (Zk − 1)

:= ∆n + H̃n.
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Let, for all n, Hn = σ (X1, · · · , Xn, L). For all real t, let ψZ(t) = E
[
exp (it [Z − 1])

]
the characteristic

function of Z − 1 and Ψn(t) is the characteristic function of
√

m4p−3
n

(
S nm2(1−p)

n
n − τL

)
. So, we have

Ψn(t) = E
[
exp (it∆n) exp

(
itH̃n

)]
= E

[
exp (it∆n)E

[
exp

(
itH̃n

)
|Hn

]]
= E

exp (it∆n)
n∏

k=1

ψZ

( √
m

n
tXk

) .
If ψZ|Hn denotes the characteristic function of Z − 1 conditionally toHn, then

ψZ|Hn

( √
mn

n
tXk

)
= E

[
exp

( √
mn

n
itXk (Z1 − 1)

)
|Hn

]
= E

[(
1 + it

√
mn

n
Xk (Z1 − 1) −

t2

2
mn

n2
(Z1 − 1)2 + o

(
m3/2

n

n3

))
|Hn

]
≈

(
1 −

t2

2
mn

n2 σ
2
)

(if n is large).

Consequently, if n is large, then

Ψn(t) = E
[
exp (it∆n)

(
1 −

t2

2
mn

n2 σ
2
)n]

= E

exp (it∆n) exp

 n∑
k=1

ln
[
1 −

t2

2
mn

n2 σ
2
]

≈ E
[
exp (it∆n)

]
exp

(
−

t2

2
mn

n
σ2

)
→ exp

(
−

t2

2

[
λ2 + θσ2

])
.

The proof of Theorem 2.4 is complete. □

3. Conclusions and discussion

In this work, we place emphasis on the fact that the asymptotic normality for the elephant random
walk with gradually increasing memory and random step size still holds in the three regimes of the
model. Our results extend previous ones established by Dedecker et al. [7] and Aguech et al. [1].
Additionally, we observed that the connection with Polya urns is not feasible for gradually increasing
memory. Finally, we argue that our approach can be used for deriving many others limit theorems for
the elephant random walk with gradually increasing memory and random step size (law of the iterated
logarithm, rate of convergence in the central limit theorem, invariance principle).

What about the asymptotic normality of the ERW model, remembering only its last mn steps n −
mn, . . . , n−1? This very interesting question will serve as the basis for a new research project. Another
problem that we think is very interesting, and which will be one of our future projects, is to consider the
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same question but with an ERW model with a random step size. A more difficult problem is to establish
the rate of convergence in the central limit theorems for the ERW model with restricted memory. In
particular, it will be very interesting to understand the way that the restricted memory will influence
the rate of convergence in the central limit theorem.
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