This study investigates the existence of triple weak solutions for a system of nonlinear elliptic equations with a fourth-order operator. The problem arises in the mathematical modeling of complex physical phenomena.
Citation: Khaled Kefi. Existence and multiplicity of triple weak solutions for a nonlinear elliptic problem with fourth-order operator and Hardy potential[J]. AIMS Mathematics, 2024, 9(7): 17758-17773. doi: 10.3934/math.2024863
This study investigates the existence of triple weak solutions for a system of nonlinear elliptic equations with a fourth-order operator. The problem arises in the mathematical modeling of complex physical phenomena.
[1] | K. R. Rajagopal, M. Ružička, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn., 13 (2001), 59–78. |
[2] | M. Råžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, Vol. 1748, Springer, Berlin, 2000. https://doi.org/10.1007/BFb0104029 |
[3] | V. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I, 316 (1993), 435–439. |
[4] | Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522 |
[5] | G. Bonanno, P. Candito, G. D'Aguì, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915–939. https://doi.org/10.1515/ans-2014-0406 doi: 10.1515/ans-2014-0406 |
[6] | G. Bonanno, S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1–10. https://doi.org/10.1080/00036810903397438 doi: 10.1080/00036810903397438 |
[7] | J. Liu, Z. Zhao, Leray-Lions type $p(x)$-biharmonic equations involving Hardy potentials, Appl. Math. Lett., 149 (2024), 108907. https://doi.org/10.1016/j.aml.2023.108907 doi: 10.1016/j.aml.2023.108907 |
[8] | X. L. Fan, Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 12 (2003), 1843–1852. https://doi.org/10.1016/S0362-546X(02)00150-5 doi: 10.1016/S0362-546X(02)00150-5 |
[9] | B. Aharrouch, A. Aberqi, J. Bennouna, Existence and regularity of solutions to unilateral nonlinear elliptic equation in Marcinkiewicz space with variable exponent, Filomat, 37 (2023), 5785–5797. https://doi.org/10.2298/FIL2317785A doi: 10.2298/FIL2317785A |
[10] | N. Chems Eddine, M. A. Ragusa, D. D. Repo$\breve{{\rm{a}}}$s, On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications, Fract. Calc. Appl. Anal., 27 (2024), 725–756. https://doi.org/10.1007/s13540-024-00246-8 doi: 10.1007/s13540-024-00246-8 |
[11] | V. D. Rǎdulescu, D. D. Repo$\breve{{\rm{a}}}$s, Partial differential equations with variable exponents: variational methods and qualitative analysis, Chapman and Hall/CRC Press, 2015. https://doi.org/10.1201/b18601 |
[12] | J. Zuo, A. Rahmoune, Y. Li, General decay of a nonlinear viscoelastic wave equation with Balakrishnân-Taylor damping and a delay involving variable exponents, J. Funct. Spaces, 2022 (2022), 9801331. https://doi.org/10.1155/2022/9801331 doi: 10.1155/2022/9801331 |
[13] | G. Bonanno, A. Chinnì, V. D. Rǎdulescu, Existence of two non-zero weak solutions for a $p(x)$-biharmonic problem with Navier boundary conditions, Rend. Lincei Mat. Appl., 34 (2023), 727–743. https://doi.org/10.4171/rlm/1025 doi: 10.4171/rlm/1025 |
[14] | Y. Karagiorgos, N. Yannakaris, A Neumann problem involving the $p(x)$-Laplacian with $p = \infty$ in a subdomain, Adv. Calc. Var., 9 (2016), 65–76. https://doi.org/10.1515/acv-2014-0003 doi: 10.1515/acv-2014-0003 |
[15] | X. L. Fan, D. Zhao, On the generalized Orlicz-Sobolev space $W^{k, p(x)}(\Omega)$, J. Gansu Educ. College, 12 (1998), 1–6. https://doi.org/10.1016/j.ultrasmedbio.2009.06.764 doi: 10.1016/j.ultrasmedbio.2009.06.764 |
[16] | D. Edmunds, J. Rákosnik, Sobolev embeddings with variable exponent, Studia Math., 143 (2000), 267–293. |
[17] | E. B. Davis, A. M. Hinz, Explicit constants for Rellich inequalities in $L_{p}(\Omega)$, Math. Z., 227 (1998), 511–523. https://doi.org/10.1007/PL00004389 doi: 10.1007/PL00004389 |
[18] | Z. Musbah, A. Razani, A class of biharmonic nonlocal quasilinear systems consisting of Leray-Lions type operators with Hardy potentials, Bound Value Probl., 2022 (2022), 88. https://doi.org/10.1186/s13661-022-01666-2 doi: 10.1186/s13661-022-01666-2 |
[19] | J. Simon, Régularité de la solution d'une équation non linéaire dans $\mathbb{R}^N$, In: P. Bénilan, J. Robert, Journées d'analyse non linéaire, Lecture Notes in Mathematics, Springer, 665 (1978), 205–227. https://doi.org/10.1007/BFb0061807 |
[20] | E. Zeilder, Nonlinear functional analysis and its applications: II/B: nonlinear monotone operators, New York: Springer, 1990. https://doi.org/10.1007/978-1-4612-0981-2 |