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1. Introduction

Nonlinear partial differential equations serve as valuable mathematical tools for simulating complex
physical phenomena across various scientific disciplines. The study of these equations is of great
significance as it deepens our understanding of the underlying mathematical theory and provides
insights into the behavior of real-world systems. This paper focuses on a specific problem:
investigating the existence of triple weak solutions for a system of nonlinear elliptic equations featuring
a fourth-order operator. The problem at hand revolves around mathematical modeling, where intricate
physical processes with highly nonlinear dynamics are described by a system of equations. Examples
of such phenomena can be found in fluid dynamics [1, 2], elasticity theory [3], image processing [4],
and other fields where complex behavior arises from the interaction of multiple elements. Additionally,
the inclusion of a Hardy potential in the Leray-Lions operator introduces further complexity and
enriches its properties. The presence of singularities near the origin, induced by the Hardy potential,
amplifies the intricacy of the operator’s characteristics, making the behavior of solutions to be highly
sensitive.

The main objective of this research is to establish the existence of solutions to this system of
equations, which holds significant implications for both theoretical analysis and practical applications.
Using a local minimum theorem and its variants Bonanno, Candito and D’Aguı̀ [5] respectively and
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Bonanno and Marano [6], we prove that the following coupled system admits one non-zero weak
solutions and three weak distinct solutions respectively

n∑
i=1

(
∆ (ai(x,∆u)) + θi(x)

|u|si−2u
|x|2si

)
= λ

n∑
i=1

fi(x, u), in Ω,

u = ∆u = 0, on ∂Ω,

(1.1)

where, for i = 1, · · ·, n, functions denoted by fi satisfy the condition that

( f ) fi(x, u) ≤ ξi(x) + ci|u|qi(x)−1, (1.2)

is a Carathéodory function such that ξi ∈ L1(Ω) and ci is a positive constant. θi is a real function
in L∞(Ω) with ess infx∈Ω θi(x) > 0. Here, Ω represents a bounded domain in RN (N ≥ 2) with a C1

boundary ∂Ω. The constant si is fixed, and λ > 0 is a parameter. The functions qi and pi belong to
C(Ω) and satisfy the following inequalities

1 < si < min
x∈Ω

qi(x) ≤ max
x∈Ω

qi(x) <
N
2
< p̃−.

In the given context, we have the following:
Let p̃− = inf

x∈Ω
p̃(x) and p̃(x) = max

1≤i≤n
pi(x). The term ∆ (ai(x,∆u)) represents the fourth-order Leray-

Lions operator, which operates on the function u and involves the second-order spatial derivative of u.
The function ai is a Carathéodory function that satisfies additional requirements that are appropriate
for the given context. Recently, Liu and Zhao [7] established the existence and multiplicity result for
the following problem: 

∆(a(x,∆u)) +
b(x)|u|h−2u
|x|2h = λ f (x, u), in Ω,

u = 0, on ∂Ω,

∆u = 0, on ∂Ω,

where Ω is a bounded subset in RN(N ≥ 2) with the smooth boundary ∂Ω, λ > 0 is a parameter,
0 < b(x) ∈ L∞(Ω), 1 < h < min

{
p(x), N

2

}
, and a : Ω̄ × R → R is a Carathéodory function satisfying

some required conditions. Two theorems about the existence of at least one and at least two nontrivial
generalized solutions to their problem. In fact the authors established the existence of two solutions
for a continuous spectrum; however, they used a condition of type (AR). We mention that our work is
a generalization of the above problem because we consider a sum of finite Leray-Lions type operators
with Hardy potentials; moreover, condition of type Amrosetti-Rabinowitz condition is not needed to
establish that our main problem admits three weak solutions.

This paper appears to be one of the first to focus on investigating a coupled system involving a
Leray-Lions operator with non-standard growth, a Hardy potential, and a coupled nonlinear source
term. These additional features introduce further complexities and challenges in the analysis of this
system. The paper is structured as follows. Section 2 introduces the Sobolev spaces with variable
exponents and provides necessary background information. The proofs of the results are presented in
Sections 3 and 4.
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2. Background set up

Throughout this paper, the set is defined as follows:

C+(Ω) := {β | β ∈ C(Ω), β(x) > 1, for all x ∈ Ω}.

Additionally, we introduce the notations:

β− := inf
x∈Ω

β(x) and β+ := sup
x∈Ω

β(x).

In this study, we focus on a bounded regular domain Ω ⊂ RN , where N ≥ 2, and with a C1 boundary.
We make the assumption that the functions pi and qi belong to the set C+(Ω) and satisfy the following
conditions:

1 < si < min
x∈Ω

qi(x) ≤ max
x∈Ω

qi(x) <
N
2
< p̃−.

Moreover, we denote the Lebesgue space with variable exponents, as introduced in [8] by

Lpi(x)(Ω) =

{
Ω→ R : u is measurable and

∫
Ω

|u(x)|pi(x)dx < ∞
}
.

The Luxemburg norm of a function u is given by:

|u|pi(x) := inf
{
µ > 0 :

∫
Ω

∣∣∣∣∣u(x)
µ

∣∣∣∣∣pi(x)

dx ≤ 1
}
.

For any function u in the space Lpi(x)(Ω) and v in the conjugate space Lp′i (x)(Ω) (where Lp′i (x)(Ω) is the
conjugate space of Lpi(x)(Ω)), there exists a Hölder-type inequality (see e.g., [9–12]), i.e.,∣∣∣∣∣∫

Ω

uvdx
∣∣∣∣∣ ≤ (

1
p−i

+
1

p′−i

)
|u|pi(x)|v|p′i (x). (2.1)

Using the notation adapted in [13], for β ∈ C+(Ω), put

[ζ]β := max{ζβ
−

, ζβ
+

}, [ζ]β := min{ζβ
−

, ζβ
+

}.

A simple calculation shows that

(i) [ζ]
1
β = max

{
ζ

1
β− , ζ

1
β+

}
,

(ii) [ζ] 1
β

= min
{
ζ

1
β− , ζ

1
β+

}
,

(iii) [ζ] 1
β

= a⇐⇒ ζ = [a]β, [ζ]
1
β = a⇐⇒ ζ = [a]β,

(iv) [ζ]β[α]β ≤ [ζα]β ≤ [ζα]β ≤ [ζ]β[α]β.
Now, let us recall the following proposition:

Proposition 2.1. ( [14]) For every u in the function space Lpi(x)(Ω), the following inequalities hold:

[|u|pi(x)]pi ≤

∫
Ω

|u(x)|pi(x)dx ≤ [|u|pi(x)]pi .
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Furthermore, we have the following proposition:

Proposition 2.2. ( [15]) If p and q are two functions in C+(Ω) such that q(x) ≤ p(x) almost everywhere
in Ω, then the embedding Lp(x)(Ω) ↪→ Lq(x)(Ω) holds, and we have

|u|q(x) ≤ cq|u|p(x),

where cq is a positive constant.

The Sobolev space with a variable exponent W l,p(x)(Ω), where l ∈ {1, 2} and p ∈ {pi, i = 1, . . . , n}, is
defined as

W l,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ l

}
,

where α = (α1, α2, . . . , αN) is a multi-index such that |α| =
∑N

i=1 αi; also, Dαu = ∂|α|u
∂α1 x1...∂

αN xN
.

The norm on the space W l,p(x)(Ω) is given by

‖u‖l,p(x) = Σ|α|≤l |Dαu|p(x) ,

is a reflexive separable Banach space. Let W1,p(x)
0 (Ω) be the closure of C∞0 (Ω) in W1,p(x)(Ω), which has

the norm ‖u‖1,p(x) = |Du|p(x). In the following, let

X̃ := W1,p̃(x)
0 (Ω) ∩W2,p̃(x)(Ω),

endowed with the norm

‖u‖ = |∆u| p̃(x) = inf
{
µ > 0 :

∫
Ω

∣∣∣∣∣∆u
µ

∣∣∣∣∣p̃(x)

dx ≤ 1
}
.

The modular on X̃ is the mapping ρp̃(x) : X̃ → R defined by ρp̃(x)(u) =
∫

Ω
|∆u| p̃(x)dx. This mapping

meets the same characteristics as those defined in Proposition 2.3. To be more specific, we have the
following:

Proposition 2.3. For every u ∈ L p̃(x)(Ω), one has

(1) |∆u|p̃(x) < 1 (resp. = 1, > 1)⇔ ρp̃(x)(u) < 1 (resp. = 1, > 1);
(2)

[
|∆u|p̃(x)

]
p̃ ≤ ρp̃(x)(u) ≤

[
|∆u| p̃(x)

] p̃
.

Proposition 2.4 ( [16]). Let p and q be measurable functions such that p ∈ L∞(Ω), and let 1 ≤
p(x)q(x) ≤ ∞, for a.e. x ∈ Ω. Let w ∈ Lq(x)(Ω), w , 0. Then

[|w|p(x)q(x)]p ≤ ||w|p(x)|q(x) ≤ [|w|p(x)q(x)]p.

The space X̃ thus defined is a reflexive and separable Banach space. Remember that, the critical
Sobolev exponent is defined as follows:

p∗(x) =


N p(x)

N − 2p(x)
, p(x) <

N
2
,

+∞, p(x) ≥
N
2
.
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As a consequence of Proposition 2.2, if q(x) ≤ p(x) almost everywhere on Ω, we have the following
embeddings

W1, p̃(x)
0 (Ω) ↪→ W1,q(x)

0 (Ω) and W2, p̃(x)(Ω) ↪→ W2,q(x)(Ω).

In particular, this implies
X̃ ↪→ W1,p̃−

0 (Ω) ∩W2, p̃−(Ω).

where p̃− > N
2 . Since X̃ ↪→ C0(Ω) is compact (see [11]), we obtain the inequality |u|∞ ≤ c0|∆u|p̃(x),

where c0 is a positive constant.
Furthermore, for 1 ≤ i ≤ n, the continuous embedding X̃ ↪→ Lαi(x)(Ω) holds for any αi ∈ C+(Ω)

such that αi(x) ≤ p̃(x) almost everywhere on Ω. This leads to the inequality

|u|αi(x) ≤ cαi |∆u|p̃(x), (2.2)

where cαi is a positive constant.
The definition and statements required for the proofs presented in Section 3 are as follows:

Definition 2.1. Consider two continuously Gâteaux differentiable functionals, Φ and Ψ, defined on a
real Banach space X, and let d ∈ R. The functional I := Φ−Ψ satisfies the Palais-Smale condition with
an upper bound of d if any sequence {uk}k∈N ∈ X that verifies the following conditions has a convergent
subsequence:

• I (uk) is bounded,
• lim

k→+∞
‖I′ (uk)‖X∗ = 0,

• Φ (uk) < d for each k ∈ N,

has a convergent subsequence. If d = ∞, we say that I := Φ − Ψ fulfill the Palais-Smale condition.

In what follows, we recall the following local minimum theorem which plays a crucial role to prove
our main result.

Theorem 2.1. (Theorem 3.1 [5]) Let X be a real Banach space, and let Φ and Ψ be two continuously
Gâteaux differentiable functionals defined on X. Suppose that the following conditions hold

inf
x∈X

Φ = Φ(0) = Ψ(0) = 0.

There exists a positive constant d ∈ R and x ∈ X with 0 < Φ(x) < d such that

sup
x∈Φ−1(]−∞,d])

Ψ(x)

d
<

Ψ(x)
Φ(x)

and for any

λ ∈ Λ :=]
Φ(x)
Ψ(x)

,
d

sup
x∈Φ−1(]−∞,d])

Ψ(x)
[,

Iλ = Φ − λΨ fulfill the (PS )[d]-condition, so for any λ ∈ Λ, there is xλ ∈ Φ−1(]0, d]) such that Iλ (xλ) ≤
Iλ(x) for all x ∈ Φ−1(]0, d]) and I′λ (xλ) = 0.
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The multiplicity result is attributed to the following theorem:

Theorem 2.2. [6] Consider a reflexive real Banach space X, let Φ : X → R be a coercive, continuously
Gâteaux differentiable, and sequentially weakly lower semi-continuous functional. Assume that the
Gâteaux derivative of Φ has a continuous inverse on X∗. Furthermore, let Ψ : X → R be a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact; assume that

(a0) inf
X

Φ = Φ(0) = Ψ(0) = 0.

Suppose that there exist d > 0 and x ∈ X, with d < Φ(x), such that
(a1) supΦ(x)<d Ψ(x)

d < Ψ(x)
Φ(x) ,

(a2) for any λ ∈ Λd :=] Φ(x)
Ψ(x) ,

d
supΦ(x)≤d Ψ(x) [, Iλ := Φ − λΨ is coercive.

Then, for any λ ∈ Λd, Φ − λΨ has at least three distinct critical points in X.

In what follows, let D(x) := sup{D > 0 | B(x,D) ⊆ Ω}, for all x ∈ Ω, where B is the ball centered at
x and of radius D. By the properties of the supremum, we can see easily that there exists x0 ∈ Ω such
that B(x0,R) ⊆ Ω, where R = sup

x∈Ω
D(x).

In the following we consider the following assumptions:
For i = 1, · · ·, n, let Ai : Ω × R → R be a continuous function with the continuous derivative

ai(x, ξ) = ∂ξAi(x, ξ), satisfying
(A0) ai(x, u + v) ≤ ci(ai(x, u) + ai(x, v)),∀u, v ∈ W1,pi(x)

0 (Ω) ∩W2,pi(x)(Ω), for some positive constant
ci, and Ai satisfy the following conditions:

(A1) Ai(x, 0) = 0, Ai(x, ξ) = Ai(x,−ξ) for all x ∈ Ω, ξ ∈ R.
(A2) |ai(x, ξ)| 6 c1i

(
γi(x) + |ξ|pi(x)−1

)
a.e. (x, ξ) ∈ Ω × R, where c1i is a positive constant, γi(x) ∈

L
pi(x)

pi(x)−1 (Ω), pi ∈ C+(Ω).
(A3) |ξ|pi(x) ≤ ai(x, ξ) · ξ ≤ pi(x)Ai(x, ξ) for a.e. x ∈ Ω and all ξ ∈ R.
A typical example of Ai and ai that can be chosen is as follows:

Ai(x, ξ) =
1

pi(x)
|ξ|pi(x) and ai(x, ξ) = |ξ|pi(x)−2ξ.

Remark 2.1. According to condition (A2) and for i = 1, . . . , n, the following inequality holds

|Ai(x, t)| ≤ Ci

(
γi(x)|t| + |t|pi(x)

)
,

for almost every x ∈ Ω and all t ∈ R, where Ci > 0 is a constant.

In this work, we will use the symbol m to represent the value
π

N
2

N
2 Γ( N

2 )
, where Γ denotes the gamma

function.

3. Existence

This section is dedicated to presenting some necessary results that are required to establish the
existence and multiplicity of solutions. We begin by recalling the Hardy-Rellich inequality, which is
stated in the following lemma [17].
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Lemma 3.1 ( [18]). For i = 1, · · ·, n, 1 < si < N/2 and u ∈ W1,si
0 (Ω) ∩W2,si(Ω), we have∫

Ω

|u(x)|si

|x|2si
dx ≤

k
Hsi

∫
Ω

|∆u(x)|sidx,

whereHsi :=
(

N(si−1)(N−2si)
s2

i

)si

.

Now, let’s review the definition of a weak solution to problem (1.1).

Definition 3.1. We say that u ∈ X̃\{0} is a weak solution of problem (1.1) if u = 0 on ∂Ω; then, the
following integral equality is true:

n∑
i=1

∫
Ω

ai (x,∆u) ∆vdx +

n∑
i=1

∫
Ω

θi(x)
|u|si−2 uv
|x|2si

dx

− λ

n∑
i=1

∫
Ω

fi(x, u)vdx = 0,

for every v ∈ X̃.

Let us define the functional Ψ(u) as follows:

Ψ(u) :=
n∑

i=1

∫
Ω

Fi(x, u)dx,

where u ∈ X̃. The Euler-Lagrange functional for problem (1.1) is then given under the condition that
Iλ : X → R:

Iλ(u) = Φ(u) − λΨ(u), for all u ∈ X̃,

where

Φ(u) =

n∑
i=1

∫
Ω

Ai(x,∆u)dx +

n∑
i=1

1
si

∫
Ω

θi(x)
|u(x)|si

|x|2si
dx.

It is evident that condition (a0) of Theorem 2.2 holds. Furthermore, Remark 2.1 ensures that Φ is
well-defined. Additionally, by employing (1.2), we have the following for all u ∈ X̃:

|Fi(x, u)| ≤ ξi(x)|u| +
ci

qi(x)
|u|qi(x),

Therefore, we can write the following:

Ψ(u) ≤
n∑

i=1

(
|ξi(x)|L1(Ω)|u|∞ +

ci

q−i

∫
Ω

(|u|q
+
i + |u|q

−
i )dx

)
.

Using Remark 2.2, we obtain

Ψ(u) ≤
n∑

i=1

(
|ξi(x)|L1(Ω)|u|∞ +

ci

q−i
(cq+

i
q+

i
|∆u|q

+
i

p̃(x) + cq−i
q−i
|∆u|q

−
i

p̃(x))|Ω|
)
.
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Hence, we conclude that Ψ is well-defined. Furthermore, one has

〈Ψ′(u), v〉 := Ψ′(u)[v] =

n∑
i=1

∫
Ω

fi(x, u)vdx,

for all u, v ∈ X̃, and it is compact. In fact, condition ( f ) and the compact embedding X̃ ↪→ Lqi(x)(Ω), 1 <
qi(x) < p∗(x) implies the compactness of Ψ′(u). In fact, let (uk)k ⊂ X̃ be a sequence such that uk ⇀ u.
Noting that the embedding X̃ ↪→ Lqi(x)(Ω), 1 < qi(x) < p∗(x) is compact, there is a subsequence,
still denoted by (uk)k, such that uk → u, strongly in Lqi(x)(Ω). We claim that the Nemytskii operator
N fi(u)(x) = fi(x, u(x)) is continuous since fi : Ω × R → R is a Carathéodory function satisfying ( f );

thus, N fi(uk) → N fi(u) in L
qi(x)

qi(x)−1 (Ω). In view of the Hölder’s inequality mentioned in (2.1) and the
compact embedding X̃ ↪→ Lqi(x)(Ω), 1 < qi(x) < p∗(x), for all v ∈ X̃, one has

|Ψ′(uk)(v) − Ψ′(u)(v)| = |
n∑

i=1

( ∫
Ω

fi(x, uk)vdx −
∫

Ω

fi(x, u)vdx
)
|

≤

n∑
i=1

∫
Ω

(
|( fi(x, uk) − fi(x, u))v|

)
dx

≤

n∑
i=1

(
2|N fi(uk) − N fi(u)| qi(x)

qi(x)−1
|v|qi(x)

)
≤

n∑
i=1

(
2ki|N fi(uk) − N fi(u)| qi(x)

qi(x)−1
|∆v| p̃(x)

)
,

where cqi is the embedding constant of the embedding X̃ ↪→ Lqi(x)(Ω), 1 < qi(x) < p∗(x). Thus Ψ′(uk)→
Ψ′(u) in X̃∗, i.e., Ψ′ is completely continuous, thus Ψ′ is compact.

Moreover, by using Proposition 2.3 and the hypothesis (A3) for u ∈ X̃ with ‖u‖ ≥ 1, one has

Φ(u) ≥
∫

Ω

1
p̃(x)
|∆u| p̃(x)dx ≥

1
p̃+
ρp̃(x)(u) ≥

1
p̃+
|∆u| p̃

−

p̃(x) = ‖u‖ p̃− , (3.1)

since p̃− > 1, we deduce that Φ is coercive. On the other hand Φ is sequentially weakly lower
semicontinuous as sum of sequentially weakly lower semicontinuous functionals and of class C1 on X̃
for the same reason, for more details one can see [7] and note that

Φ′(u))[v] =

n∑
i=1

∫
Ω

(
ai(x,∆u) · ∆v +

n∑
i=1

θi(x)
|u(x)|si−2uv
|x|2si

)
dx,

for any v ∈ X̃. Moreover, we have the following proposition:

Proposition 3.1. Φ′ : X̃ → X̃∗ is uniformly monotonic and admits a continuous inverse in X̃∗ .

Proof. By using the assumption on θi, i ∈ {1, · · ·, n}, one has∫
Ω

θi(x)
|x|2si

(
|u|si−2u − |v|si−2v

)
(u − v)dx ≥

ess infx∈Ω θi(x)
(diam(Ω))2si

∫
Ω

(
|u|si−2u − |v|si−2v

)
(u − v)dx. (3.2)
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17766

Now, let Uβi = {x ∈ Ω : βi(x) ≥ 2} and Vβi = {x ∈ Ω : 1 < βi(x) < 2}; by using the elementary
inequality [19], for i ∈ {1, · · ·, n} and βi > 1, we get that there exists a positive constant Cβi; such that if
βi ≥ 2, then 〈

|x|βi−2x − |y|βi−2y, x − y
〉
≥ Cβi |x − y|β, for βi ≥ 2 (3.3)

and if 1 < βi < 2, then〈
|x|βi−2x − |y|βi−2y, x − y

〉
≥ Cβi

|x − y|2

(|x| + |y|)2−βi
, for 1 < βi < 2, (3.4)

where 〈·, ·〉 denotes the usual inner product in RN . Due to (A0) and by assumptions (A1) and (A3), we
have

〈Φ′(u) − Φ′(v), u − v〉 =

n∑
i=1

∫
Ω

(
ai(x,∆u) − a(x,∆v)

)
· (∆u − ∆v)dx,

+

n∑
i=1

∫
Ω

θi(x)
|x|2si

(
|u|si−2u − |v|si−2v

)
(u − v)dx,

=

n∑
i=1

∫
Ω

(
ai(x,∆u) + a(x,−∆v)

)
· (∆u − ∆v)dx,

+

n∑
i=1

∫
Ω

θi(x)
|x|2si

(
|u|si−2u − |v|si−2v

)
(u − v)dx,

≥

n∑
i=1

1
ci

∫
Ω

a(x,∆u − ∆v) · (∆u − ∆v)dx,

≥

n∑
i=1

1
ci

∫
Ω

|∆u − ∆v|pi(x)dx,

≥ min
1≤i≤n

1
ci

n∑
i=1

∫
Ω

|∆(u − v)|pi(x)dx,

To end our proof let p̌ = inf
x∈Ω

(min
1≤i≤n

(pi(x)), since |∆(u − v)|pi(x) ∈ L1(Ω), we shall distinguish two cases.

First case: Suppose that |∆(u − v)| ≥ 1, for all 1 ≤ i ≤ n, which yields,

〈Φ′(u) − Φ′(v), u − v〉 ≥ min
1≤i≤n

1
ci

∫
Ω

n∑
i=1

|∆(u − v)| p̌dx

≥ min
1≤i≤n

1
ci
‖u − v‖ p̌. (3.5)

Second case: Suppose that there exists 1 ≤ i0 ≤ n, such that, |∆(ui0 − vi0)| < 1; thus,

〈Φ′(u) − Φ′(v), u − v〉 ≥ min
1≤i≤n

1
ci

∫
Ω

|∆(ui0 − vi0)|
pi0(x)dx

≥ min
1≤i≤n

1
ci

∫
Ω

|∆(ui0 − vi0)|
p−i0 dx
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≥ min
1≤i≤n

1
ci
‖ui0 − vi0‖

p−i0 . (3.6)

Now, by adding (3.5) and (3.6), we can deduce that Φ′ is uniformly monotonic Theorem 26(A)(d)
of [20] ends the proof. �

Proposition 3.2. Φ′ satisfies the condition (S )+, which means that, if uk ⇀ u and limk→+∞〈Φ
′(uk) −

Φ′(u), uk − u〉 ≤ 0, then uk → u (strongly).

Proof. Since Φ′ is uniformly monotone, so due to [20, Example 27.2(b)], Φ′ satisfy the condition
(S )+. �

Remark 3.1. Under assumptions (A2) and (A3), one has

1
p̃+

[
|∆u| p̃(x)] p̃ ≤ Φ(u) ≤ K̂

n∑
i=1

(
|∆u| p̃(x) +

[
|∆u| p̃(x)

]pi + |∆u|si
p̃(x)

)
,

where

K̂ = max
1≤i≤n

{
Cicpi ,Cicpi

pi
‖γi‖ pi(x)

pi(x)−1
, csi

si
k
|θi|∞

siHsi

}
.

Proof. By using assumptions (A2), (A3), Proposition 2.3, Lemma 3.1 and finally Proposition 2.2 we
have

1
p̃+

[
|∆u| p̃(x)] p̃ ≤

1
p̃+

∫
Ω

|∆u| p̃(x) dx,

≤ Φ (u)

=

n∑
i=1

∫
Ω

Ai (x,∆u) dx +

n∑
i=1

∫
Ω

θi(x)
|u|si

si|x|2si
dx,

≤

n∑
i=1

(
Ci

∫
Ω

γi(x)|∆u|dx + Ci

∫
Ω

|∆u|pi(x)dx +
1
si

∫
Ω

θi(x)
|u(x)|si

|x|2si
dx

)
,

≤

n∑
i=1

(
Ci|γi(x)| pi(x)

pi(x)−1
|∆u|pi(x) + Ci

[
|∆u|pi(x)

]pi +
k

siHsi

|θi|∞|∆u|si
pi(x)

)
,

≤

n∑
i=1

(
Cicpi |γi(x)| pi(x)

pi(x)−1
|∆u|p̃(x) + Cicpi

pi

[
|∆u| p̃(x)

]pi +
csi

sik
siHsi

|θi|∞|∆u|si
p̃(x)

)
,

≤ K̂
n∑

i=1

(
|∆u|p̃(x) +

[
|∆u| p̃(x)

]pi + |∆u|si
p̃(x)

)
.

where

K̂ = max
1≤i≤n

{
Cicpi ,Cicpi

pi
‖γi‖ pi(x)

pi(x)−1
, csi

si
k
|θi|∞

siHsi

}
,

this ends the proof. �
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Remark 3.2. For u ∈ X̃\{0}. If I′λ(u) = 0, we have

n∑
i=1

∫
Ω

ai (x,∆u) ∆vdx +

n∑
i=1

∫
Ω

θi(x)
|u|si−2 uv
|x|2si

dx

− λ

n∑
i=1

∫
Ω

fi(x, u)vdx = 0,

for any v ∈ X̃\{0}, which assures that the critical points of Iλ are exactly weak solutions of
problem (1.1).

Lemma 3.2. Iλ fulfill the Palais-Smale condition for any λ > 0.

Proof. Let {uk} ⊆ X̃ be a Palais-Smale sequence; so, one has

sup
k

Iλ (uk) < +∞ and lim
k→+∞

∥∥∥I′λ (uk)
∥∥∥

X̃∗
−→ 0. (3.7)

Let us show that {uk} ⊆ X contains a convergent subsequence. By the Hölder inequality, Proposition 2.4
and Remark 2.2, we have

〈Ψ′(u), u〉 =

n∑
i=1

∫
Ω

fi(x, u)udx

≤

n∑
i=1

(
|ξi(x)|L1(Ω)|u|∞ +

ci

q−i
(cq+

i
q+

i
|∆u|q

+
i

p̃(x) + cq−i
q−i
|∆u|q

−
i

p̃(x))|Ω|
)

≤

n∑
i=1

(
c0|ξi(x)|L1(Ω)|∆u| p̃(x) +

ci

q−i
(cq+

i
q+

i
|∆u|q

+
i

p̃(x) + cq−i
q−i
|∆u|q

−
i

p̃(x))|Ω|
)
.

So, for k large enough, by assumption (A3) and Proposition 2.3, one has〈
I′λ (uk) , uk

〉
=

〈
Φ′λ (uk) , uk

〉
− λ

〈
Ψ′λ (uk) , uk

〉
≥

[
|∆uk| p̃(x)

]
p̃ − λ

n∑
i=1

(
c0|ξi(x)|L1(Ω)|∆uk| p̃(x) +

ci

q−i
(cq+

i
q+

i
|∆uk|

q+
i

p̃(x) + cq−i
q−i
|∆uk|

q−i
p̃(x))|Ω|

)
.

Moreover, by using (3.7), we have

[
|∆uk|p̃(x)

]
p̃ ≤

n∑
i=1

(
c0|ξi(x)|L1(Ω)|∆uk| p̃(x) +

ci

q−i
(cq+

i
q+

i
|∆uk|

q+
i

p̃(x) + cq−i
q−i
|∆uk|

q−i
p̃(x))|Ω|

)
.

Let us assume that lim
k→+∞

|∆uk|p̃(x) = +∞ and divide by |∆uk|
q+

i
p̃(x) since q+

i < p̃−, for all 1 ≤ i ≤ n, we

obtain an absurdity, then {uk} is bounded, since X̃ is a reflexive separable Banach space, then, passing
to a subsequence if necessary, we can assume that uk ⇀ u. By Proposition 3.2, uk → u (strongly) in X
and so Iλ satisfies the Palais-Smale condition. �

Our existence result is as follows:
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Theorem 3.1. For i = 1, · · ·, n, let ai : Ω × R → R be a potential which satisfies the hypotheses
(A0)− (A3) and let fi : Ω×R→ R be a Carathéodory function which satisfies condition ( f ) and exists
such that

ess inf
x∈Ω

Fi(x, t) :=


ess infx∈Ω

∫ t

0
fi0(x, s)ds > 0, for some, i0 ∈ {1, · · ·, n},

ess infx∈Ω

∫ t

0
fi(x, s)ds ≥ 0, for i , i0,

(3.8)

for all t ∈ [0, h], where h is a non-negative constant.
Suppose that there exist d, δ > 0 such that

K̂
n∑

i=1

[ 2δN

R2 −
(

R
2

)2

]pi
+

 2δN

R2 −
(

R
2

)2


si

+

 2δN

R2 −
(

R
2

)2


 m

(
RN −

(R
2

)N)
< d, (3.9)

then, for any λ ∈]Aδ, Bd[, with

Aδ :=

(
2N − 1

)
K̂

n∑
i=1

[ 2δN

R2 −
(

R
2

)2

]pi
+

 2δN

R2 −
(

R
2

)2


si

+

 2δN

R2 −
(

R
2

)2




n∑
i=1

ess inf
x∈Ω

Fi(x, h)

and

Bd :=
d

n∑
i=1

(
c0|ξi(x)|L1(Ω)

[
p̃+d

] 1
p̃

+
ci

q−i
(cq+

i
q+

i

([
p̃+d

] 1
p̃
)q+

i
+ cq−i

q−i

([
p̃+d

] 1
p̃
)q−i )|Ω|

) ,
Problem (1.1) has at least one nontrivial weak solution.

Proof. We try to prove our existence result by using Theorem 2.1. For this purpose, we have to show
that all conditions of Theorem 2.1 are met. To begin and for a given λ > 0, we mention that, given
from Lemma 3.2, the functional Iλ satisfies the (PS )[d] condition. Let d > 0, δ > 0 be as in (3.9) and
let w ∈ X defined by

w(x) :=


0, x ∈ Ω\B

(
x0,R

)
,

δ, x ∈ B
(
x0, R

2

)
,

δ

R2−( R
2 )2

R2 −

N∑
k=1

(
xk − x0

k

)2
 , x ∈ B

(
x0,R

)
\B

(
x0, R

2

)
,

where x = (x1, . . . , xN) ∈ Ω. Then,

N∑
k=1

∂2w
∂x2

k

(x) =

0, x ∈
(
Ω\B

(
x0,R

))
∪ B

(
x0, R

2

)
− 2δN

R2−( R
2 )2 , x ∈ B

(
x0,R

)
\B

(
x0, R

2

)
.
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So, by applying Remark 3.1, one has

1
p̃+

[ 2δN

R2 −
(

R
2

)2

]
p̃
m

(
RN −

(R
2

)N)
< Φ(w)

≤ K̂
n∑

i=1

[ 2δN

R2 −
(

R
2

)2

]pi
+

 2δN

R2 −
(

R
2

)2


si

+

 2δN

R2 −
(

R
2

)2


 m

(
RN −

(R
2

)N)
.

So, Φ(w) < d. On the other hand, one has

Ψ(w) ≥
n∑

i=1

∫
B(x0, R

2 )
Fi(x,w)dx ≥ m

(R
2
)N

n∑
i=1

ess inf
x∈Ω

Fi(x, h), (3.10)

then, we deduce that

Ψ(w)
Φ(w)

>

n∑
i=1

ess inf
x∈Ω

Fi(x, h)

(2N − 1) K̂
n∑

i=1

[ 2δN

R2 −
(

R
2

)2

]pi
+

 2δN

R2 −
(

R
2

)2


si

+

 2δN

R2 −
(

R
2

)2



.

Using Remark 2.3, for any u ∈ Φ−1((−∞, d]), we have

1
p̃+

[
|∆u|p̃(x)

]
p̃
≤ Φ(u) ≤ d.

Therefore
|∆u| p̃(x) ≤

[
p̃+Φ(u)

] 1
p̃
≤

[
p̃+d

] 1
p̃
.

Hence, from Proposition 2.4 and Remark 3.1, we deduce that

Ψ(u) ≤
n∑

i=1

(
|ξi(x)|L1(Ω)|u|∞ +

ci

q−i
(cq+

i
q+

i
|∆u|q

+
i

p̃(x) + cq−i
q−i
|∆u|q

−
i

p̃(x))|Ω|
)
,

≤

n∑
i=1

(
c0|ξi(x)|L1(Ω)|∆u| p̃(x) +

ci

q−i
(cq+

i
q+

i
|∆u|q

+
i

p̃(x) + cq−i
q−i
|∆u|q

−
i

p̃(x))|Ω|
)
.

So

sup
Φ(u)≤d

Ψ(u) ≤
n∑

i=1

(
c0|ξi(x)|L1(Ω)

[
p̃+d

] 1
p̃

+
ci

q−i
(cq+

i
q+

i

([
p̃+d

] 1
p̃
)q+

i
+ cq−i

q−i

([
p̃+d

] 1
p̃
)q−i )|Ω|

)
.

As a result, the criteria of Theorem 2.1 are confirmed. So, for any

λ ∈]Aδ, Bd[⊆
]Φ(w)
Ψ(w)

,
d

supu∈Φ−1(]−∞,d]) Ψ(u)

[
,

Iλ admits at least one non-zero critical point, which is the problem’s weak solution. �
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4. Triple solutions

Theorem 4.1. For any λ ∈]Aδ, Bd [ , Aδ and Bd are those of Theorem 3.1, i.e.,

Aδ :=

(
2N − 1

)
K̂

n∑
i=1

[ 2δN

R2 −
(

R
2

)2

]pi
+

 2δN

R2 −
(

R
2

)2


si

+

 2δN

R2 −
(

R
2

)2




n∑
i=1

ess inf
x∈Ω

Fi(x, h)

and
Bd :=

d
n∑

i=1

(
c0|ξi(x)|L1(Ω)

[
p̃+d

] 1
p̃

+
ci

q−i
(cq+

i
q+

i

([
p̃+d

] 1
p̃
)q+

i
+ cq−i

q−i

([
p̃+d

] 1
p̃
)q−i )|Ω|

) ,
Problem (1.1) admits at least three weak solutions.

Proof. Note that Φ and Ψ satisfy the regularity assumptions of Theorem 2.2; let us verify conditions
(i) and (ii) of this theorem. For this purpose, let

1
p̃+

[ 2δN

R2 −
(

R
2

)2

]
p̃
m

(
RN −

(R
2

)N)
= d

and let w ∈ X be as mentioned above, that is

w(x) :=


0 x ∈ Ω\B

(
x0,R

)
,

δ x ∈ B
(
x0, R

2

)
,

δ

R2−( R
2 )2

R2 −

N∑
k=1

(
xk − x0

k

)2
 x ∈ B

(
x0,R

)
\B

(
x0, R

2

)
.

So, by applying assumption (A3) and Remark 3.1, one has

Φ(w) ≥
n∑

i=1

∫
Ω

Ai(x,∆w)dx >
1
p̃+

[ 2δN

R2 −
(

R
2

)2

]
p̃
m

(
RN −

(R
2

)N)
= d.

Therefore, the assumption (i) of Theorem 2.2 holds. Let us show that Iλ is coercive for any λ > 0. By
using (3.11), one has

Ψ(u) ≤
n∑

i=1

(
c0|ξi(x)|L1(Ω)|∆u| p̃(x) +

ci

q−i
(cq+

i
q+

i
|∆u|q

+
i

p̃(x) + cq−i
q−i
|∆u|q

−
i

p̃(x))|Ω|
)
.

Then, from Remark 3.1, 1
p̃+

[
|∆u|p̃(x)

]
p̃
≤ Φ(u). So,

Iλ(u) ≥
1
p̃+

[
|∆u| p̃(x)

]
p̃ −

n∑
i=1

(
c0|ξi(x)|L1(Ω)|∆u| p̃(x) +

ci

q−i
(cq+

i
q+

i
|∆u|q

+
i

p̃(x) + cq−i
q−i
|∆u|q

−
i

p̃(x))|Ω|
)
,

where p̃+ = sup
x∈Ω

p̃(x); by using p̃− > q+
i > 1, for all 1 ≤ i ≤ n, we deduce that Iλ is coercive;

consequently condition (ii) is satisfied, which assures that all assumptions of Theorem 4.1 are satisfied.
So, for any λ ∈]Aδ, Bd [ , Iλ has at least three distinct critical points which represents the weak solutions
of problem (1.1). �
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5. Conclusions

The main objective of this paper was to establish the existence of solutions to the coupled system
of Eq (1.1), which has significant implications for both theoretical analysis and practical applications.
Using a local minimum theorem and its variants, we are able to prove the existence of one non-zero
weak solution and three distinct weak solutions. This is an important result, as it demonstrates the
solvability of this system of equations under the stated assumptions. The findings of this work can
contribute to the understanding of such systems and their potential applications in various fields.
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