Research article

Some new generalizations of $ F- $contraction type mappings that weaken certain conditions on Caputo fractional type differential equations

  • Received: 17 May 2021 Accepted: 02 September 2021 Published: 06 September 2021
  • MSC : 47H10, 47H19, 54H25

  • In this paper, firstly, we introduce some new generalizations of $ F- $contraction, $ F- $Suzuki contraction, and $ F- $expanding mappings. Secondly, we prove the existence and uniqueness of the fixed points for these mappings. Finally, as an application of our main result, we investigate the existence of a unique solution of an integral boundary value problem for scalar nonlinear Caputo fractional differential equations with a fractional order (1, 2).

    Citation: Naeem Saleem, Mi Zhou, Shahid Bashir, Syed Muhammad Husnine. Some new generalizations of $ F- $contraction type mappings that weaken certain conditions on Caputo fractional type differential equations[J]. AIMS Mathematics, 2021, 6(11): 12718-12742. doi: 10.3934/math.2021734

    Related Papers:

  • In this paper, firstly, we introduce some new generalizations of $ F- $contraction, $ F- $Suzuki contraction, and $ F- $expanding mappings. Secondly, we prove the existence and uniqueness of the fixed points for these mappings. Finally, as an application of our main result, we investigate the existence of a unique solution of an integral boundary value problem for scalar nonlinear Caputo fractional differential equations with a fractional order (1, 2).



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1922), 133–183. doi: 10.4064/fm-3-1-133-181
    [2] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. doi: 10.1186/1687-1812-2012-94
    [3] N. A. Secelean, Iterated function systems consisting of $F$-contractions, Fixed Point Theory Appl., 2013 (2013), 277. doi: 10.1186/1687-1812-2013-277
    [4] N. A. Secelean, Weak $F-$contractions and some fixed point results, B. Iran. Math. Soc., 42 (2016), 779–798.
    [5] H. Piri, P. Kumam, Some fixed point theorems concerning $F-$contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 210. doi: 10.1186/1687-1812-2014-210
    [6] F. Vetro, $F-$contractions of Hardy-Rogers type and application to multistage decesion process, Nonlinear Anal. Model. Control, 21 (2016), 531–546. doi: 10.15388/NA.2016.4.7
    [7] N. A. Secelean, D. Wardowski, $\psi F-$contractions: Not necessarily nonexspansive Picard operators, Results Math., 70 (2016), 415–431. doi: 10.1007/s00025-016-0570-7
    [8] A. Lukács, S. Kajántó, Fixed point results for various type $F-$contractions in completes $b-$metric spaces, Fixed Point Theory, 19 (2018), 321–334. doi: 10.24193/fpt-ro.2018.1.25
    [9] H. H. Alsulami, E. Karapınar, H. Piri, Fixed points of generalized $F-$Suzuki type contraction in complete $b-$metric spaces, Discrete Dyn. Nat. Soc., 2015 (2015), 969726.
    [10] J. Gornicki, Fixed point theorems for $F-$expanding mappings, Fixed Point Theory Appl., 2017 (2016), 9. doi: 10.1186/s13663-017-0602-3
    [11] J. Merryfield, J. D. Stein Jr., A generalization of the Banach contraction principle, J. Math. Anal. Appl., 273 (2002), 112–120. doi: 10.1016/S0022-247X(02)00215-9
    [12] P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl. 22 (2020), 21.
    [13] S. Moradi, Fixed point of single-valued cyclic weak $\phi F$-contraction mappings, Filomat, 28 (2014), 1747–1752. doi: 10.2298/FIL1409747M
    [14] M. A. Geraghty, On contractive mappings, P. Am. Math. Soc., 40 (1973), 604–608.
    [15] A. Amini-Harandi, A. Petruşel, A fixed point theorem by altering distance technique in complete metric spaces, Miskolc Math. Notes, 14 (2013), 11-–17. doi: 10.18514/MMN.2013.600
    [16] Z. L. Li, S. J. Jiang, Fixed point theorems of JS-quasi-contractions, Fixed Point Theory Appl., 2016 (2016), 40. doi: 10.1186/s13663-016-0526-3
    [17] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. doi: 10.1186/1029-242X-2014-38
    [18] D. Wardowski, N. V. Dung, Fixed points of F-weak contractions on complete metric spaces, Demonstratio Math., 47 (2014), 146–-155.
    [19] F. Skof, Teoremi di punto fisso per applicazioni negli spazi metrici, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 111 (1977), 323–329.
    [20] K. Goeblel, B. Sims, Mean Lipschitzian mappings, Contemp. Math., 513 (2010), 157–167.
    [21] W. J. Liu, H. F. Zhuang, Existence of solutions for Caputo fractional boundary value problems with integral conditions, Carpathian J. Math., 33 (2017), 207–217. doi: 10.37193/CJM.2017.02.08
    [22] N. Mehmood, N. Ahmad, Existence results for fractional order boundary value problem with nonlocal non-separated type multi-point integral boundary conditions, AIMS Mathematics, 5 (2019), 385–398.
    [23] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam, The Netherlands: Elsevier, 2006.
    [24] Z. Hanadi, A. Hoda, S. H. Fouad, A. Jamshaid, Generalized Fixed point results with application to nonlinear fractional differential equations, Mathematics, 8 (2020), 1168. doi: 10.3390/math8071168
    [25] N. Saleem, I. Iqbal, B. Iqbal, S. Radenović, Coincidence and fixed points of multivalued $F-$contractions in generalized metric space with application, J. Fixed Point Theory Appl., 22 (2020), 81. doi: 10.1007/s11784-020-00815-3
    [26] Y. C. Guo, M. Q. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021), 643–666. doi: 10.1080/07362994.2020.1824677
    [27] X. Ma, X. B. Shu, J. Z. Mao, Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay, Stoch. Dynam., 20 (2020), 2050003. doi: 10.1142/S0219493720500033
    [28] X. B. Shu, Y.J. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465–476.
    [29] X. B. Shu, Y. Lai, Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal. Theor., 74 (2011), 2003–2011. doi: 10.1016/j.na.2010.11.007
    [30] L. C. Ceng, M. J. Shang, Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings, Optimization, 70 (2021), 715–740. doi: 10.1080/02331934.2019.1647203
    [31] L. C. Ceng, A. Petrusel, X. Qin, J. C. Yao, Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optimization, 70 (2021), 1337–1358. doi: 10.1080/02331934.2020.1858832
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2075) PDF downloads(99) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog