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Abstract: Let X be an infinite Tychonoff space, and Y be a topological subspace of X. In this paper,
we study some covering properties of the subspace Cp (Y |X) of Cp (Y) consisting of those functions
f ∈ C (Y) which admit a continuous extension to X equipped with the relative topology of Cp (Y).
Among other results, we show that (i) Cp(Y |X) has a fundamental bounded resolution if and only
if Y is countable; when X is realcompact and Y is closed in X, we have (ii) if Cp(Y |X) admits a
resolution of convex compact sets that swallows the local null sequences in Cp(Y |X), then Y is countable
and discrete; (iii) if Cp(Y |X) admits a compact resolution that swallows the compact sets, then Y is
also countable and discrete, and, as a corollary, we deduce that Cp(Y |X) admits a compact resolution
that swallows the compact sets if and only if Cp(Y |X) is a Polish space. We also prove that (iv) for
a metrizable space X, Cp (X) is a quasi-(LB)-space if and only if X is σ-compact, and hence for a
subspace Y of X, the space Cp (Y |X) is a quasi-(LB)-space. We include some examples and observations
that answer natural questions raised in this paper.
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1. Introduction

Unless otherwise stated, X will stand for an infinite Tychonoff space. We assume that all linear
spaces are over the field R of real numbers and all locally convex spaces are Hausdorff. We denote by
Cp(X) the ring C(X) of real-valued continuous functions on X endowed with the pointwise topology
τp, and by Ck(X) the space C(X) equipped with the compact-open topology τk. The subspace of C (X)
of uniformly bounded functions is represented by Cb (X). The topological dual of Cp (X) is denoted by
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L(X), or by Lp(X) when equipped with the weak* topology σ (L (X) ,C (X)). If we provide L (X) with
the strong topology β (L (X) ,C (X)), we shall write Lβ (X), and shall refer to Lβ (X) as the strong dual
of Cp (X). A family {Aα : α ∈ NN} of subsets of a set X is called a resolution for X if it covers X and
verifies that Aα ⊆ Aβ for α ≤ β. If the sets Aα are compact, we speak of a compact resolution. If E
is a locally convex space and {Aα : α ∈ NN} is a resolution for E consisting of bounded sets (bounded
in the locally convex sense [5, 1.4.5 Definition]), we say that {Aα : α ∈ NN} is a bounded resolution.
A bounded resolution for E that swallows the bounded sets of E will be referred to as a fundamental
bounded resolution. Recall that a Banach disk B in a locally convex space E is an absolutely convex
bounded set such that EB, the linear span of B equipped with the Minkowski functional of B as a norm,
is a Banach space. A locally convex space E is said to be a quasi-(LB)-space (in the sense of Valdivia)
if it admits a resolution {Aα : α ∈ NN} consisting of Banach disks [33].

If Y is a topological subspace of X, the locally convex space Cp(Y |X) is defined in [2, 0.4] as the
range (the image) R (T ) of Cp(X) in Cp(Y) under the restriction map T : C (X) → C (Y), given by
f 7→ f |Y , equipped with the relative topology of Cp(Y). Note that T is a linear and continuous map.
Clearly, C(Y |X) = R (T ) consists of those f ∈ C (Y) that admit a continuous extension to the whole
of X. Observe that Cp(Y |X) is always a dense linear subspace of Cp(Y), so the topological dual of
Cp(Y |X) coincides algebraically with L (Y). However, since the weak* topology σ (L (Y) ,C (Y)) on
L (Y) is stronger than the weak* topology σ (L (Y) ,C (Y |X)), we shall denote by Lp (Y |X) the space
L (Y) equipped with this second topology to distinguish it from Lp (Y), which as we know represents
the space L (Y) with the topology σ (L (Y) ,C (Y)). In what follows we shall denote by M (X) the bidual
of Cp (X), i.e., the dual of Lβ (X). Likewise, to be consistent with our notation, we shall represent by
M (Y |X) the bidual of Cp(Y |X).

If Y is dense in X, then the restriction map T : Cp (X) → Cp (Y) is continuous and one-to-one,
i.e., it is a so-called condensation map from Cp (X) onto Cp(Y |X). In this case, Cp(Y |X) is linearly
homeomorphic to the space

(
C (X) , τp (Y)

)
, where τp (Y) denotes the locally convex topology on C (X)

of the pointwise convergence on Y . Moreover, the adjoint map T ∗ : Lp (Y |X)→ Lp (X) carries Lp (Y |X)
onto a dense linear subspace of Lp (X). If Y is closed in X, then Cp (Y |X) is an open subspace of
Cp (Y) [2, 0.4.1 Proposition]; consequently, in this case the restriction map T is in addition a quotient
map. If Y is C-embedded in X (which happens in particular if Y is a compact set in X or if X is normal
and Y closed), then T is onto and hence Cp (Y |X) = Cp (Y).

We denote by δ (Y) the canonical copy of Y consisting of delta measures, i.e., δ (Y) =
{
δy : y ∈ Y

}
.

The set δ (Y) looks different when regarded as a subset of Lp (Y) or a subset of Lp (Y |X), since in
the former case each δy acts as a continuous linear functional on Cp (Y), and in the latter each δy

acts as a continuous linear functional on Cp (Y |X). Of course, in the first case δ (Y) is the standard
homeomorphic copy of Y in Lp (Y). When a function f ∈ C (Y |X) is regarded as a linear functional on
w ∈ Lp (Y |X), we shall write ⟨ f ,w⟩. So, if w =

∑n
i=1 ai δyi ∈ L (Y) with ai ∈ R and yi ∈ Y for 1 ≤ i ≤ n,

then we have ⟨ f ,w⟩ :=
∑n

i=1 ai f (yi).
Note that C (Y |X) ⊆ C (Y) ⊆ RY , which implies that M (Y |X) ⊆ M (Y) ⊆ RY . However, the following

property holds.

Theorem 1.1. [18, Corollary 7] The strong duals of Cp (Y |X) and Cp (Y) coincide, as do their biduals
M (Y |X) and M (Y).

In other words, if we denote by Lβ (Y |X) the dual space L (Y) provided with the strong topology
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β (L (Y) ,C (Y |X)) of the dual pair ⟨L (Y) ,C (Y |X)⟩, it turns out that Lβ (Y |X) = Lβ (Y). Hence,
M (Y |X) = M (Y) and, consequently, the weak* bidual of Cp (Y), i.e., the dual space M (Y) equipped
with the relative product topology of RY coincides with the weak* bidual of Cp (Y |X). So, the
complete picture is

C (Y |X) ⊆ C (Y) ⊆ M (Y |X) = M (Y) ⊆ RY .

This result, along with the next three, will be used along the paper.

Theorem 1.2. [13, Theorem 28] The weak* bidual of Cp (X) admits a bounded resolution if and only
if |X| = ℵ0.

Recall that the envelope E = {A (α | n) : α ∈ Σ, n ∈ N} of a family {Aα : α ∈ Σ} of subsets of a
locally convex space E with Σ ⊆ NN, where

A (α | n) =
⋃{

Aβ : β ∈ Σ, β (i) = α (i) , 1 ≤ i ≤ n
}

is called limited if for each α ∈ Σ and each absolutely convex neighborhood of the origin U in E there
is n ∈ N with A (α | n) ⊆ nU. A covering {Aα : α ∈ Σ} with Σ ⊆ NN of a set X is called a Σ-covering of
X.

Theorem 1.3. [10, Lemma 2] Let E be a locally convex space. If E admits a Σ-covering {Aα : α ∈ Σ}
with Σ ⊆ NN of limited envelope, then there exists a Lindelöf Σ-space Z such that E′ ⊆ Z ⊆ RE.

In the following result, υX stands for the Hewitt realcompactification of X, as usual.

Theorem 1.4. [10, Theorem 3] The space Cp (X) admits a Σ-covering of limited envelope if and only
if υX is a Lindelöf Σ-space.

It is worth mentioning that each bounded resolution for E is always a Σ-covering of E of limited
envelope [10, Proposition 12]. So, in particular, any compact resolution for E is a Σ-covering of E of
limited envelope.

Although Cp(Y |X) is a continuous linear image of Cp (X) and a dense linear subspace of Cp (Y), the
topological properties of X and Y induced by certain covering properties of Cp(Y |X) are not always
the same as the topological properties of X and Y induced by analogous covering properties of Cp (X)
or Cp (Y). For instance, if Cp (X) is σ-countably compact, then X is finite [31]. But if Cp (Y |X) is
σ-countably compact and Y is dense in X, then X is pseudocompact and Y is a P-space [2, I.2.2
Theorem]. More generally, if Cp (X) is σ-bounded relatively sequentially complete, then X is finite [17,
Corollary 3.2]; but, if Cp(Y |X) is σ-bounded relatively sequentially complete and Y is dense in X, then
X is pseudocompact and Y is a P-space [17, Theorem 3.3].

Motivated by the research carried out in [17, 18] on countable coverings of Cp (Y |X) and in [13,
14] on uncountable coverings of Cp (X), we extend our study of the locally convex space Cp (Y |X)
for (i) fundamental bounded resolutions, (ii) compact resolutions swallowing the compact sets, (iii)
resolutions consisting of Banach disks, and (iv) resolutions made up of convex compact sets swallowing
the local null sequences. We refer the reader to [2, 24, 32] for topological and locally convex notions
not defined here.
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2. Two covering properties of Cp(Y |X)

First, we prove that if Cp(Y |X) has a fundamental resolution consisting of bounded sets, Y must
necessarily be countable, which extends [15, Theorem 3.3 (i)] as well as [16, Theorem 1.9], the latter
because Cp (X|βX) = Cb

p (X). For the definitions and properties of quasi-Suslin and web-compact
spaces that we use below, see [32, I.4.2] and [24, Chapter 4], respectively.

Theorem 2.1. Let Y ⊆ X. Cp(Y |X) admits a fundamental bounded resolution if and only if Y is
countable.

Proof. Assume that {Aα : α ∈ NN} is a fundamental resolution for Cp(Y |X) consisting of absolutely
convex bounded sets. Since each Aα is absolutely convex, the bipolar theorem ensures that A00

α = Aα,
closure in RY . Consequently, the fact that {Aα : α ∈ NN} swallows all bounded sets in Cp(Y |X) means
that

M (Y |X) = {Aα : α ∈ NN}.

Since M (Y |X) coincides with M (Y), according to Theorem 1.1, we see that M (Y) admits a bounded
resolution, namely {Aα : α ∈ NN}, where each Aα is a compact set in RY . In this case, Theorem 1.2 tells
us that |Y | = ℵ0.

Conversely, if Y is countable then Cp (Y) is metrizable, so does Cp(Y |X). But, as is well-known,
every metrizable locally convex space E admits a fundamental bounded resolution, namely the
family {Aα : α ∈ NN} with

Aα =
∞⋂

i=1

α (i) Ui,

where {Ui : i ∈ N} is a decreasing base of absolutely convex neighborhoods of the origin in E. So,
Cp(Y |X) has a fundamental bounded resolution. □

Corollary 2.1. Let X be a P-space and let Y be a dense subspace of X. Then Cp (Y |X) admits a bounded
resolution if and only if Y is countable and discrete.

Proof. If X is a P-space and Y is dense in X, according to [18, Theorem 18] the space Cp (Y |X) is
sequentially complete, and hence locally complete, i.e., such that every bounded set is contained in a
Banach disk [26, 39.2]. So, if Cp (Y |X) admits a bounded resolution, then Cp (Y |X) is a quasi-(LB)-
space. Hence, by [33, Proposition 22] or [24, Theorem 3.5], there is a resolution for Cp (Y |X) consisting
of Banach disks that swallows all Banach disks in Cp(Y |X). Thus, the local completeness of Cp(Y |X)
guarantees that Cp(Y |X) has a fundamental bounded resolution, which allows Theorem 2.1 to ensure
that Y is countable. As every countable P-space is discrete, we are done. Conversely, if Y is countable,
then Cp (Y |X), as a linear subspace of RY , is metrizable. Hence, Cp (Y |X) has a bounded resolution. □

Example 2.1. Let X be the one-point Lindelöfication of a discrete space Y with |Y | ≥ ℵ1. Since Y is
uncountable, the previous corollary prevents Cp (Y |X) to admit a bounded resolution.

Example 2.2. If Y is a dense P-space of X and Cp (Y |X) admits a bounded resolution, even a countable
one consisting of sequentially complete bounded sets, Y need not be countable or discrete. In fact, if Y
is a nondiscrete P-space and X := βY, we claim that Cp (Y |X) admits a countable resolution consisting
of sequentially complete bounded sets.
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Proof. Clearly, Cp (Y |X) = Cb
p (Y), where Cb

p (Y) is the dense linear subspace of Cp (Y) consisting of
all bounded functions with relative pointwise topology. If B stands for the closed unit ball of the
Banach space

(
Cb (Y) , ∥·∥∞

)
, then C (Y |X) = Cb (Y) =

⋃∞
n=1 nB. So, the family {Aα : α ∈ NN} with

Aα = α (1) · B for each α ∈ NN is a countable bounded resolution for Cp (Y |X). Since Y is a P-space,
Cp (Y) is sequentially complete [6]. Hence, if { fn}

∞
n=1 is a Cauchy sequence in Cp (Y |X) contained in B,

there exists f ∈ C (Y) such that fn → f in Cp (Y). But, as | fn (y)| ≤ 1 for all (n, y) ∈ N × Y , we have
that | f (y)| ≤ 1 for all y ∈ Y . Thus, f ∈ B, which shows that B is sequentially complete in Cp (Y |X). □

Theorem 2.2. Let Y be a topological subspace of X. If Cp(Y |X) admits a compact resolution that
swallows the compact sets, then the compact sets in Y are finite.

Proof. First note that the topologies σ (L (Y) ,C (Y)) and σ (L (Y) ,C (Y |X)) coincide on each compact
subset K of Y , or rather on δ (K), regarded as a subset of L (Y). In other words, that each compact set
K in Y is embedded both in Lp (Y) and in Lp (Y |X).

In fact, if a net {yd : d ∈ D} in K and a point y ∈ K verify that
〈

f , δyd

〉
→
〈

f , δy

〉
for every f ∈ C (Y),

it is obvious that
〈

f , δyd

〉
→
〈

f , δy

〉
for every f ∈ C (Y |X). Thus, δyd → δy under σ (L (Y) ,C (Y |X)).

Conversely, if a net {yd : d ∈ D} in K and a point y ∈ K verify that
〈

f , δyd

〉
→
〈

f , δy

〉
for every f ∈

C (Y |X), we claim that
〈
g, δyd

〉
→
〈
g, δy

〉
for every g ∈ C (Y). Indeed, if g ∈ C (Y), then g|K ∈ C (K)

and there is h ∈ C (X) with h|K = g|K . Since h|Y ∈ C (Y |X), by assumption
〈

h|Y , δyd

〉
→
〈

h|Y , δy

〉
.

Thus,
〈

h|K , δyd

〉
→
〈

h|K , δy

〉
, i.e.,

〈
g, δyd

〉
→
〈
g, δy

〉
. Consequently, δyd → δy under σ (L (Y) ,C (Y)).

Let {Aα : α ∈ NN} be a resolution for Cp(Y |X) consisting of compact sets that swallows the compact
sets in Cp(Y |X). To prove that each compact set in Y is finite, we adapt the first part of the argument
of [30, 3.7 Theorem] (see also [24, Theorem 9.14]).

Assume by contradiction that there exists an infinite compact set K in Y . As Cp(Y |X) has a compact
resolution, it is a quasi-Suslin space in the sense of Valdivia by [7, Proposition 1], hence it is web-
compact in the sense of Orihuela (cf. [28]). Thus, the space Cp

(
Cp (Y |X)

)
is angelic by [28, Theorem 3].

Since K is a compact subspace of Y , it follows from the first part of this proof that K is embedded
in Cp

(
Cp (Y |X)

)
. Hence, K is an infinite Fréchet-Urysohn compact subset of the angelic space

Cp

(
Cp (Y |X)

)
and consequently there exists a non-trivial sequence {xn}

∞
n=1 converging to some x ∈ K.

If we set S := {xn : n ∈ N} ∪ {x}, then S is a compact countable set, and hence a metrizable compact
space. Thus, there is a linear extender map φ : Cp (S ) → Cp (Y), i.e., such that φ

(
f |S
)
= f for every

f ∈ C (Y), which embeds Cp (S ) as a closed linear subspace of Cp (Y), [4, Proposition 4.1]. But, if
f := φ (g) with g ∈ C (S ), then f ∈ C (Y |X). Indeed, if h ∈ C (X) extends g to the whole of X, then

h|Y = φ (h|S ) = φ (g) = f ,

which means that f ∈ C (Y |X). Thus, φ can be regarded as a map from Cp (S ) into Cp (Y |X). Therefore,
Cp (S ) embeds in Cp (Y |X) as a closed linear subspace of Cp (Y |X). So, the metrizable space Cp (S )
contains a resolution of compact sets, namely the family {Aα ∩ C (S ) : α ∈ NN}, that swallows the
compact sets in Cp (S ). By Christensen’s theorem [8, Theorem 3.3] (see also [12, Theorem 94]) Cp (S )
must be a Polish space. Thus, [2, I.3.3 Corollary] guarantees that the compact set S is discrete, and
hence finite, a contradiction. □
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For the next lemma, recall that, according to [19, 15.14 Corollary], a Tychonoff space X is
realcompact if and only if its homeomorphic copy δ (X) in Lp (X) is a complete set.

Theorem 2.3. Assume that X is realcompact and Y is a closed subspace of X. If Cp(Y |X) has a Σ-
covering of limited envelope, then Y is a Lindelöf Σ-space.

Proof. We need the following auxiliary result.

Claim 2.1. Under our assumptions, the copy δ (Y) of Y in Lp (Y |X) is a complete set.

Proof of the claim. Let
{
δyd : d ∈ D

}
be a Cauchy net in the canonical copy δ (Y) of Y in Lp (Y |X), i.e.,

such that for each f ∈ C (Y |X) and ϵ > 0 there is d ( f , ϵ) ∈ D with

| f (yr) − f (ys)| =
∣∣∣∣〈 f , δyr − δys

〉∣∣∣∣ < ϵ
for r, s ≥ d ( f , ϵ). As for each f ∈ C (X), one has that f |Y ∈ C (Y |X), and clearly

{
δyd : d ∈ D

}
, regarded

as a net in δ (X), is a Cauchy net in Lp (X). Since X is realcompact there is z ∈ X such that δyd → δz

in Lp (X), i.e., such that
〈

f , δyd

〉
→ ⟨ f , δz⟩ for every f ∈ C (X). But, as Y is closed in X, the canonical

copy δ (Y) of Y in Lp (X) is closed in δ (X), which implies that δz ∈ δ (Y). This means that z ∈ Y ,
and thus we have in particular that

〈
f |Y , δyd

〉
→
〈

f |Y , δz
〉

for every f ∈ C (X). From this, it follows

that
〈
g, δyd

〉
→ ⟨g, δz⟩ for every g ∈ C (Y |X), which shows that δ (Y) is a complete set in Lp (Y |X).

Now, if {Aα : α ∈ NN} is a Σ-covering of limited envelope for Cp (Y |X), Theorem 1.3 provides a
Lindelöf Σ-space Z such that

Lp (Y |X) ⊆ Z ⊆ RC(Y |X).

By the claim, δ (Y) is a complete subspace of Lp (Y |X), and consequently, a closed set of the complete
locally convex space RC(Y |X). Thus, δ (Y), as a closed topological subspace of Z, is a Lindelöf Σ-
space. □

Observe that if
{
δyd : d ∈ D

}
is a Cauchy net in the copy δ (Y) of Y in Lp (Y |X), then

{
δyd : d ∈ D

}
need not be a Cauchy net in Lp (Y). So, if we require only Y to be realcompact (regardless of whether
X is realcompact or not), the argument of the previous claim does not work.

Corollary 2.2. Let X be realcompact. If Cp (X) has a bounded resolution, then X has countable extent.

Proof. If X has uncountable extent, there exists an uncountable closed discrete subspace Y , i.e.,
consisting of relative isolated points. If {Aα : α ∈ NN} is a bounded resolution for Cp (X), the
restriction map T : Cp (X) → Cp (Y |X) given by T ( f ) = f |Y maps continuously Cp (X) onto Cp (Y |X).
Thus, the family {T (Aα) : α ∈ NN} is a bounded resolution for Cp (Y |X), and hence a Σ-covering of
limited envelope. According to Theorem 2.3, the space Y must be Lindelöf, and hence countable, a
contradiction. □

Corollary 2.3. If M denotes the Michael line and P the subspace of the irrational numbers, the
following properties hold.

(1) Cp (M) does not admit a bounded resolution.
(2) Cp (P|M) does not admit a bounded resolution.
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Proof. Recall that in the Michael line the set P of irrationals is a discrete open subspace. As the
topology of M is stronger than that of the real line R and each subspace of R is realcompact, it turns
out thatM is realcompact by virtue of [19, 8.18 Corollary].

(1) Since there exists an uncountable Euclidean closed set Y in R consisting entirely of irrational
numbers, this set Y is closed and discrete in M, so M has uncountable extent and (the contrapositive
statement of) Corollary 2.2 applies.

(2) If Y is again an uncountable closed set in M consisting of irrational numbers, the restriction
map S : Cp (P|M) → Cp (Y |M) defined as usual by S ( f ) = f |Y is a continuous linear map. It is also
surjective, for if g ∈ C (Y |M), there exists f ∈ C (M) such that f |Y = g. So, clearly f |P ∈ C (P|M) and
S
(

f |P
)
= f |Y = g. If Cp (P|M) had a bounded resolution, say {Aα : α ∈ NN}, then {S (Aα) : α ∈ NN}

would be a bounded resolution for Cp (Y |M). So, according to the proof of Corollary 2.2, the subspace
Y would be countable, a contradiction. □

Example 2.3. The converse of Corollary 2.2 does not hold. Let S be the Sorgenfrey line. Since S is a
Lindelöf space, it is realcompact and has countable extent. However, Cp (S) does not admit a bounded
resolution. Otherwise, by Theorem 1.4, the Sorgenfrey line would be a Lindelöf Σ-space, which is not
true since the product of two Lindelöf Σ-spaces is a Lindelöf Σ-space, but S × S is not Lindelöf.

Corollary 2.4. Let X be realcompact and let Y be a closed subspace which is a P-space. Then Cp(Y |X)
admits a bounded resolution if and only if Y is countable and discrete.

Proof. Since Y is a P-space, each compact set in Y is finite. If, in addition, Cp(Y |X) admits a Σ-covering
of limited envelope, then Theorem 2.3 ensures that Y is a Lindelöf Σ-space. But, every Lindelöf Σ-
space with finite compact sets is countable (by [2, IV.6.15 Proposition]), and every countable P-space
is discrete. The converse is clear. □

Hence, if X is a realcompact P-space and Y a closed subspace, then Cp(Y |X) admits a bounded
resolution if and only if Y is countable and discrete.

Theorem 2.4. Let Y be a closed subspace of a realcompact space X. Then Cp(Y |X) admits a compact
resolution that swallows the compact sets if and only if Y is countable and discrete.

Proof. According to Theorem 2.2, each compact set K in Y is finite. Moreover, as a compact resolution
is a Σ-covering of limited envelope, Theorem 2.3 tells us that Y is a Lindelöf Σ-space. But, as we know,
a Lindelöf Σ-space with finite compact sets is countable, so Y is countable and, consequently, both
spaces Cp(Y |X) and Cp (Y) are metrizable.

Therefore we have a metrizable topological space Cp(Y |X) with a compact resolution {Aα : α ∈ NN}
that swallows the compact sets in Cp(Y |X). So, again by Christensen’s theorem, Cp(Y |X) is a Polish
space, and hence a Čech-complete space [9, 4.3.26 Theorem]. Since Cp(Y |X) is a Čech-complete dense
subspace of Cp(Y), [2, I.3.1 Theorem] asserts that Y is (countable and) discrete. □

Example 2.4. In the previous theorem, the requirement that X be realcompact is not necessary. In
fact, if X is a non-realcompact P-space [19, Problem 9L] and Y is a countable subspace of X, then Y is
C-embedded in X, so Cp (Y |X) = Cp (Y) = RY since Y, a countable subspace, is (closed and) discrete.
If Y = {yn : n ∈ N}, then {Aα : α ∈ NN} with Aα = { f ∈ RN : | f (yn)| ≤ α (n)} is a compact resolution for
Cp (Y |X) that swallows the compact sets.
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Remark 2.1. If X is an arbitrary Tychonoff space and Y = X, using the well-known fact that if {Aα :
α ∈ NN} is a compact resolution for Cp (X) that swallows the compact sets of Cp (X) and S : Cp (υX)→
Cp (X) is the restriction map f 7→ f |X, then {S −1 (Aα) : α ∈ NN} is a compact resolution for Cp (υX) that
swallows the compact sets in Cp (υX), and thus, we can deduce [30, 3.7 Theorem] from Theorem 2.4.
So, if Y = X, we may exempt the space X from being realcompact in the statement of Theorem 2.4.

Corollary 2.5. Let Y be a closed subspace of a realcompact space X. The following are equivalent

(1) Cp(Y |X) admits a compact resolution that swallows the compact sets.
(2) Cp(Y |X) is a Polish space.

Proof. If Cp(Y |X) has a compact resolution that swallows the compact sets, Y is countable and discrete
by Theorem 2.4. Consequently, Cp(Y |X), as a dense linear subspace of Cp (Y) = RY , is a metrizable
space with a compact resolution swallowing the compact sets. Hence, a Polish space by Christensen’s
theorem. Conversely, if Cp(Y |X) is a Polish space, it clearly has a compact resolution swallowing the
compact sets. □

Remark 2.2. Let Y be a countable dense subspace of X. If Cp(Y |X) admits a compact resolution that
swallows the compact sets, then Y is discrete. In fact, if Y is countable, then Cp(Y |X) is metrizable and
we may argue as in the final paragraph of the proof of Theorem 2.4.

Example 2.5. If Cp(Y |X) admits a bounded resolution that swallows the compact sets in Cp (Y |X),
then Y need not be discrete. If M denotes the Michael line, the set Q of rational numbers is a closed
subspace ofM. Since, RQ = RN clearly has a compact resolution that swallows the compact sets in RQ,
we see that Cp (Q|M) = Cp (Q) has a bounded resolution that swallows the compact sets in Cp (Q|M),
but Q is not discrete.

3. Resolutions for Cp (Y |X) consisting of Banach disks

Let us mention that, originally, the definition of quasi-(LB)-spaces emerged as an appropriate
range class for the closed graph theorem when strictly barrelled spaces are located at the domain
class [33, Corollary 1.5]. Valdivia’s class of quasi-(LB)-spaces has proven to be useful both in
functional analysis and in topology (see for instance [24, Chapter 3]). Recently, some lifting
properties involving quasi-(LB)-spaces at the range class in the closed graph theorem has been relaxed
by replacing the strictly barrelled spaces of the domain class by locally convex spaces with a
sequential web (see [22, Theorem 1] for details).

Lemma 3.1. The spaces Cp (X) and Ck (X) have the same Banach disks.

Proof. If B is a Banach disk in Ck (X), it is clear that B is a Banach disk in Cp (X). Conversely, we
claim that if Q is a Banach disk in Cp (X), then Q is a bounded set in Ck (X). Indeed, if U is a basic
τk-closed absolutely convex neighborhood of the origin in Ck (X), there is a compact set K in X and
ϵ > 0 such that

U =
{
f ∈ C (X) : supx∈K | f (x)| ≤ ϵ

}
.

Clearly, U is a τp-closed set, for if { fd : d ∈ D} is a net in U such that fd → f in Cp (X), then | f (x)| ≤ ϵ
for every x ∈ K. As the norm topology of EQ is stronger than the pointwise topology, U ∩ EQ is also
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a closed absolutely convex set for the norm topology of EQ. Since E =
⋃∞

n=1 nU, the Baire category
theorem provides some m ∈ N such that Q ⊆ mU, which shows that Q is a bounded set in Ck (X), as
stated. As Q is a τk-bounded set such that EQ is a Banach space, it turns out that Q is a Banach disk in
Ck (X). □

Theorem 3.1. Let X be metrizable. Then Cp (X) is a quasi-(LB)-space if and only if X is σ-compact.

Proof. If Cp (X) is a quasi-(LB)-space, according to Lemma 3.1 the space Ck (X) is also a
quasi-(LB)-space. As X is a kR-space, Ck (X) is complete, and hence locally complete, that is, such
that the τk-closed absolutely convex cover of each bounded set in Ck (X) is a Banach disk or,
according to [20, Theorem 2.1], such that each convergent sequence in Ck (X) is equicontinuous.
Since by [33, Proposition 22] the space Ck (X) admits a resolution consisting of Banach disks that
swallows the Banach disks in Ck (X), it follows that Ck (X) has a fundamental bounded resolution.
Consequently, by [11, Proposition 3], the space X must be σ-compact.

Conversely, if X is metrizable and σ-compact, again by [11, Proposition 3] the space Ck (X) has
a (fundamental) bounded resolution {Aα : α ∈ NN}. Since the local completeness of Ck (X) guarantees
that Bα := abx (Aα)

τk
, i.e. the τk-closed absolutely convex cover of Aα, is a Banach disk for each

α ∈ NN, and Ck (X) is clearly a quasi-(LB)-space. Thus, Cp (X) is also a quasi-(LB)-space. □

Corollary 3.1. Let Y be a topological subspace of a metrizable space X. If X is σ-compact, then
Cp (Y |X) is a quasi-(LB)-space.

Proof. If X is metrizable and σ-compact, Cp (X) is a quasi-(LB)-space by Theorem 3.1. If T is the
restriction map from Cp (X) onto Cp (Y |X), the image T (B) of each Banach disk of Cp (X) is a Banach
disk of Cp (Y |X). Thus, Cp (Y |X) is a quasi-(LB)-space. □

Example 3.1. Metrizability cannot be dropped in the ‘if’ part of Theorem 3.1. If p ∈ βN \ N, equip
X = N∪{p} with the relative topology of βN. Since X is countable, it is σ-compact. However, Cp (X) is
not a quasi-(LB)-space. In fact, since Cp (X) is a locally convex Baire space (see [27, Example 7.1]),
i.e., such that it cannot be covered by countably many rare, balanced sets [29], if Cp (X) were a quasi-
(LB)-space then Cp (X) would be a Fréchet space by virtue of [24, Corollary 3.12]. As Cp (X) is a
dense linear subspace of RX, this would imply that Cp (X) = RX. Consequently, the space X should be
discrete, which is not true.

4. Resolutions for Cp (Y |X) consisting of convex compact sets

Recall that a sequence {xn}
∞
n=1 in a locally convex space E is local null or Mackey convergent to

zero [25, 28.3] if there is a bounded, closed, absolutely convex set B in E (a closed disk) such that
xn → 0 in the normed space EB := span (B) equipped with the Minkowski functional of B as a
norm. Each local null sequence in E is a null sequence. If E is metrizable, each null sequence is local
null [25, 28.3.(1) c)]. A linear form u defined on a bornological space E (see [5, 3.6.2 Definition] or [25,
28]) is continuous if and only if u (xn) → 0 for each local null sequence {xn}

∞
n=1 in E, [25, 28.3.(4)].

Recall that, according to the Buchwalter-Schmets theorem [6], the space Cp (X) is bornological if and
only if X is realcompact.
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Theorem 4.1. Let Y be a closed subspace of a realcompact space X. If Cp(Y |X) admits a resolution
of convex compact sets that swallows the local null sequences in Cp(Y |X), then Y is countable and
discrete.

Proof. As in the proof of [13, Theorem 12], we may assume without loss of generality that Cp(Y |X)
admits a resolution {Aα : α ∈ NN} of absolutely convex compact sets swallowing the local null
sequences in Cp(Y |X).

We adapt as possible the argument of the proof of [13, Theorem 12] to the present setting. Let
M be the family of all local null sequences in Cp(Y |X). Since the family {Aα : α ∈ NN} swallows
the members of M, the Mackey* topology µ (L (Y) ,C (Y |X)) of L (Y) is stronger than the topology
τc0 on L (Y) of the uniform convergence on the local null sequences of Cp (Y |X). As it is clear that
σ (L (Y) ,C (Y |X)) ≤ τc0 , we conclude that

(
L (Y) , τc0

)′
= C (Y |X). Moreover, as X is realcompact,

Cp (X) is bornological, and since Y is a closed subspace of X, the restriction map from Cp (X) onto
Cp (Y |X) is a quotient map [2, 0.4.1 (2) Proposition], which ensures that Cp (Y |X) is also a bornological
space [25, 28.4.(2)]. Consequently, the τc0-dual

(
L (Y) , τc0

)
of Cp (Y |X) is complete by [25, 28.5.(1)].

In fact, it is even µ (L (Y) ,C (Y |X))-complete by [25, 18.4.(4)].
Now we claim that every compact set in Y is finite. Indeed, if K is a compact set in Y , as we have

seen in the proof of Theorem 2.2, the canonical copy δ (K) of K in Lp (Y |X) is embedded in Lp (Y |X),
i.e., it is a σ (L (Y) ,C (Y |X))-compact set in L (Y). So, the completeness of

(
L (Y) , τc0

)
, together with

Krein’s theorem and the fact that τc0 is a locally convex topology of the dual pair ⟨L (Y) ,C (Y |X)⟩,
ensures that the weak* closure Q in Lp (Y |X) of the absolutely convex hull of δ (K) is a compact set in
Lp (Y |X), and hence a β (L (Y) ,C (Y |X))-bounded set. On the other hand, as Cp (Y) is a quasibarrelled
space [23, 11.7.3 Corollary], the β (L (Y) ,C (Y))-bounded sets in L (Y) are finite-dimensional. But,
according to Theorem 1.1, we have that β (L (Y) ,C (Y)) = β (L (Y) ,C (Y |X)). So, every
β (L (Y) ,C (Y |X))-bounded set in L (Y) is finite-dimensional. Thus, in particular, Q is
finite-dimensional. This means that δ (K), as a linearly independent system of vectors in L (Y)
contained in Q, must be finite. Hence, the compact set K is finite, as stated.

Since each compact resolution is a Σ-covering of limited envelope, Theorem 2.3 tells us that Y is a
Lindelöf Σ-space. So Y is countable by [2, IV.6.15 Proposition]. Hence, Cp (Y |X) is a metrizable space,
which ensures that, in Cp (Y |X), local null sequences and null sequences are the same. Moreover, if M
is a compact set in the metrizable space Cp (Y |X), then M lies in the closed absolutely convex cover of a
null sequence { fn}

∞
n=1, [25, 21.10.(3)]. So, if { fn}

∞
n=1 ⊆ Aγ, the fact that Aγ is a closed absolutely convex

set guarantees that M ⊆ Aγ. Thus, {Aα : α ∈ NN} is a compact resolution for Cp (Y |X) that swallows
the compact sets of Cp (Y |X). So, we apply Theorem 2.4 to get that Y is (countable and) discrete. □

Remark 4.1. If Y = X, one can get rid of the realcompactness from X by working with Cp (υX) instead
of with Cp (X). So, Theorem 4.1 essentially contains [13, Theorem 12].

5. Bounded resolutions for Cp (Y |X) swallowing Cauchy sequences

Let us examine the existence of a bounded resolution for Cp (Y) that swallows the Cauchy sequences
in Cp (Y |X). We denote by R(X) the linear subspace of RX consisting of functions with finite support,
i.e., those which vanish off a finite set in X.
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Theorem 5.1. Assume that X is metrizable and Y hemicompact with Y ⊆ X. Then Cp (Y |X) has a
bounded resolution that swallows the Cauchy sequences in Cp (Y |X) if and only if Y is countable.

Proof. We may assume there is a bounded resolution {Aα : α ∈ NN} in Cp (Y |X) consisting of absolutely
convex sets swallowing the Cauchy sequences in Cp (Y |X). Given ey ∈ R

(Y) defined by ey (y) = 1 and
ey (z) = 0 if z , y, we extend ey to the whole of X by setting êy (z) = ey (z) if z ∈ Y and êy (x) = 0 if
x < Y . Since X is first countable, as in the proof of [13, Theorem 33] we find a sequence

{
fy,n

}∞
n=1

in
C (X) such that fy,n → êy in RX. As fy,n

∣∣∣
Y
→ ey in Cp (Y), there is γ ∈ NN with fy,n

∣∣∣
Y
∈ Aγ for all n ∈ N,

so ey ∈ Aγ. Now, given (n1, α) ∈ N × NN, let β ∈ NN be such that β (1) = n1 and β (i + 1) = α (i) for
each i ∈ N and define Bβ := n1Aα, closure in RY . Since

{
ey : y ∈ Y

}
is a Hamel basis of R(Y), it follows

that {Bβ : β ∈ NN} is a bounded family in RY such that R(Y) ⊆
⋃
{Bβ : β ∈ NN}.

On the other hand, note that Ck (Y) is a metrizable space due to Arens’ theorem [1] (see also [34,
Theorem 13.2.4]). As C (Y |X) is clearly a dense linear subspace of Ck (Y), each g ∈ Ck (Y) is the limit
of a sequence {gn}

∞
n=1 in C (Y |X) under the compact-open topology τk, and hence under the pointwise

topology τp. Thus, there exists δ ∈ NN such that gn ∈ Aδ for every n ∈ N so that g ∈ Aδ, which shows
that C (Y) ⊆

⋃
{Bβ : β ∈ NN}. Thus, we conclude that C (Y) + R(Y) ⊆

⋃
{Bβ : β ∈ NN}, which means

that the linear subspace C (Y) + R(Y) of M (Y) admits a bounded resolution under the weak* topology
of M (Y). According to [13, Remarks 20, 27], Y must be countable.

For the converse, note that if Y is countable, RY has a compact resolution {Qα : α ∈ NN} that
swallows the compact sets in RY . Hence, {Qα ∩C (Y |X) : α ∈ NN} is a bounded resolution for Cp (Y |X)
such that if {hn}

∞
n=1 is a Cauchy sequence in Cp (Y |X) and h ∈ RY verifies that hn → h in RY , there is

γ ∈ NN with {h, hn : n ∈ N} ∈ Qγ. Hence, {hn : n ∈ N} ∈ Qγ ∩C (Y |X). □

Proposition 5.1. Let Cp (Y) be Fréchet-Urysohn. If Cp (Y |X) has a bounded resolution that swallows
the Cauchy sequences in Cp (Y |X), then Cp (Y) has a bounded resolution.

Proof. Let {Aα : α ∈ NN} be a bounded resolution for Cp (Y |X) that swallows the Cauchy sequences in
Cp (Y |X). As C (Y) ⊆ M (Y) = M (Y |X), the latter equality because of Theorem 1.1, given g ∈ C (Y)
there is a bounded set Q in Cp (Y |X) such that g ∈ Q, closure in Cp (Y). But, since Cp (Y) is Fréchet-
Urysohn, there exists a sequence {gn}

∞
n=1 in Q ⊆ C (Y |X) such that gn → g in Cp (Y). As {gn}

∞
n=1 is a

Cauchy sequence in Cp (Y |X), there is γ ∈ NN such that gn ∈ Aγ for every n ∈ N. Consequently, we
have g ∈ Aγ, closure in Cp (Y). Since each bounded set in Cp (Y |X) is a bounded set in Cp (Y) and the
closure of a bounded set is bounded, it follows that the family {Aα : α ∈ NN} is a bounded resolution
for Cp (Y). □

Corollary 5.1. Assume that Y is a Lindelöf P-space, with Y ⊆ X. Then Cp (Y |X) has a bounded
resolution that swallows the Cauchy sequences in Cp (Y |X) if and only if Y is countable and discrete.

Proof. Since Y is a Lindelöf P-space, it turns out that Cp (Y) is Fréchet-Urysohn [3, 10.2 Theorem].
Consequently, Cp (Y) has a bounded resolution by the preceding proposition. So, according to [15,
Proposition 3.6], the subspace Y must be countable and discrete. The proof of the converse is analogous
to that of Theorem 5.1. □
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6. Σ (Y) and R(Y) as dense subspaces of proper Cp (Y |X) spaces

If F is a linear subspace of C (X), let Y =
{
x ∈ X : δx < F⊥

}
so that δ (Y) = δ (X) \ F⊥. Since

F⊥, the annihilator of F in L (X), is a closed subspace of Lp (X), Y is an open subset of X. Define
T : F → Cp (Y |X) by the rule T f = f |Y .

Theorem 6.1. T is a linear homeomorphism from F onto its range, which embeds F isomorphically
into Cp (Y |X).

Proof. Let us first check that T is one-to-one. So, if f ∈ ker T ⇔ f |Y = 0, we have to show that f = 0.
Equivalently, if f ∈ F is such that f , 0, we must prove that T f , 0. But, if f , 0, there is u ∈ L (X)
with ⟨ f , u⟩ , 0. If u = v + w with v =

∑p
i=1 ai δxi , where δxi ∈ F⊥ or, equivalently, xi ∈ X \ Y for

1 ≤ i ≤ p, and w =
∑q

i=1 ai δyi with δyi < F⊥ or, equivalently, yi ∈ Y for 1 ≤ i ≤ q, then

0 , ⟨ f , u⟩ = ⟨ f ,w⟩ =
〈

f |Y ,w
〉
= ⟨T f ,w⟩ ,

since w ∈ L (Y). As L (Y) is the dual of Cp (Y |X), this shows that T f , 0, as desired.
Let us check that T−1 : ImT → F is continuous when ImT is provided with the relative topology

of Cp (Y |X) and F is equipped with the relative topology of Cp (X). Indeed, if { fd : d ∈ D} is a net in
F and f ∈ F are such that T fd → T f in ImT , it is clear that fd (y) → f (y) for every y ∈ Y . Now, if
x ∈ X, either δx ∈ F⊥ or δx < F⊥. In the first case, it is obvious that fd (x) = 0 → 0 = f (x) since
fd, f ∈ F. In the second case, x ∈ Y , so fd (x) → f (x). This shows that fd → f in F pointwise on
X. Since T is continuous, one-to-one, and a topological homomorphism, it turns out that T is a linear
homeomorphism that embeds isomorphically F into Cp (Y |X). □

Theorem 6.2. Let Z be a closed set in X. If F = { f ∈ C (X) : f (z) = 0 ∀z ∈ Z}, then F is linearly
homeomorphic to a dense subspace of Cp (Y |X).

Proof. Since it is clear that δz ∈ F⊥ for each z ∈ Z, we have Z ⊆ X \ Y . But, if x ∈ X \ Y and x < Z,
there is g ∈ C (X) with g (x) = 1 and g (z) = 0 for all z ∈ Z, which means that g ∈ F. But ⟨g, δx⟩ = 1,
so δx < F⊥, i.e., x ∈ Y , a contradiction. Therefore, X \ Y = Z. Thus, if T : F → Cp (Y |X) is the map
considered in the previous theorem, then

T (F) = {g ∈ C (Y) : ∃ f ∈ C (X) , f |Y = g, f |X\Y = 0}.

By Theorem 6.1 the subspace T (F) of Cp (Y |X) is isomorphic to F. If ∆ is a finite subset of Y and
h ∈ C (Y |X), the fact that Z is closed allows us to find f ∈ C (X) such that f (y) = h (y) for each y ∈ ∆
and f (z) = 0 for every z ∈ Z, i.e., a function f ∈ C (X) such that g := f |Y lies in T (F) and verifies that
g (y) = h (y) for y ∈ ∆. This shows that T (F) is dense in Cp (Y |X). □

Example 6.1. If X = D ∪ {ξ} is the one-point Lindelöfication of the discrete space D, the subspace
Σ (D) of RD consisting of all countably supported functions on D is linearly homeomorphic to a dense
subspace of Cp (D|X). In particular, Cp (D|X) is a Baire space.

Proof. If F := { f ∈ C (X) : f (ξ) = 0}, the restriction map S : F → Σ (D) given by S f = f |D is a linear
homeomorphism from F onto Σ (D). If we put Y :=

{
x ∈ X : δx < F⊥

}
, Theorem 6.2 asserts that the

subspace F of Cp (X) is isomorphic to a dense subspace of Cp (Y |X). Consequently, Σ (D) is isomorphic
to a dense subspace of Cp (Y |X).
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But, clearly D = Y , since, if x ∈ D, there is f ∈ C (X) with f (x) = 1 and f (ξ) = 0, such that f ∈ F
and ⟨ f , δx⟩ = 1, i.e., δx < F⊥. Thus, x ∈ Y . Whereas if x ∈ Y , then δx < F⊥, which means that x , ξ, so
x ∈ D. The second statement follows from the fact that Σ (D) is a Baire space.

□

Remark 6.1. If X is uncountable, then Σ (X) does not admit a bounded resolution. This is because Σ (X)
is locally complete. Thus, Valdivia’s theorem [24, Theorem 3.5] ensures that Σ (X) admits a bounded
resolution if and only if it is a quasi-(LB)-space. Since Σ (X) is a Baire space, Σ (X) is necessarily a
Fréchet space [24, Corollary 3.12], which implies that Σ (X) = RX with X countable. Note that this
implies that if X = D ∪ {ξ} is the one-point Lindelöfication of the discrete space D with |D| ≥ ℵ1, then
Cp (D|X) does not have a bounded resolution (cf. Example 2.1).

Example 6.2. If X = D ∪ {ξ} is the one-point compactification of the discrete space D, the subspace
R(D) of RD consisting of all finitely supported functions on D is linearly homeomorphic to a dense
subspace of the space Cp (D|X).

Proof. If F := { f ∈ C (X) : f (ξ) = 0}, the linear map S : F → R(D) defined by S f = f |D is a linear
homeomorphism from the closed one-codimensional linear subspace F of Cp (X) onto R(D). Likewise,
the set Y :=

{
x ∈ X : δx < F⊥

}
coincides with D since δ (X)∩ F⊥ =

{
δξ
}
. By Theorem 6.2, F is linearly

homeomorphic to a dense subspace of Cp (Y |X). So, R(D) is linearly isomorphic to a dense linear
subspace of Cp (D|X). □

Remark 6.2. R(X) has a fundamental bounded resolution if and only if X is countable.

Proof. Let {Aα : α ∈ NN} be a fundamental resolution for R(X) consisting of absolutely convex bounded
sets. Thus, the bipolar theorem ensures that A00

α = Aα, closure in RX. Hence, the fact that {Aα : α ∈ NN}
swallows all compact sets in R(X) means that the bidual E of R(X) is given by E = {Aα : α ∈ NN}. As
each Aα is an absolutely convex compact set in RX, and thus a Banach disk in E, it turns out that E is
a quasi-(LB)-space. On the other hand, since each f ∈ Σ (X) is the limit of a sequence in R(X), we have
that Σ (X) ⊆ E. As Σ (X) is a dense Baire subspace of RX, it follows that E is a Baire space. Since each
locally convex space which is both a quasi-(LB)-space and a Baire space is a Fréchet space, necessarily
E = RX with X countable. The converse is obvious. □

As a consequence, if X = Y ∪ {ξ} is the one-point compactification of the discrete space Y , then
Cp (Y |X) admits a fundamental bounded resolution if and only if Y is countable, which is a particular
case of Theorem 2.1.

Author contributions

Juan C. Ferrando: conceptualization, research, methodology, formal analysis, writing-original
draft, review & editing, validation; Manuel López-Pellicer: formal analysis, validation, writing
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25. G. Köthe, Topological vector spaces I, Berlin: Springer, 1983. https://doi.org/10.1007/978-3-642-

64988-2
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