Let $ X $ be an infinite Tychonoff space, and $ Y $ be a topological subspace of $ X $. In this paper, we study some covering properties of the subspace $ C_{p}\left(Y|X\right) $ of $ C_{p}\left(Y\right) $ consisting of those functions $ f\in C\left(Y\right) $ which admit a continuous extension to $ X $ equipped with the relative topology of $ C_{p}\left(Y\right) $. Among other results, we show that $ \left(i\right) $ $ C_{p}(Y|X) $ has a fundamental bounded resolution if and only if $ Y $ is countable; when $ X $ is realcompact and $ Y $ is closed in $ X $, we have $ \left(ii\right) $ if $ C_{p}(Y|X) $ admits a resolution of convex compact sets that swallows the local null sequences in $ C_{p}(Y|X) $, then $ Y $ is countable and discrete; $ \left(iii\right) $ if $ C_{p}(Y|X) $ admits a compact resolution that swallows the compact sets, then $ Y $ is also countable and discrete, and, as a corollary, we deduce that $ C_{p}(Y|X) $ admits a compact resolution that swallows the compact sets if and only if $ C_{p}(Y|X) $ is a Polish space. We also prove that $ \left(iv\right) $ for a metrizable space $ X $, $ C_{p}\left(X\right) $ is a quasi-$ \left(LB\right) $-space if and only if $ X $ is $ \sigma $-compact, and hence for a subspace $ Y $ of $ X $, the space $ C_{p}\left(Y|X\right) $ is a quasi-$ \left(LB\right) $-space. We include some examples and observations that answer natural questions raised in this paper.
Citation: Juan C. Ferrando, Manuel López-Pellicer, Santiago Moll-López. Covering properties of $ C_{p}\left(Y|X\right) $[J]. AIMS Mathematics, 2024, 9(7): 17743-17757. doi: 10.3934/math.2024862
Let $ X $ be an infinite Tychonoff space, and $ Y $ be a topological subspace of $ X $. In this paper, we study some covering properties of the subspace $ C_{p}\left(Y|X\right) $ of $ C_{p}\left(Y\right) $ consisting of those functions $ f\in C\left(Y\right) $ which admit a continuous extension to $ X $ equipped with the relative topology of $ C_{p}\left(Y\right) $. Among other results, we show that $ \left(i\right) $ $ C_{p}(Y|X) $ has a fundamental bounded resolution if and only if $ Y $ is countable; when $ X $ is realcompact and $ Y $ is closed in $ X $, we have $ \left(ii\right) $ if $ C_{p}(Y|X) $ admits a resolution of convex compact sets that swallows the local null sequences in $ C_{p}(Y|X) $, then $ Y $ is countable and discrete; $ \left(iii\right) $ if $ C_{p}(Y|X) $ admits a compact resolution that swallows the compact sets, then $ Y $ is also countable and discrete, and, as a corollary, we deduce that $ C_{p}(Y|X) $ admits a compact resolution that swallows the compact sets if and only if $ C_{p}(Y|X) $ is a Polish space. We also prove that $ \left(iv\right) $ for a metrizable space $ X $, $ C_{p}\left(X\right) $ is a quasi-$ \left(LB\right) $-space if and only if $ X $ is $ \sigma $-compact, and hence for a subspace $ Y $ of $ X $, the space $ C_{p}\left(Y|X\right) $ is a quasi-$ \left(LB\right) $-space. We include some examples and observations that answer natural questions raised in this paper.
[1] | R. F. Arens, A topology for spaces of transformations, Ann. Math., 47 (1946), 480–495. https://doi.org/10.2307/1969087 doi: 10.2307/1969087 |
[2] | A. V. Arkhangel'skiĭ, Topological function spaces, In: Mathematics and its applications, Dordrecht: Springer, 1992. |
[3] | A. V. Arkhangel'skiĭ, $C_{p}$-Theory, In: Recent progress in general topology, Elsevier, 1992, 1–56. |
[4] | V. V. Arkhangel'skiĭ, M. Choban, The extension property of Tychonoff spaces and generalized retracts, C. R. Acad. Bulg. Sci., 41 (1988), 5–7. |
[5] | V. I. Bogachev, O. G. Smolyanov, Topological vector spaces and their applications, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-57117-1 |
[6] | H. Buchwalter, J. Schmets, Sur quelques propriétés de l'espace $C_{s}\left(T\right)$, J. Math. Pures Appl., 52 (1973), 337–352. |
[7] | B. Cascales, On $K$-analytic locally convex spaces, Arch. Math., 49 (1987), 232–244. https://doi.org/10.1007/BF01271663 doi: 10.1007/BF01271663 |
[8] | J. P. R. Christensen, Topology and Borel structure: Descriptive topology and set theory with applications to functional analysis and measure theory, New York, North-Holland Publishing Company, 1974. |
[9] | R. Engelking, General topology, Heldermann Verlag, 1989. |
[10] | J. C. Ferrando, Some characterizations for $\upsilon X$ to be Lindelöf $\Sigma$ of $K$-analytic in terms of $C_{p}\left(X\right)$, Topol. Appl., 156 (2009), 823–830. https://doi.org/10.1016/j.topol.2008.10.016 doi: 10.1016/j.topol.2008.10.016 |
[11] | J. C. Ferrando, A characterization of the existence of a fundamental bounded resolution for the space $C_{c}\left(X\right)$ in terms of $X$, J. Funct. Space., 2018 (2018), 8219246. https://doi.org/10.1155/2018/8219246 doi: 10.1155/2018/8219246 |
[12] | J. C. Ferrando, Descriptive topology for analysts, RACSAM, 114 (2020), 107. https://doi.org/10.1007/s13398-020-00837-z doi: 10.1007/s13398-020-00837-z |
[13] | J. C. Ferrando, Existence of nice resolutions in $C_{p}\left(X\right)$ and its bidual often implies metrizability of $C_{p}\left(X\right)$, Topol. Appl., 282 (2020), 107322. https://doi.org/10.1016/j.topol.2020.107322 doi: 10.1016/j.topol.2020.107322 |
[14] | J. C. Ferrando, M. López-Pellicer, Covering properties of $C_{p}\left(X\right)$ and $C_{k}\left(X\right)$, Filomat, 34 (2020), 3575–3599. https://doi.org/10.2298/FIL2011575F doi: 10.2298/FIL2011575F |
[15] | J. C. Ferrando, S. Gabriyelyan, J. Ka̧kol, Bounded sets structure of $C_{p}\left(X\right)$ and quasi-$(DF)$-spaces, Math. Nachr., 292 (2019), 2602–2618. https://doi.org/10.1002/mana.201800085 doi: 10.1002/mana.201800085 |
[16] | J. C. Ferrando, S. Gabriyelyan, J. Ka̧kol, Functional Characterizations of Countable Tychonoff Spaces, J. Convex Anal., 26 (2019), 753–760. |
[17] | J. C. Ferrando, J. Ka̧kol, S. A. Saxon, Characterizing $P$-spaces in terms of $C_{p}\left(X\right)$, J. Convex Anal., 22 (2015), 905–915. |
[18] | J. C. Ferrando, S. A. Saxon, The even large subspace $C_{p}\left(Y|X\right)$: Distinguished, montel, covered nicely?, submitted for publication. |
[19] | L. Gillman, M. Jerison, Rings of continuous functions, 1960. |
[20] | S. Gabriyelyan, Local completeness of $C_{k}\left(X\right)$, RACSAM, 117 (2023), Paper 152. https://doi.org/10.1007/s13398-023-01487-7 doi: 10.1007/s13398-023-01487-7 |
[21] | S. Gabriyelyan, J. Ka̧kol, Free locally convex spaces with a small base, RACSAM, 111 (2017), 575–585. https://doi.org/10.1007/s13398-016-0315-1 doi: 10.1007/s13398-016-0315-1 |
[22] | T. E. Gilsdorf, Valdivia's lifting theorem for non-metrizable spaces, Topol. Appl., 317 (2022), 108160. https://doi.org/10.1016/j.topol.2022.108160 doi: 10.1016/j.topol.2022.108160 |
[23] | H. Jarchow, Locally convex spaces, 1981. |
[24] | J. Ka̧kol, W. Kubiś, M. López-Pellicer, Descriptive topology in selected topics of functional analysis, New York: Springer, 2011. https://doi.org/10.1007/978-1-4614-0529-0 |
[25] | G. Köthe, Topological vector spaces I, Berlin: Springer, 1983. https://doi.org/10.1007/978-3-642-64988-2 |
[26] | G. Köthe, Topological vector spaces II, New York: Springer, 1979. https://doi.org/10.1007/978-1-4684-9409-9 |
[27] | D. Lutzer, R. A. McCoy, Category in function spaces I, Pacific J. Math., 90 (1980), 145–168. |
[28] | J. Orihuela, Pointwise compactness in spaces of continuous functions, J. London Math. Soc., 2 (1987), 143–152. |
[29] | S. A. Saxon, Two characterizations of linear Baire spaces, Proc. Amer. Math. Soc., 45 (1974), 204–208. |
[30] | V. V. Tkachuk, A space $C_{p}\left(X\right)$ is dominated by irrationals if and only if it is $K$-analytic, Acta Math. Hung., 107 (2005), 253–265. https://doi.org/10.1007/s10474-005-0194-y doi: 10.1007/s10474-005-0194-y |
[31] | V. V. Tkachuk, D. B. Shakhmatov, When is space $C_{p}\left(X\right)$ $\sigma$-countably compact?, Vestnik Moskov. Univ. Ser. 1 Math. Mekh., 1 (1986), 70–72. |
[32] | M. Valdivia, Topics in locally convex spaces, Elsevier, 1982. |
[33] | M. Valdivia, Quasi-$LB$-spaces, J. London Math. Soc., 35 (1987), 149–168. https://doi.org/10.1112/jlms/s2-35.1.149 |
[34] | A. Wilansky, Topology for analysis, 1970. |