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1. Introduction

Let q ∈ Z+ with q ≥ 2. λ denotes a Dirichlet character modulo q. For any m, n ∈ Z, the generalized
quadratic Gauss sums G(m, n, λ; q) is defined as follows:

G(m, n, λ; q) =
q∑

s=1

λ(s)eq

(
ms2 + ns

)
,

where eq(x) = exp (2πix/q) and i is the imaginary unit (i.e., i2 = −1).
If m = 0 and n = 1, then we call G(0, 1, λ; q) a classical Gauss sum and denote it as G(λ). Gauss

sums have had an important effect on both cryptography and the analytic number theory. The analytic
number theory and cryptography will greatly benefit from any significant advancements made in this
area, so the study of the properties of G(m, n, λ; q) is a meaningful work. Up to now, many researchers
have studied the calculation and estimation of the high-th power mean of G(m, n, λ; q), which can be
roughly divided into three types. They are
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q−1∑
m=1

|G(m, n, λ; q)|k,
∑

λ mod q

|G(m, n, λ; q)|k, and
∑

λ mod q

q−1∑
m=1

|G(m, n, λ; q)|k.

For example, W. P. Zhang [13] proved the identities

1
p − 1

∑
λ mod p

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2

)∣∣∣∣∣∣∣
4

=

{
3p2 − 6p − 1 + 4λ2(m) if 4 | ϕ(p),
3p2 − 6p − 1 if 4 ∤ ϕ(p),

1
p − 1

∑
λ mod p

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2

)∣∣∣∣∣∣∣
6

= 10p3 − 25p2 − 4p − 1 if 4 ∤ ϕ(p),

where p is an odd prime and m is any integer with (m, p) = 1, λ2 denotes the Legendre’s symbol
modulo p, and ϕ(x) is the Euler function.

In 2020, N. Bag and R. Barman [2] proved that for odd prime p and any m ∈ Z with (m, p) = 1,
there are the asymptotic formulae

∑
λ mod p

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2

)∣∣∣∣∣∣∣
6

= 10p4 + O
(
p

7
2
)

and ∑
λ mod p

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2

)∣∣∣∣∣∣∣
8

= 35p5 + O
(
p

9
2
)
.

Over the next two years, N. Bag, A. Rojas-León, and W. P. Zhang [3, 4] proved not only the
asymptotic formula for the 10-th power mean of G(m, 0, λ; p), but also the asymptotic formula for the
any 2k-th power mean of G(m, 0, λ; p). The results are as follows:

∑
λ mod p

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2

)∣∣∣∣∣∣∣
10

= 126p6 + O
(
p

11
2
)
,

∑
λ mod p

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2

)∣∣∣∣∣∣∣
2k

=

(
2k − 1

k

)
· pk+1 + O

(
p

2k+1
2

)
.

X. X. Li and Z. F. Xu [9] studied the fourth power mean of the generalized quadratic Gauss sums,
and proved the following result: For an odd prime p and a character λ modulo p, there are the identities

p∑
m=1

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
4

=



p3 − 3p2 + 2p2λ2(−1) − p − 8pλ2(−1) if λ = λ0,

2p3 − 3p2 if λ(−1) = −1,

2p3 − 4p2λ2(−1) − 3p2 − p

∣∣∣∣∣∣∣
p−1∑
t=1

λ(t + t)

∣∣∣∣∣∣∣
2

if λ(−1) = 1 and λ , λ0,
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where t̄ is the inverse of t modulo p (i.e., t̄ · t ≡ 1 mod p), and λ0 denotes principal characters mod p.
X. Y. Liu and W. P. Zhang [10] proved that for any odd prime p with 3 ∤ ϕ(p), one has the identity

1
p(p − 1)

∑
λ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms3 + s

)∣∣∣∣∣∣∣
6

= 6p3 − 28p2 + 39p + 5.

X. X. Lv and W. P. Zhang [11] obtained the identities, but there may be a bit of a miscalculation in
this result, and the correct result should be

1
p(p − 1)

∑
λ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
6

=

{
5p3 − 27p2 + 38p + 8 if 4 ∤ ϕ(p),
5p3 − 27p2 + 38p + 20 if 4 | ϕ(p).

Some related work can also be found in [6, 12, 14, 16]. We will not list them all here. It is worth
noting that for the power mean of G(m, 1, λ; p),

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
2k

, k ≥ 2, (1.1)

no one seems to have studied it so far; at least we have not seen any valid conclusions. Through
research, we have found that even taking k = 2 in (1.1), it is difficult to get the exact results for general
Dirichlet characters. Therefore, we settle for the second: select some special Dirichlet characters to
get the exact result.

Throughout the article, we fix a few notations. We use f = O(g) to denote | f | ≤ cg for some positive
constant c. We use a λk to denote k-order Dirichlet character modulo p (i.e., λk

k = λ0), where λ0 denotes
principal characters.

Theorem 1. Let p be an odd prime with 3 | ϕ(p). Then, for any 3-order character λ3 modulo p with
λ3(2) = 1, we have the identities

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ3(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
4

=

 p ·
(
2p2 − 7p − d2

)
if p ≡ 1 mod 12,

p ·
(
2p2 − 11p + d2

)
if p ≡ 7 mod 12,

where d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

Theorem 2. Let p be an odd prime with 4 | ϕ(p). Then, for any 4-order character λ4 modulo p, we
have the identity

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ4(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
4

= 2p3 − 7p2 − 4pα2(p),

where α(p) is defined by α(p) =
∑ p−1

2
s=1 λ2(s + s).

From these two theorems, we may immediately get the following corollary:

Corollary 1. Let p be an odd prime. Then, for any Dirichlet character λ with λ , λ0, we have the
asymptotic formula

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
4

= 2p3 + O
(
p2

)
.
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2. Several lemmas

The primary goal of this section is to introduce several necessary lemmas and their proofs for the
paper’s main results. In the proof of these lemmas, we use the properties of Gauss sums and the reduced
(complete) residue system, as well as the properties and definitions of k-order character, odd character,
and even character. References [1, 8, 15] have further details; we will not explain them here.

Lemma 1. Let p be an odd prime. Then, for any Dirichlet character λ modulo p with λ , λ0, we have
the identity

G
(
λ2

)
=
λ2(2) · G(λ) · G (λλ2)

G(λ2)
.

Proof. We used Dirichlet character sum
p−1∑
s=0

λ
(
s2 − 1

)
as a bridge to analyze it from different

perspectives. On one hand, there is
p−1∑
s=0

λ
(
s2 − 1

)
=

p−1∑
s=0

λ
(
(s + 1)2 − 1

)
=

p−1∑
s=1

λ(s)λ (s + 2)

=
1

G
(
λ
) p−1∑

t=1

λ(t)
p−1∑
s=1

λ(s)ep (t(s + 2)) =
G (λ)

G
(
λ
) p−1∑

t=1

λ(t)λ(t)ep (2t)

=
G (λ)

G
(
λ
) p−1∑

t=1

λ
2
(t)ep (2t) =

λ2(2) · G (λ) · G
(
λ

2
)

G
(
λ
) . (2.1)

On the other hand, for any integer t with (t, p) = 1, the identity
p−1∑
s=0

ep

(
ts2

)
= 1 +

p−1∑
s=1

(1 + λ2(s)) ep (ts) =
p−1∑
s=1

λ2(s)ep (ts) = λ2(t) · G(λ2),

there is
p−1∑
s=0

λ
(
s2 − 1

)
=

1

G
(
λ
) p−1∑

s=0

p−1∑
t=1

λ(t)ep

(
t(s2 − 1)

)
=

1

G
(
λ
) p−1∑

t=1

λ(t)ep (−t)
p−1∑
s=0

ep

(
ts2

)
=
G(λ2)

G
(
λ
) p−1∑

t=1

λ(t)λ2(t)ep (−t)

=
λ2(−1)λ(−1)G(λ2) · G

(
λλ2

)
G

(
λ
) . (2.2)

Note that G(λ) = λ(−1) · G
(
λ
)
, G2 (λ2) = λ2(−1) · p, G(λ) · G(λ) = p, from (2.1) and (2.2) we have the

identities

G

(
λ

2
)
=
λ

2
(2) · G

(
λ
)
· G

(
λλ2

)
G (λ2)

or G
(
λ2

)
=
λ2(2) · G(λ) · G (λλ2)

G(λ2)
.

This proves Lemma 1. □
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Lemma 2. Let p be an odd prime, and let λ be any Dirichlet character modulo p with λ , λ0. If λ is
an odd character modulo p, that is, λ(−1) = −1, then we have

p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p

λ (stu) = 0.

If λ is an even character modulo p, that is, λ(−1) = 1, then we have

p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p

λ (stu) = 6p +
λ2(−1)

p2 ·
(
λ(4) · G4 (ψ) · G2

(
λ
)
+ λ(4) · G4

(
ψ
)
· G2(λ)

)
,

where ψ is a Dirichlet character modulo p such that λ = ψ2.

Proof. If λ is an odd character modulo p, this is λ(−1) = −1, then we have

p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p

λ (stu) =
p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

(−s)2+t2≡u2+1 mod p

λ (−stu) = −
p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p

λ (stu) .

Hence

p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p

λ (stu) = 0.

If λ is an even character modulo p, then there exists a Dirichlet character ψ such that λ = ψ2, and we
obtain

p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p

λ (stu) =
p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

u2(s2−1)≡1−t2 mod p

λ (st)

= 4(p − 1) +
p−2∑
s=2

p−2∑
t=2

λ (st)
p−1∑
u=1

u2(s2−1)≡1−t2 mod p

1

= 4(p − 1) +
p−2∑
s=2

p−2∑
t=2

λ (st)
(
1 + λ2

((
1 − t2

)
(s2 − 1)

))
= 4(p − 1) +

 p−1∑
s=1

λ(s) − 2


2

+ λ2(−1) ·

 p−1∑
s=1

λ(s)λ2

(
s2 − 1

)
2

= 4p + λ2(−1)

 p−1∑
s=1

ψ
(
s2

)
λ2

(
s2 − 1

)
2
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= 4p + λ2(−1)

 p−1∑
s=1

ψ(s)λ2(s − 1) (1 + λ2(s))


2

= 4p + λ2(−1)

 p−1∑
s=1

ψ(s)λ2(s − 1) +
p−1∑
s=1

ψ(s)λ2(s)λ2(s − 1)


2

. (2.3)

In Lemma 1, we have
p−1∑
s=1

ψ(s)λ2(s − 1) =
1
G (λ2)

p−1∑
t=1

λ2(t)
p−1∑
s=1

ψ(s)ep (t(s − 1))

=
G (ψ)
G (λ2)

p−1∑
t=1

λ2(t)ψ(t)ep (−t) =
λ2(−1)ψ(−1)G (ψ)G

(
ψλ2

)
G (λ2)

=
λ2(−1) · λ(2) · G2 (ψ) · G

(
λ
)

p
. (2.4)

Similarly,
p−1∑
s=1

ψ(s)λ2(s)λ2(s − 1) =
1
G (λ2)

p−1∑
t=1

λ2(t)
p−1∑
s=1

ψ(s)λ2(s)ep (t(s − 1))

=
λ(2) · G2

(
ψ
)
· G (λ)

p
. (2.5)

Now combine (2.3)–(2.5) to obtain identity
p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p

λ (stu) = 6p +
λ2(−1)

p2 ·
(
λ(4) · G4 (ψ) · G2

(
λ
)
+ λ(4) · G4

(
ψ
)
· G2(λ)

)
.

This proves Lemma 2. □

Lemma 3. Let p be an odd prime. Then, for any Dirichlet character λ modulo p with λ , λ0, we have
the identity

p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p
s+t≡u+1 mod p

λ (stu) = 2p − 3.

Proof. Note that the conditions s2 + t2 ≡ u2 + 1 mod p and s + t ≡ u + 1 mod p equivalent to s + t ≡
u + 1 mod p and st ≡ u mod p, we obtain

p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p
s+t≡u+1 mod p

λ (stu) =
p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s+t≡u+1 mod p
st≡u mod p

λ (stu) =
p−1∑
s=1

p−1∑
t=1

(s−1)(t−1)≡0 mod p

1 = 2(p − 2) + 1 = 2p − 3.

This proves Lemma 3. □
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Lemma 4. Let p be an odd prime with 3 | ϕ(p). Then, we have the identity

G3(λ3) + G3
(
λ3

)
= dp.

Proof. See This is consequence of [5](pp. 114). □

Lemma 5. Let p be an odd prime with 4 | ϕ(p). Then, we have the identity

G2(λ4) + G2
(
λ4

)
= 2
√

p · α(p).

Proof. See Lemma 2.2, Section 2 in [7](pp. 1253). □

3. Proofs of the theorems

Now we apply Lemmas 1–3 to complete the proof of our Theorem 1 and Theorem 2. In fact, note
that the trigonometrical identities

p−1∑
s=0

ep (ns) =
{

p if p | n,
0 if p ∤ n.

From the properties of the reduced residue system modulo p, we have

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
4

= p ·
p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

p−1∑
v=1

s2+t2≡u2+v2 mod p

λ (stuv) ep (s + t − u − v)

= p ·
p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p

λ (stu)
p−1∑
v=1

ep (v (s + t − u − 1))

= p2 ·

p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p
s+t≡u+1 mod p

λ (stu) − p ·
p−1∑
s=1

p−1∑
t=1

p−1∑
u=1

s2+t2≡u2+1 mod p

λ (stu) . (3.1)

If λ(−1) = −1, then from (3.1), Lemmas 2 and 3, we have

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
4

= 2p3 − 3p2.

Similarly, if λ(−1) = 1, then there exists a Dirichlet character ψ such that λ = ψ2, and we obtain

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
4

= p2(2p − 3) − 6p2 −
λ2(−1)

p
·
(
λ(4) · G4 (ψ) · G2

(
λ
)
+ λ(4) · G4

(
ψ
)
· G2(λ)

)
AIMS Mathematics Volume 9, Issue 7, 17774–17783.
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= 2p3 − 9p2 −
λ2(−1)

p

(
λ(4)G4 (ψ)G2

(
λ
)
+ λ(4)G4

(
ψ
)
G2(λ)

)
. (3.2)

If 3 | ϕ(p) and λ3(2) = 1, then λ3(4) = 1 and λ3 = λ3
2
. Taking λ = λ3 and ψ = λ3, from (3.2) and

identity

G3(λ3) + G3
(
λ3

)
= dp,

we have
p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ3(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
4

= 2p3 − 9p2 −
λ2(−1)

p

(
λ3(4)G4

(
λ3

)
G2

(
λ3

)
+ λ3(4)G4 (λ3)G2(λ3)

)
= 2p3 − 9p2 −

λ2(−1)
p

(
G6

(
λ3

)
+ G6 (λ3)

)
= 2p3 − 9p2 −

λ2(−1)
p

((
G3

(
λ3

)
+ G3 (λ3)

)2
− 2p3

)
=

 p ·
(
2p2 − 7p − d2

)
if p ≡ 1 mod 12,

p ·
(
2p2 − 11p + d2

)
if p ≡ 7 mod 12.

This proves Theorem 1.
If 4 | ϕ(p), since λ2(4) = 1, λ2(−1) = 1, G(λ2) =

√
p and λ2 = λ2

4. Taking λ = λ2 in (3.2) and
ψ = λ4, from (3.2) and identity

G2(λ4) + G2
(
λ4

)
= 2
√

p · α(p),

we have
p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
s=1

λ3(s)ep

(
ms2 + s

)∣∣∣∣∣∣∣
4

= 2p3 − 9p2 −
(
G4

(
λ4

)
+ G4 (λ4)

)
= 2p3 − 9p2 −

((
G2

(
λ4

)
+ G2 (λ4)

)2
− 2p2

)
= 2p3 − 7p2 − 4pα2(p),

which implies Theorem 2 and Corollary 1.

4. Conclusions

Firstly, for any integer k ≥ 3 in (1.1), it is difficult to obtain a corresponding result by using our
methods, which is an open problem. Finally, our Theorem 1 only obtained a simple identity for the
case where λ3(2) = 1. What would happen if λ3(2) , 1.
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