Processing math: 39%
Research article Special Issues

Soliton dynamics in the (2+1)-dimensional Nizhnik-Novikov-Veselov system via the Riccati modified extended simple equation method

  • The current study employs a transformation-based analytical technique, namely Riccati modified extended simple equation method (RMESEM) to construct and examine soliton phenomena in a prominent (2+1)-dimensional mathematical model namely Nizhnik-Novikov-Veselov system (NNVS), which has potential applications in exponentially localized structure interactions. The suggested RMESEM uses a variable transformation to turn the desired NNVS into a nonlinear ordinary differential equation (NODE). The resulting NODE is then assumed to have a closed-form solution, converting it into an algebraic system of equations. When the resulting algebraic system is dealt with RMESEM's strategy using Maple, a range of dark and bright soliton solutions in the form of rational, exponential, periodic, hyperbolic and rational-hyperbolic functions are revealed. Some 3D, contour and 2D graphs are plotted for visual representations of these soliton solutions that demonstrate their versatility. The findings deepen our understanding of the NNVS's dynamics, shedding light on its behavior and potential uses.

    Citation: Naveed Iqbal, Meshari Alesemi. Soliton dynamics in the (2+1)-dimensional Nizhnik-Novikov-Veselov system via the Riccati modified extended simple equation method[J]. AIMS Mathematics, 2025, 10(2): 3306-3333. doi: 10.3934/math.2025154

    Related Papers:

    [1] Noor Alam, Mohammad Safi Ullah, Jalil Manafian, Khaled H. Mahmoud, A. SA. Alsubaie, Hamdy M. Ahmed, Karim K. Ahmed, Soliman Al Khatib . Bifurcation analysis, chaotic behaviors, and explicit solutions for a fractional two-mode Nizhnik-Novikov-Veselov equation in mathematical physics. AIMS Mathematics, 2025, 10(3): 4558-4578. doi: 10.3934/math.2025211
    [2] Saima Noor, Azzh Saad Alshehry, Asfandyar Khan, Imran Khan . Analysis of soliton phenomena in (2+1)-dimensional Nizhnik-Novikov-Veselov model via a modified analytical technique. AIMS Mathematics, 2023, 8(11): 28120-28142. doi: 10.3934/math.20231439
    [3] Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661
    [4] Abdulghani R. Alharbi . Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods. AIMS Mathematics, 2023, 8(1): 1230-1250. doi: 10.3934/math.2023062
    [5] Mohammad Alqudah, Safyan Mukhtar, Haifa A. Alyousef, Sherif M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani . Probing the diversity of soliton phenomena within conformable Estevez-Mansfield-Clarkson equation in shallow water. AIMS Mathematics, 2024, 9(8): 21212-21238. doi: 10.3934/math.20241030
    [6] Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu . Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics. AIMS Mathematics, 2025, 10(1): 1859-1881. doi: 10.3934/math.2025086
    [7] Waleed Hamali, Hamad Zogan, Abdulhadi A. Altherwi . Dark and bright hump solitons in the realm of the quintic Benney-Lin equation governing a liquid film. AIMS Mathematics, 2024, 9(10): 29167-29196. doi: 10.3934/math.20241414
    [8] Muhammad Bilal Riaz, Syeda Sarwat Kazmi, Adil Jhangeer, Jan Martinovic . Unveiling solitons and dynamic patterns for a (3+1)-dimensional model describing nonlinear wave motion. AIMS Mathematics, 2024, 9(8): 20390-20412. doi: 10.3934/math.2024992
    [9] Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib . Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532
    [10] Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Wafaa B. Rabie, Farah M. Al-Askar, Wael W. Mohammed . New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. AIMS Mathematics, 2024, 9(9): 26166-26181. doi: 10.3934/math.20241278
  • The current study employs a transformation-based analytical technique, namely Riccati modified extended simple equation method (RMESEM) to construct and examine soliton phenomena in a prominent (2+1)-dimensional mathematical model namely Nizhnik-Novikov-Veselov system (NNVS), which has potential applications in exponentially localized structure interactions. The suggested RMESEM uses a variable transformation to turn the desired NNVS into a nonlinear ordinary differential equation (NODE). The resulting NODE is then assumed to have a closed-form solution, converting it into an algebraic system of equations. When the resulting algebraic system is dealt with RMESEM's strategy using Maple, a range of dark and bright soliton solutions in the form of rational, exponential, periodic, hyperbolic and rational-hyperbolic functions are revealed. Some 3D, contour and 2D graphs are plotted for visual representations of these soliton solutions that demonstrate their versatility. The findings deepen our understanding of the NNVS's dynamics, shedding light on its behavior and potential uses.



    Nonlinear partial differential equations (NPDEs) are widely used in various disciplines, including mathematical engineering and physics [1,2,3,4,5]. The explicit solutions of NPDEs are a key component of nonlinear scientific research. Several effective techniques have been developed to analytically solve NPDEs, including the Bäcklund transformation method [6], the inverse scattering transform [7], the Darboux transformation [8], the (G'/G)-expansion method [9,10], the exp-function and Jacobi elliptic function method [11,12,13], the Riccati mapping method [14], the Hirota bilinear method [15], the unified method and its generalized form [16,17], the sech-function method [18], extended direct algebraic method (EDAM) [19]. It is important to recognize that while these methods greatly enhance our understanding of soliton dynamics and help us relate them to the frameworks that explain phenomena, they may also have drawbacks and shortcomings (such as the seven common errors) [20,21]. Furthermore, many of these techniques are based on the Riccati equation [22] which are helpful for analyzing soliton phenomena in nonlinear models, considering that the Riccati equation has solitary solutions [23].

    The study of nonlinear differential equations and their solutions has been a cornerstone of mathematical physics, with diverse applications across disciplines. For example, Kai and Yin explored Gaussian traveling waves in Schrodinger equations and soliton molecules in Sharma-Tasso-Olver-Burgers equations, respectively, highlighting intricate wave dynamics [24,25]. He and Kai [26] further analyzed wave structures and chaotic behaviors in Kudryashov's equation, while Xie et al. [27] examined fractional damping in Duffing systems.

    Soliton solutions have garnered a lot of attention recently considering that they have applications in a variety of nonlinear settings, such as nonlinear optics, shallow-water waves, Bose-Einstein condensates and plasma [28,29,30,31,32,33]. For example, analyses in detail the soliton solutions for several well-known NPDEs, including the Sine-Gordon equation, nonlinear Schrödinger equation, and Korteweg-de Vries (KdV) equations in [34]. Freeman's work [35] shows soliton solutions for three significant nonlinear evolution equations namely nonlinear Schrödinger equation, Kadomtsev-Petviashvili equation and Davey-Stewartson equation using Wronskian determinants which also highlights challenges in the Davey-Stewartson setting including phase variables associated with soliton count, requiring distinct Bäcklund transformations and demonstrates the intricacy of the soliton solutions of these equations. Javeed et al. [36] claim that the exponential function technique, which is based on a series of exponential functions, may be used to precisely solve Burger's equation, KdV equation and Zakharov-Kuznetsov (ZK) equation. By using the dressing approach, Wang et al. were able to correctly extract the three-component coupled Hirota hierarchy in [37]. Tian et al. [38] presented an open study concerning symmetries and the multipliers of conservation law, as well as an efficient and straightforward method for studying the symmetry-preserving discretization for certain types of generalized higher order models. Furthermore, Li et al. [39] provided the N-soliton solutions for the Cauchy problem of the generic n-component nonlinear Schrödinger equations. Additionally, a hypothesis on the fundamental principle of nonlinear wave transmission was put forth. Furthermore, Li et al. have performed some intriguing work using the steepest descent approach to derive the solutions of the Wadati-Konno-Ichikawa equation and the complicated short pulse equation [40]. In addition to proving the soliton resolution conjecture and the asymptotic stability of these equations' solutions, they also resolved the long-time asymptotic behavior of their solutions.

    In this study, we aim for investigating and assessing the soliton solutions for (2+1)-dimensional NNVS. The mathematical representation of NNVM is articulated as [41]:

    st+ϱsyyy+ρsxxx+ςsy+σsx3ϱ(sz)y3ρ(sr)x=0,rysx=0,zxsy=0, (1.1)

    where s=s(x,y,t), r=r(x,y,t) & z=z(x,y,t) and are the components of the dimensionless velocity [42], ρ,ϱ,σ & ς are constant coefficients. NNVS is the only isotropic Lax expansion of the KdV equation currently [43]. The NNVS is a mathematical model for nonlinear dynamics and theoretical physics. It is mostly employed to characterize particular kinds of integrable systems, such as integrable hierarchies and soliton theory. Since its proposal by Nizhnik in the 1980s [44], the model has been the subject of much mathematical physics research. It has applications in fields like fluid dynamics and plasma physics and is helpful in comprehending the behavior of various physical systems. In the realm of incompressible fluids, the NNVS is crucial for phenomena such as long internal waves, shallow-water waves and acoustic waves. A mechanical perturbation in an incompressible fluid that travels as a pressure variation without triggering significant changes in the fluid's density is known as an acoustic wave. Numerous scholars have examined the NNVS using a variety of techniques. For example, Boiti et al. tackled NNVS using inverse scattering transformation [45]. Osman et al. addressed this model using several analytical techniques [46].

    In view of given literature, the primary objective of this work is to employ an efficient transformation-based method, namely RMESEM, for generating new families of soliton solutions for NNVS, including bright and dark soliton solutions. In the context of the NNVS, the recommended RMESEM for producing soliton solutions is incredibly robust because it is straightforward and effective algebraic analytical approach, which does not require complex numerical processes or linearization. Dependability and accuracy are ensured by the method's direct calculations, and its capacity to generate various families of soliton solutions provides important information about the fundamental characteristics of the NNVS model. Because of its simplicity and wide solution space, the RMESEM is also a powerful tool for studying the complex behavior of acoustic waves in the realm of incompressible fluids. Its potential applications cover several fields of shallow-water waves, protracted internal waves, and related disciplines.

    This paper's remaining sections are organized as follows: We outline the operational mechanism of the RMESEM in Section 2. We construct soliton solutions for the NNVS using the RMESEM in Section 3. The dynamics of obtained soliton solutions are graphically represented and discussed in Section 4, An overview and a summary of our investigation's findings are provided in the conclusion section while last section gives an appendix.

    In this section, we outline the RMESEM's working mechanism. Consider the following NPDE:

    E(s,r,z,st,rx,zy,sxrt,zxsy)=0, (2.1)

    where s=s(t,x,y), r=r(t,x,y) & z=z(t,x,y). To solve Eq (2.1), we follow the subsequent procedure:

    First, a variable transformation is performed as:

    s(t,x,y)=S(υ),r(t,x,y)=R(υ),z(t,x,y)=Z(υ),υ=κ(x+yωt). (2.2)

    Equation (2.1) is transformed into the subsequent NODE by this transformation:

    G(S,S,R,R,Z,Z,SR,ZS,RS,)=0, (2.3)

    where the derivatives of S, R, and Z with respect to υ are represented by primes. Sometimes, we integrate Eq (2.3) to meet homogeneous balance criterion.

    Next, we suppose the following series form solution for NODE in (2.3):

    S(υ)=R(υ)=Z(υ)=ηj=0pj(ψ(υ)ψ(υ))j+η1j=0qj(ψ(υ)ψ(υ))j(1ψ(υ)). (2.4)

    In this equation, the parameters pj(j=0,...,η) and qj(j=0,...,η1) represent the unknown constants that need to be discovered later, while ψ(υ) represents the solution to the resulting Riccati equation:

    ψ(υ)=A+Bψ(υ)+C(ψ(υ))2, (2.5)

    where A,B and C are constants.

    Following that, the highest-order derivative and the greatest nonlinear term in Eq (2.3) are balanced homogenously to get the positive integer η required in Eq (2.4).

    Then, when (2.4) is inserted into (2.3) or in the equation that results from the integration of (2.3), all the terms with the same powers of ψ(υ) are brought together. By using this procedure, an equation in terms of ψ(υ) is produced. An algebraic system of equations encoding the parameters pj(j=0,...,η) and qj(j=0,...,η1), along with additional associated parameters, are produced by setting the coefficients in this equation to zero.

    An analytical evaluation of the resultant system of nonlinear algebraic equations is performed using Maple.

    Subsequently, to construct new plethora of soliton solutions for (2.1), given in the corresponding Table 1, we compute and replace the values of unknown parameters with ψ(υ) ((2.5)'s solution) in (2.4).

    Table 1.  Solutions ψ(υ) of Riccati equation in (2.5) and the formation of (ψ(υ)ψ(υ)). Where k1,k2R, χ=B24CA and ζ=cosh(14χυ)sinh(14χυ).
    S. No. Family Constraint(s) ψ(υ) (ψ(υ)ψ(υ))
    1 Trigonometric Solutions χ<0,C0
    B2C+χtan(12χυ)2C, χ(1+(tan(12χυ))2)2(B+χtan(12χυ)),
    B2Cχcot(12χυ)2C, (1+(cot(12χυ))2)χ2(B+χcot(12χυ)),
    B2C+χ(tan(χυ)+(sec(χυ)))2C, χ(1+sin(χυ))sec(χυ)Bcos(χυ)+χsin(χυ)+χ,
    B2C+χ(tan(χυ)(sec(χυ)))2C. χ(sin(χυ)1)sec(χυ)Bcos(χυ)+χsin(χυ)χ.
    2 Hyperbolic Solutions χ>0,C0
    B2Cχtanh(12χυ)2C, (1+(tanh(12χυ))2)χ2(B+χtanh(12χυ)),
    B2Cχ(tanh(χυ)+i(sech(χυ)))2C, χ(1+isinh(χυ))sech(χυ)Bcosh(χυ)+χsinh(χυ)+iχ,
    B2Cχ(tanh(χυ)i(sech(χυ)))2C, χ(1+isinh(χυ))sech(χυ)Bcosh(χυ)χsinh(χυ)+iχ,
    B2Cχ(coth(χυ)+(csch(χυ)))2C. χ(2(cosh(14χυ))21)4ζ(2Bζ+χ).
    3 Rational Solutions
    χ=0 2A(Bυ+2)B2υ, 2υ(Bυ+2),
    χ=0, & B=C=0 υA, 1υ,
    χ=0, & B=A=0 1υC. 1υ.
    4 Exponential Solutions
    C=0, & B=n, A=ln ςnυl, nenυenυl,
    A=0, & B=n, C=ln ςnυ1lςnυ. n1+lenυ.
    5 Rational-Hyperbolic Solutions
    A=0, & B0, C0 Bk1C(cosh(Bυ)sinh(Bυ)+k2), B(sinh(Bυ)cosh(Bυ))cosh(Bυ)+sinh(Bυ)k2,
    B(cosh(Bυ)+sinh(Bυ))C(cosh(Bυ)+sinh(Bυ)+k2). Bk2cosh(Bυ)+sinh(Bυ)+k2.

     | Show Table
    DownLoad: CSV

    In this section, we aim to address NNVS given in Eq (1.1) to construct new families of soliton solution for it using RMESEM. We start with the transformation defined in Eq (2.2) which converts Eq (1.1) into the following NODE's system:

    (ω+ς+σ)S+κ2(ϱ+ρ)S3[ρ(SR)+ϱ(SZ)]=0,κS=κR,κS=κZ. (3.1)

    Integrating all of the equations in (3.1) with respect to υ while keeping the integration constant zero results in:

    (ω+ς+σ)S+κ2(ϱ+ρ)S3[ρ(SR)+ϱ(SZ)]=0,S=R,S=Z. (3.2)

    The following single NODE is obtained by placing the second and third parts of Eq (3.2) in the first part:

    (ω+ς+σ)S+κ2(ϱ+ρ)U3(ρ+ϱ)S2=0. (3.3)

    The principle of homogeneous balance between the nonlinear term S2 and the highest order derivative S yields η+2=2η, which suggests η=2. The following series form solution for Eq (3.3) is obtained by replacing η=2 in Eq (2.4):

    S(υ)=2j=0pj(ψ(υ)ψ(υ))j+1j=0qj(ψ(υ)ψ(υ))j(1ψ(υ)). (3.4)

    We obtain an expression in ψ(υ) by inserting Eq (3.4) in Eq (3.3) and collecting each term with the same powers of ψ(υ). The following algebraic system of nonlinear equations is produced by setting all of the coefficients to zero:

    3ρp22C4+6κ2ϱp2C4+6κ2ρp2C43ϱp22C4=0,
    6ϱp1C3p2+2κ2ϱp1C36ρp1C3p212ρp22BC3+14κ2ϱp2BC312ϱp22BC3+2κ2ρp1C3+14κ2ρp2BC3=0,
    6ρp2C3q1+ςp2C2ωp2C2+8κ2ϱp2AC318ϱp1Bp2C2+10κ2ϱp2B2C23ρp12C212ϱp22AC318ϱp22B2C26ϱp2C3q16ρp0p2C218ρp22B2C26ϱp0p2C2+8κ2ρp2AC3+10κ2ρp2B2C2+3κ2ρp1BC218ρp1Bp2C2+σp2C2+3κ2ϱp1BC212ρp22AC33ϱp12C2=0,
    10κ2ϱp2ABC2+10κ2ρp2ABC2+2σp2BC+2ςp2BC2ωp2BC6ρp0p1C6ρp12BC12ρp22B3C6ρp2C2q06ϱp0p1C6ϱp12BC6ϱp1C2q112ϱp22B3C6ϱp2C2q0+ςp1Cωp1C18ρp1B2p2C+2κ2ρp2B3C+2κ2ϱp1AC2+κ2ϱp1B2C+2κ2ϱp2B3C12ρp0p2BC18ρp1Ap2C236ρp22ABC218ρp2BC2q112ϱp0p2BC18ϱp1Ap2C236ϱp22ABC218ϱp2BC2q1+2κ2ρp1AC2+κ2ρp1B2C18ϱp1B2p2C+σp1C6ρp1C2q1=0,
    2ωp2AC6ρp0p1B+2ςp2AC+4κ2ρp2B2AC6ρp0p2B2+2κ2ϱp1BCA+4κ2ϱp2B2AC36ρp22AB2C+κ2ϱq1B2C12ρp0p2AC12ρp1Bq1C+κ2ρq0BC+2κ2ρq1AC2+κ2ρq1B2C3ϱq12C23ρp12B2+σq1C3ϱp22B43ρp22B4ωp2B2ωq1C+ςp2B2ωp1B6ρp0q1C+σp2B23ϱp12B2+ςq1C3ρq12C2+ςp1B+σp1B6ρp12AC6ρp1B3p26ρp1Cq018ρp22A2C26ϱp0p1B6ϱp0p2B26ϱp0q1C6ϱp1B3p26ϱp1Cq0+4κ2p2A2C2(ρ+ϱ)+κ2ϱq0BC+2κ2ϱq1AC2+2σp2AC18ϱp22A2C218ρp2AC2q118ρp2B2q1C12ρp2BCq012ϱp0p2AC12ϱp1Bq1C36ϱp22AB2C18ϱp2AC2q118ϱp2B2q1C12ϱp2BCq036ρp1Ap2BC36ϱp1Ap2BC+2κ2ρp1BCA+σp0+ςp0ωp03ρp023ϱp026ϱp12AC=0,
    2σp2AB+8κ2ρq1BCA6ϱq0q1C6ρq0q1C6ρq12BC6ϱp0p1A6ϱp0q1B6ϱp12AB6ϱp1Bq06ϱp1B2q112ϱp22AB36ϱp2B2q06ϱp2B3q1+ςp1A+σp1A6ρp0q06ϱp0q0ωp1Aωq1B+ςq1B+σq1B6ϱq12BCωq0+σq0+ςq0+10κ2ϱp2A2BC+8κ2ϱq1BCA36ρp2ABq1C36ϱp2ABq1C+2κ2ρp2B3A+2κ2ρq0AC+κ2ϱp1B2A12ρp1Aq1C+2κ2ϱp2B3A+2κ2ϱq0AC12ρp0p2AB18ρp1A2p2C12ϱp0p2AB18ϱp1A2p2C36ρp22A2BC18ϱp1Ap2B212ϱp1Aq1C36ϱp22A2BC12ϱp2ACq0+2κ2ρp1CA2+κ2ρp1B2A+10κ2ρp2A2BC18ρp1Ap2B2+2κ2ϱp1CA2+2ςp2AB2ωp2AB+κ2ρq0B2+κ2ρq1B3+κ2ϱq0B2+κ2ϱq1B36ρp0p1A6ρp0q1B6ρp12AB6ρp1Bq06ρp1B2q112ρp22AB36ρp2B2q06ρp2B3q112ρp2ACq0=0,
    6ρp0p2A2+3κ2ρp1A2B+10κ2ρp2B2A26ρp0q1A6ρp1Aq012ρp1Aq1B18ρp2A2q1C+8κ2ρp2A3C+3κ2ρq0AB+8κ2ρq1CA2+7κ2ρq1B2A+3κ2ϱp1A2B+σp2A2+σq1A+ςp2A2+ςq1Aωp2A2ωq1A3ϱp12A23ρp12A23ϱq12B23ρq12B212ρp22A3C+10κ2ϱp2B2A2+8κ2ϱp2A3C12ϱp2ABq018ϱp2AB2q118ρp22A2B26ρq0q1B6ϱp0p2A26ϱp0q1A6ϱp1Aq012ϱp22A3C18ϱp22A2B26ϱq0q1B6ϱq12AC+3κ2ϱq0AB+8κ2ϱq1CA2+7κ2ϱq1B2A18ρp1A2p2B12ρp2ABq018ρp2AB2q118ϱp1A2p2B12ϱp1Aq1B18ϱp2A2q1C3ρq023ϱq026ρq12AC=0,
    14κ2ϱp2A3B12ϱp22A3B+12κ2ρq1A2B+2κ2ϱp1A3+2κ2ρq0A26ρp1A2q1+12κ2ϱq1A2B6ϱp2A2q06ρp1A3p218ρp2A2q1B+14κ2ρp2A3B+2κ2ρp1A318ϱp2A2q1B6ϱq0q1A6ρq0q1A6ϱp1A3p26ρp2A2q06ϱq12AB+2κ2ϱq0A212ρp22A3B6ϱp1A2q16ρq12AB=0,

    and

    6κ2ρq1A3+6κ2ϱp2A4+6κ2ϱq1A36ϱp2A3q13ϱq12A23ρq12A23ρp22A46ρp2A3q1+6κ2ρp2A43ϱp22A4=0.

    The ensuing five cases of solutions are provided by using Maple to solve this system:

    Case 1.

    p0=0,p1=0,p2=0,q0=0,q1=2Aκ2,ω=ω,κ=κ,ρ=ρ,ϱ=ϱ,σ=σ,ς=σ+ωκ2χ(ϱ+ρ). (3.5)

    Case 2.

    p0=κ2χ3,p1=0,p2=0,q0=0,q1=2Aκ2,ω=ω,κ=κ,ρ=ρ,ϱ=ϱ,σ=σ,ς=σ+ω+κ2χ(ϱ+ρ). (3.6)

    Case 3.

    p0=0,p1=2κ2B,p2=2κ2,q0=0,q1=2Aκ2,ω=ω,κ=κ,ρ=ρ,ϱ=ϱ,σ=σ,ς=σ+ωκ2χ(ϱ+ρ). (3.7)

    Case 4.

    p0=13κ2χ,p1=2κ2B,p2=2κ2,q0=0,q1=2Aκ2,ω=ω,κ=κ,ρ=ρ,ϱ=ϱ,σ=σ,ς=σ+ω+κ2χ(ϱ+ρ). (3.8)

    Case 5.

    p0=p0,p1=p1,p2=p2,q0=q0,q1=q1,ω=ω,κ=κ,ρ=ρ,ϱ=ρ,σ=σ,ς=ωσ. (3.9)

    The subsequent families of soliton solutions result from assuming Case 1 and using Eqs (2.2) and (3.4) with the corresponding solutions of (2.5) given in Table 1.

    Family 1.1. Given χ<0,C0,

    s1,1(t,x,y)=Aκ2χ(1+(tan(12χυ))2)(12BC+12χtan(12χυ)C)(Bχtan(12χυ)), (3.10)
    s1,2(t,x,y)=Aκ2χ(1+(cot(12χυ))2)(12BC12χcot(12χυ)C)(B+χcot(12χυ)), (3.11)
    s1,3(t,x,y)=2Aκ2χ(1+sin(χυ))(12BC+12χ(tan(χυ)+sec(χυ))C)(cos(χυ))(Bcos(χυ)χsin(χυ)χ), (3.12)

    and

    s1,4(t,x,y)=2Aκ2χ(sin(χυ)1)(12BC+12χ(tan(χυ)sec(χυ))C)(cos(χυ))(Bcos(χυ)χsin(χυ)+χ). (3.13)

    Family 1.2. Given χ>0,C0,

    s1,5(t,x,y)=Aκ2χ(1+(tanh(12χυ))2)(12BC12χtanh(12χυ)C)(B+χtanh(12χυ)), (3.14)
    s1,6(t,x,y)=2Aκ2χ(1+isinh(χυ))(12BC12χ(tanh(χυ)+isech(χυ))C)(cosh(χυ))(Bcosh(χυ)+χsinh(χυ)+iχ), (3.15)
    s1,7(t,x,y)=2Aκ2χ(1+isinh(χυ))(12BC12χ(tanh(χυ)isech(χυ))C)(cosh(χυ))(Bcosh(χυ)+χsinh(χυ)iχ), (3.16)

    and

    s1,8(t,x,y)=12Aκ2χ(2(cosh(14χυ))21)(12BC14χ(tanh(14χυ)coth(14χυ))C)(cosh(14χυ))(sinh(14χυ))(2Bcosh(14χυ)sinh(14χυ)χ). (3.17)

    Family 1.3. Given χ=0,B0,

    s1,9(t,x,y)=8A2κ2B2υ2. (3.18)

    Family 1.4. Given B=n, A=ln(l0) and C=0,

    s1,10(t,x,y)=2lκn2enυ. (3.19)

    The subsequent families of soliton solutions result from assuming Case 2 and using Eqs (2.2) and (3.4) with the corresponding solutions of (2.5) given in Table 1.

    Family 2.1. Given χ<0,C0,

    s2,1(t,x,y)=1/6κ2χ(2C(cos(12χυ))2+3A)C(cos(12χυ))2, (3.20)
    s2,2(t,x,y)=1/6κ2χ(2C+2C(cos(12χυ))2+3A)C(1+(cos(12χυ))2), (3.21)
    s2,3(t,x,y)=13κ2χ((cos(χυ))2C+3A+3Asin(χυ))(cos(χυ))2C, (3.22)

    and

    s2,4(t,x,y)=13κ2χ((cos(χυ))2C+3Asin(χυ)3A)(cos(χυ))2C. (3.23)

    Family 2.2. Given χ>0,C0,

    s2,5(t,x,y)=1/6κ2χ(2C(cosh(12χυ))2+3A)C(cosh(12χυ))2, (3.24)
    s2,6(t,x,y)=1/6κ2χ(2C(cosh(12χυ))2+3A)C(cosh(12χυ))2, (3.25)
    s2,7(t,x,y)=13κ2χ((cosh(χυ))2C+3A+3iAsinh(χυ))(cosh(χυ))2C, (3.26)

    and

    s2,8(t,x,y)=124(8C(cosh(14χυ))4+8C(cosh(14χυ))2+6A(cosh(14χυ))23A)κ2χC((cosh(14χυ))21)(cosh(14χυ))2. (3.27)

    Family 2.3. Given χ=0,B0,

    s2,9(t,x,y)=13κ2χ+8A2κ2B2υ2. (3.28)

    Family 2.4. Given B=n, A=ln(l0) and C=0,

    s2,10(t,x,y)=13κ2χ+2lAκn2enυ. (3.29)

    The subsequent families of soliton solutions result from assuming Case 3 and using Eqs (2.2) and (3.4) with the corresponding solutions of (2.5) given in Table 1.

    Family 3.1. Given χ<0,C0,

    s3,1(t,x,y)=κ2Bχ(1+(tan(12χυ))2)Bχtan(12χυ)+12κ2χ2(1+(tan(12χυ))2)2(Bχtan(12χυ))2Aκ2χ(1+(tan(12χυ))2)(12BC+12χtan(12χυ)C)(Bχtan(12χυ)), (3.30)
    s3,2(t,x,y)=κ2Bχ(1+(cot(12χυ))2)B+χcot(12χυ)+12κ2χ2(1+(cot(12χυ))2)2(B+χcot(12χυ))2Aκ2χ(1+(cot(12χυ))2)(12BC12χcot(12χυ)C)(B+χcot(12χυ)), (3.31)
    s3,3(t,x,y)=2κ2Bχ(1+sin(χυ))cos(χυ)(Bcos(χυ)χsin(χυ)χ)+2κ2χ2(1+sin(χυ))2(cos(χυ))2(Bcos(χυ)χsin(χυ)χ)22Aκ2χ(1+sin(χυ))(12BC+12χ(tan(χυ)+sec(χυ))C)(cos(χυ))(Bcos(χυ)χsin(χυ)χ), (3.32)

    and

    s3,4(t,x,y)=2κ2Bχ(sin(χυ)1)cos(χυ)(Bcos(χυ)χsin(χυ)+χ)+2κ2χ2(sin(χυ)1)2(cos(χυ))2(Bcos(χυ)χsin(χυ)+χ)2+2Aκ2χ(sin(χυ)1)(12BC+12χ(tan(χυ)sec(χυ))C)(cos(χυ))(Bcos(χυ)χsin(χυ)+χ). (3.33)

    Family 3.2. Given χ>0,C0,

    s3,5(t,x,y)=κ2Bχ(1+(tanh(12χυ))2)B+χtanh(12χυ)+12κ2χ2(1+(tanh(12χυ))2)2(B+χtanh(12χυ))2+Aκ2χ(1+(tanh(12χυ))2)(12BC12χtanh(12χυ)C)(B+χtanh(12χυ)), (3.34)
    s3,6(t,x,y)=2κ2Bχ(1+isinh(χυ))cosh(χυ)(Bcosh(χυ)+χsinh(χυ)+iχ)+2κ2χ2(1+isinh(χυ))2(cosh(χυ))2(Bcosh(χυ)+χsinh(χυ)+iχ)2+2Aκ2χ(1+isinh(χυ))(12BC12χ(tanh(χυ)+isech(χυ))C)(cosh(χυ))(Bcosh(χυ)+χsinh(χυ)+iχ), (3.35)
    s3,7(t,x,y)=2κ2Bχ(1+isinh(χυ))cosh(χυ)(Bcosh(χυ)+χsinh(χυ)iχ)+2κ2χ2(1+isinh(χυ))2(cosh(χυ))2(Bcosh(χυ)+χsinh(χυ)iχ)22Aκ2χ(1+isinh(χυ))(12BC12χ(tanh(χυ)isech(χυ))C)(cosh(χυ))(Bcosh(χυ)+χsinh(χυ)iχ), (3.36)

    and

    s3,8(t,x,y)=12κ2Bχ(2(cosh(14χυ))21)cosh(14χυ)sinh(14χυ)(2Bcosh(14χυ)sinh(14χυ)χ)+18κ2χ2(2(cosh(14χυ))21)2(cosh(14χυ))2(sinh(14χυ))2(2Bcosh(14χυ)sinh(14χυ)χ)212Aκ2χ(2(cosh(14χυ))21)(12BC14χ(tanh(14χυ)coth(14χυ))C)(cosh(14χυ))(sinh(14χυ))(2Bcosh(14χυ)sinh(14χυ)χ). (3.37)

    Family 3.3. Given χ=0,B0,

    s3,9(t,x,y)=4κ2Bυ(Bυ+2)+8κ2υ2(Bυ+2)28A2κ2B2υ2. (3.38)

    Family 3.4. Given χ=0, in case when B=C=0,

    s3,10(t,x,y)=2κ2υ22A2κ2. (3.39)

    Family 3.5. Given χ=0, in case when B=A=0,

    s3,11(t,x,y)=2κ2υ2. (3.40)

    Family 3.6. Given B=n, A=ln(l0) and C=0,

    s3,12(t,x,y)=2κ2n2enυenυl+2κ2n2(enυ)2(enυl)22lκn2nenυ. (3.41)

    Family 3.7. Given B=n, C=ln(l0) and A=0,

    s3,13(t,x,y)=2κ2n(sesυ+sesυ+nυleυ(s+n)ln)esυ1+lenυ+2κ2(sesυ+sesυ+nυleυ(s+n)ln)2(esυ)2(1+lenυ)2. (3.42)

    Family 3.8. Given A=0, C0 and B0,

    s3,14(t,x,y)=2κ2B2(sinh(Bυ)cosh(Bυ))cosh(Bυ)+sinh(Bυ)k2+2κ2B2(sinh(Bυ)cosh(Bυ))2(cosh(Bυ)+sinh(Bυ)k2)2, (3.43)

    and

    s3,15(t,x,y)=2κ2B2k2cosh(Bυ)+sinh(Bυ)+k2+2κ2B2k22(cosh(Bυ)+sinh(Bυ)+k2)2. (3.44)

    The subsequent families of soliton solutions result from assuming Case 4 and using Eqs (2.2) and (3.4) with the corresponding solutions of (2.5) given in Table 1.

    Family 4.1. Given χ<0,C0,

    s4,1(t,x,y)=13κ2χκ2Bχ(1+(tan(12χυ))2)Bχtan(12χυ)+12κ2χ2(1+(tan(12χυ))2)2(Bχtan(12χυ))2Aκ2χ(1+(tan(12χυ))2)(12BC+12χtan(12χυ)C)(Bχtan(12χυ)), (3.45)
    s4,2(t,x,y)=13κ2χκ2Bχ(1+(cot(12χυ))2)B+χcot(12χυ)+12κ2χ2(1+(cot(12χυ))2)2(B+χcot(12χυ))2Aκ2χ(1+(cot(12χυ))2)(12BC12χcot(12χυ)C)(B+χcot(12χυ)), (3.46)
    s4,3(t,x,y)=13κ2χ2κ2Bχ(1+sin(χυ))cos(χυ)(Bcos(χυ)χsin(χυ)χ)+2κ2χ2(1+sin(χυ))2(cos(χυ))2(Bcos(χυ)χsin(χυ)χ)22Aκ2χ(1+sin(χυ))(12BC+12χ(tan(χυ)+sec(χυ))C)(cos(χυ))(Bcos(χυ)χsin(χυ)χ), (3.47)

    and

    \begin{equation} \begin{split} s_{4, 4}(t, x, y) = & \frac{1}{3}\, {\kappa}^{2}\chi+2\, {\frac {{\kappa}^{2}B\chi\, \left( \sin \left( \sqrt {-\chi}\upsilon \right) -1 \right) }{\cos \left( \sqrt {-\chi} \upsilon \right) \left( B\cos \left( \sqrt {-\chi}\upsilon \right) - \sqrt {-\chi}\sin \left( \sqrt {-\chi}\upsilon \right) +\sqrt {-\chi} \right) }}\\ &+2\, {\frac {{\kappa}^{2}{\chi}^{2} \left( \sin \left( \sqrt {-\chi}\upsilon \right) -1 \right) ^{2}}{ \left( \cos \left( \sqrt {- \chi}\upsilon \right) \right) ^{2} \left( B\cos \left( \sqrt {-\chi} \upsilon \right) -\sqrt {-\chi}\sin \left( \sqrt {-\chi}\upsilon \right) +\sqrt {-\chi} \right) ^{2}}}\\ &+\frac{2\, A{\kappa}^{2}\chi\, \left( \sin \left( \sqrt {-\chi}\upsilon \right) -1 \right) \left( -\frac{1}{2}\, { \frac {B}{C}}+\frac{1}{2}\, {\frac {\sqrt {-\chi} \left( \tan \left( \sqrt {-\chi }\upsilon \right) -\sec \left( \sqrt {-\chi}\upsilon \right) \right) } {C}} \right) }{\left( \cos \left( \sqrt {-\chi}\upsilon \right) \right) \left( B\cos \left( \sqrt {-\chi}\upsilon \right) - \sqrt {-\chi}\sin \left( \sqrt {-\chi}\upsilon \right) +\sqrt {-\chi} \right) } . \end{split} \end{equation} (3.48)

    Family 4.2. Given {\chi} > 0, {C}\neq0 ,

    \begin{align} s_{4, 5}(t, x, y) = & \frac{1}{3}\, {\kappa}^{2}\chi+{\frac {{\kappa}^{2}B\chi\, \left( -1+ \left( \tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) \right) ^{2} \right) }{ B+\sqrt {\chi}\tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) }}+\frac{1}{2}\, { \frac {{\kappa}^{2}{\chi}^{2} \left( -1+ \left( \tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) \right) ^{2} \right) ^{2}}{ \left( B+ \sqrt {\chi}\tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) \right) ^{2} }} \\ &+\frac{A{\kappa}^{2}\chi\, \left( -1+ \left( \tanh \left( \frac{1}{2}\, \sqrt {\chi} \upsilon \right) \right) ^{2} \right) \left( -\frac{1}{2}\, {\frac {B}{C}}-\frac{1}{2}\, {\frac {\sqrt {\chi}\tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) }{ C}} \right)}{ \left( B+\sqrt {\chi}\tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) \right) } , \end{align} (3.49)
    \begin{align} s_{4, 6}(t, x, y) = & \frac{1}{3}\, {\kappa}^{2}\chi+2\, {\frac {{\kappa}^{2}B\chi\, \left( -1+i\sinh \left( \sqrt {\chi}\upsilon \right) \right) }{\cosh \left( \sqrt {\chi }\upsilon \right) \left( B\cosh \left( \sqrt {\chi}\upsilon \right) + \sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) +i\sqrt {\chi} \right) }} \\ &+2\, {\frac {{\kappa}^{2}{\chi}^{2} \left( -1+i\sinh \left( \sqrt {\chi}\upsilon \right) \right) ^{2}}{ \left( \cosh \left( \sqrt {\chi}\upsilon \right) \right) ^{2} \left( B\cosh \left( \sqrt {\chi} \upsilon \right) +\sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) +i\sqrt {\chi} \right) ^{2}}} \\ &+\frac{2\, A{\kappa}^{2}\chi\, \left( -1+i\sinh \left( \sqrt {\chi}\upsilon \right) \right) \left( -\frac{1}{2}\, {\frac {B}{ C}}-\frac{1}{2}\, {\frac {\sqrt {\chi} \left( \tanh \left( \sqrt {\chi}\upsilon \right) +i{\rm sech} \left( \sqrt {\chi}\upsilon \right) \right) }{C} } \right)}{ \left( \cosh \left( \sqrt {\chi}\upsilon \right) \right) \left( B\cosh \left( \sqrt {\chi}\upsilon \right) +\sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) +i\sqrt {\chi} \right) } , \end{align} (3.50)
    \begin{align} s_{4, 7}(t, x, y) = & \frac{1}{3}\, {\kappa}^{2}\chi-2\, {\frac {{\kappa}^{2}B\chi\, \left( 1+i\sinh \left( \sqrt {\chi}\upsilon \right) \right) }{\cosh \left( \sqrt {\chi }\upsilon \right) \left( B\cosh \left( \sqrt {\chi}\upsilon \right) + \sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) -i\sqrt {\chi} \right) }} \\ &+2\, {\frac {{\kappa}^{2}{\chi}^{2} \left( 1+i\sinh \left( \sqrt {\chi}\upsilon \right) \right) ^{2}}{ \left( \cosh \left( \sqrt {\chi}\upsilon \right) \right) ^{2} \left( B\cosh \left( \sqrt {\chi} \upsilon \right) +\sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) -i\sqrt {\chi} \right) ^{2}}} \\ &-\frac{2\, A{\kappa}^{2}\chi\, \left( 1+i\sinh \left( \sqrt {\chi}\upsilon \right) \right) \left( -\frac{1}{2}\, {\frac {B}{ C}}-\frac{1}{2}\, {\frac {\sqrt {\chi} \left( \tanh \left( \sqrt {\chi}\upsilon \right) -i{\rm sech} \left( \sqrt {\chi}\upsilon \right) \right) }{C} } \right)}{ \left( \cosh \left( \sqrt {\chi}\upsilon \right) \right) \left( B\cosh \left( \sqrt {\chi}\upsilon \right) +\sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) -i\sqrt {\chi} \right) } , \end{align} (3.51)

    and

    \begin{equation} \begin{split} s_{4, 8}(t, x, y) = & \frac{1}{3}\, {\kappa}^{2}\chi-\frac{1}{2}\, {\frac {{\kappa}^{2}B\chi\, \left( 2\, \left( \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) ^{2}-1 \right) }{\cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \left( 2\, B\cosh \left( \frac{1}{4}\, \sqrt { \chi}\upsilon \right) \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) - \sqrt {\chi} \right) }}\\ &+\frac{1}{8}\, {\frac {{\kappa}^{2}{\chi}^{2} \left( 2\, \left( \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) ^{2}-1 \right) ^{2}}{ \left( \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) ^{2} \left( \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) ^{2} \left( 2\, B\cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) -\sqrt {\chi} \right) ^{2}}}\\ &-\frac{\frac{1}{2}\, A{\kappa}^{2}\chi\, \left( 2\, \left( \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) ^{2}-1 \right) \left( -\frac{1}{2}\, {\frac {B}{C}}-\frac{1}{4}\, {\frac {\sqrt {\chi} \left( \tanh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) -\coth \left( \frac{1}{4}\, \sqrt {\chi }\upsilon \right) \right) }{C}} \right) }{ \left( \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) \left( \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) \left( 2\, B\cosh \left( \frac{1}{4} \, \sqrt {\chi}\upsilon \right) \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) -\sqrt {\chi} \right) } . \end{split} \end{equation} (3.52)

    Family 4.3. Given {\chi} = 0, {B}\neq0 ,

    \begin{equation} \begin{split} s_{4, 9}(t, x, y) = & 4\, {\frac {{\kappa}^{2}B}{\upsilon\, \left( B \upsilon+2 \right) }}+8\, {\frac {{\kappa}^{2}}{{\upsilon}^{2} \left( B \upsilon+2 \right) ^{2}}}-8\, {\frac {{A}^{2}{\kappa}^{2}}{{B}^{2}{ \upsilon}^{2}}} . \end{split} \end{equation} (3.53)

    Family 4.4. Given {\chi} = 0 , in case when {B} = {C} = 0 ,

    \begin{equation} \begin{split} s_{4, 10}(t, x, y) = & 2\, {\frac {{ \kappa}^{2}}{{\upsilon}^{2}}}-2\, {A}^{2}{\kappa}^{2} . \end{split} \end{equation} (3.54)

    Family 4.5. Given {\chi} = 0 , in case when {B} = {A} = 0 ,

    \begin{equation} \begin{split} s_{4, 11}(t, x, y) = & 2\, {\frac {{ \kappa}^{2}}{{\upsilon}^{2}}} . \end{split} \end{equation} (3.55)

    Family 4.6. Given {B} = {n} , {A} = {l}{n}(l\neq0) and {C} = 0 ,

    \begin{equation} \begin{split} s_{4, 12}(t, x, y) = & \frac{1}{3}\, {\kappa}^{2} n-2\, {\frac {{\kappa}^{2}n^2{{\rm e}^{n\upsilon}}}{{ {\rm e}^{n\upsilon}}-l}}\\ &+2\, {\frac {{\kappa}^{2}{n}^{2} \left( { {\rm e}^{n\upsilon}} \right) ^{2}}{ \left( {{\rm e}^{n\upsilon}}-l \right) ^{2}}}-2\, l {\kappa n}^{2}n{{\rm e}^{n\upsilon}} . \end{split} \end{equation} (3.56)

    Family 4.7. Given {B} = {n} , {C} = {l}{n}(l\neq0) and {A} = 0 ,

    \begin{equation} \begin{split} s_{4, 13}(t, x, y) = & \frac{1}{3}\, {\kappa}^{2} n -2\, {\frac {{\kappa}^{2} n \left( -s{{\rm e}^{s \upsilon}}+s{{\rm e}^{s\upsilon+n\upsilon}}l-{{\rm e}^{\upsilon\, \left( s+n \right) }}ln \right) {{\rm e}^{-s\upsilon}}}{-1+l{{\rm e}^ {n\upsilon}}}}\\ &+2\, {\frac {{\kappa}^{2} \left( -s{{\rm e}^{s\upsilon}}+ s{{\rm e}^{s\upsilon+n\upsilon}}l-{{\rm e}^{\upsilon\, \left( s+n \right) }}ln \right) ^{2} \left( {{\rm e}^{-s\upsilon}} \right) ^{2}} { \left( -1+l{{\rm e}^{n\upsilon}} \right) ^{2}}} . \end{split} \end{equation} (3.57)

    Family 4.8. Given {A} = 0 , {C}\neq0 and {B}\neq0 ,

    \begin{equation} \begin{split} s_{4, 14}(t, x, y) = & \frac{1}{3}\, {\kappa}^{2} B-2\, {\frac {{\kappa}^{2}{B}^{2} \left( \sinh \left( B\upsilon \right) -\cosh \left( B\upsilon \right) \right) }{- \cosh \left( B\upsilon \right) +\sinh \left( B\upsilon \right) -k_{{2} }}}\\ &+2\, {\frac {{\kappa}^{2}{B}^{2} \left( \sinh \left( B\upsilon \right) -\cosh \left( B\upsilon \right) \right) ^{2}}{ \left( -\cosh \left( B\upsilon \right) +\sinh \left( B\upsilon \right) -k_{{2}} \right) ^{2}}} , \end{split} \end{equation} (3.58)

    and

    \begin{equation} \begin{split} s_{4, 15}(t, x, y) = & \frac{1}{3}\, {\kappa}^{2} B -2\, {\frac {{\kappa}^{2}{B}^{2}k_{{2}}}{\cosh \left( B\upsilon \right) +\sinh \left( B\upsilon \right) +k_{{2}}}}\\ &+2 \, {\frac {{\kappa}^{2}{B}^{2}{k_{{2}}}^{2}}{ \left( \cosh \left( B \upsilon \right) +\sinh \left( B\upsilon \right) +k_{{2}} \right) ^{2} }} . \end{split} \end{equation} (3.59)

    The subsequent families of soliton solutions result from assuming Case 5 and using Eqs (2.2) and (3.4) with the corresponding solutions of (2.5) given in Table 1.

    Family 5.1. Given {\chi} < 0, {C}\neq0 ,

    \begin{align} s_{5, 1}(t, x, y) = & p_{{0}}+\frac{1}{2}\, {\frac {p_{{1}}\chi\, \left( 1+ \left( \tan \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) \right) ^{2} \right) }{B-\sqrt {-\chi} \tan \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) }}+\frac{1}{4}\, {\frac {p_{{2}}{ \chi}^{2} \left( 1+ \left( \tan \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) \right) ^{2} \right) ^{2}}{ \left( B-\sqrt {-\chi}\tan \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) \right) ^{2}}} \\ &+q_{{0}} \left( -\frac{1}{2}\, {\frac {B}{C}}+\frac{1}{2}\, {\frac {\sqrt {-\chi}\tan \left( \frac{1}{2} \, \sqrt {-\chi}\upsilon \right) }{C}} \right) \\ &+\frac{\frac{1}{2}\, q_{{1}}\chi\, \left( 1+ \left( \tan \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) \right) ^{2} \right) \left( -\frac{1}{2}\, {\frac {B}{C}}+\frac{1}{2}\, {\frac {\sqrt {-\chi}\tan \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) }{C}} \right)}{ \left( B-\sqrt {-\chi}\tan \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) \right) } , \end{align} (3.60)
    \begin{align} s_{5, 2}(t, x, y) = & p_{{0}}+\frac{1}{2}\, {\frac {p_{{1}}\chi\, \left( 1+ \left( \cot \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) \right) ^{2} \right) }{B+\sqrt {-\chi} \cot \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) }}+\frac{1}{4}\, {\frac {p_{{2}}{ \chi}^{2} \left( 1+ \left( \cot \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) \right) ^{2} \right) ^{2}}{ \left( B+\sqrt {-\chi}\cot \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) \right) ^{2}}} \\ &+q_{{0}} \left( -\frac{1}{2}\, {\frac {B}{C}}-\frac{1}{2}\, {\frac {\sqrt {-\chi}\cot \left( \frac{1}{2} \, \sqrt {-\chi}\upsilon \right) }{C}} \right) \\ & +\frac{\frac{1}{2}\, q_{{1}}\chi\, \left( 1+ \left( \cot \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) \right) ^{2} \right) \left( -\frac{1}{2}\, {\frac {B}{C}}-\frac{1}{2}\, {\frac {\sqrt {-\chi}\cot \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) }{C}} \right)}{ \left( B+\sqrt {-\chi}\cot \left( \frac{1}{2}\, \sqrt {-\chi}\upsilon \right) \right) } , \end{align} (3.61)
    \begin{align} s_{5, 3}(t, x, y) = & p_{{0}}+{\frac {p_{{1}}\chi\, \left( 1+\sin \left( \sqrt {-\chi}\upsilon \right) \right) }{\cos \left( \sqrt {-\chi}\upsilon \right) \left( B \cos \left( \sqrt {-\chi}\upsilon \right) -\sqrt {-\chi}\sin \left( \sqrt {-\chi}\upsilon \right) -\sqrt {-\chi} \right) }} \\ &+{\frac {p_{{2}}{ \chi}^{2} \left( 1+\sin \left( \sqrt {-\chi}\upsilon \right) \right) ^{ 2}}{ \left( \cos \left( \sqrt {-\chi}\upsilon \right) \right) ^{2} \left( B\cos \left( \sqrt {-\chi}\upsilon \right) -\sqrt {-\chi}\sin \left( \sqrt {-\chi}\upsilon \right) -\sqrt {-\chi} \right) ^{2}}} \\ &+q_{{0 }} \left( -\frac{1}{2}\, {\frac {B}{C}}+\frac{1}{2}\, {\frac {\sqrt {-\chi} \left( \tan \left( \sqrt {-\chi}\upsilon \right) +\sec \left( \sqrt {-\chi}\upsilon \right) \right) }{C}} \right) \\ &+\frac{q_{{1}}\chi\, \left( 1+\sin \left( \sqrt {-\chi}\upsilon \right) \right) \left( -\frac{1}{2}\, {\frac {B}{C}}+\frac{1}{2} \, {\frac {\sqrt {-\chi} \left( \tan \left( \sqrt {-\chi}\upsilon \right) +\sec \left( \sqrt {-\chi}\upsilon \right) \right) }{C}} \right) }{ \left( \cos \left( \sqrt {-\chi}\upsilon \right) \right) \left( B\cos \left( \sqrt {-\chi}\upsilon \right) -\sqrt {-\chi}\sin \left( \sqrt {-\chi}\upsilon \right) -\sqrt {-\chi} \right) } , \end{align} (3.62)

    and

    \begin{align} s_{5, 4}(t, x, y) = & p_{{0}}-{\frac {p_{{1}}\chi\, \left( \sin \left( \sqrt {-\chi}\upsilon \right) -1 \right) }{\cos \left( \sqrt {-\chi}\upsilon \right) \left( B\cos \left( \sqrt {-\chi}\upsilon \right) -\sqrt {-\chi}\sin \left( \sqrt {-\chi}\upsilon \right) +\sqrt {-\chi} \right) }} \\ &+{\frac { p_{{2}}{\chi}^{2} \left( \sin \left( \sqrt {-\chi}\upsilon \right) -1 \right) ^{2}}{ \left( \cos \left( \sqrt {-\chi}\upsilon \right) \right) ^{2} \left( B\cos \left( \sqrt {-\chi}\upsilon \right) -\sqrt {-\chi}\sin \left( \sqrt {-\chi}\upsilon \right) +\sqrt {-\chi} \right) ^ {2}}} \\ &+q_{{0}} \left( -\frac{1}{2}\, {\frac {B}{C}}+\frac{1}{2}\, {\frac {\sqrt {-\chi} \left( \tan \left( \sqrt {-\chi}\upsilon \right) -\sec \left( \sqrt {- \chi}\upsilon \right) \right) }{C}} \right) \\ & -\frac{q_{{1}}\chi\, \left( \sin \left( \sqrt {-\chi}\upsilon \right) -1 \right) \left( -\frac{1}{2}\, {\frac { B}{C}}+\frac{1}{2}\, {\frac {\sqrt {-\chi} \left( \tan \left( \sqrt {-\chi} \upsilon \right) -\sec \left( \sqrt {-\chi}\upsilon \right) \right) }{ C}} \right) }{ \left( \cos \left( \sqrt {-\chi}\upsilon \right) \right) \left( B\cos \left( \sqrt {-\chi}\upsilon \right) -\sqrt {-\chi} \sin \left( \sqrt {-\chi}\upsilon \right) +\sqrt {-\chi} \right) } . \end{align} (3.63)

    Family 5.2. Given {\chi} > 0, {C}\neq0 ,

    \begin{align} s_{5, 5}(t, x, y) = & p_{{0}}-\frac{1}{2}\, {\frac {p_{{1}}\chi\, \left( -1+ \left( \tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) \right) ^{2} \right) }{B+\sqrt {\chi}\tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) }}+\frac{1}{4}\, {\frac {p_{{2}}{\chi}^ {2} \left( -1+ \left( \tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) \right) ^{2} \right) ^{2}}{ \left( B+\sqrt {\chi}\tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) \right) ^{2}}}\\ &+q_{{0}} \left( -\frac{1}{2}\, { \frac {B}{C}}-\frac{1}{2}\, {\frac {\sqrt {\chi}\tanh \left( \frac{1}{2}\, \sqrt {\chi} \upsilon \right) }{C}} \right)\\ & -\frac{\frac{1}{2}\, q_{{1}}\chi\, \left( -1+ \left( \tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) \right) ^{2} \right) \left( -\frac{1}{2}\, {\frac {B}{C}}-\frac{1}{2}\, {\frac {\sqrt {\chi}\tanh \left( \frac{1}{2} \, \sqrt {\chi}\upsilon \right) }{C}} \right) }{\left( B+\sqrt {\chi}\tanh \left( \frac{1}{2}\, \sqrt {\chi}\upsilon \right) \right) } , \end{align} (3.64)
    \begin{align} s_{5, 6}(t, x, y) = & p_{{0}}-{\frac {p_{{1}}\chi\, \left( -1+i\sinh \left( \sqrt {\chi} \upsilon \right) \right) }{\cosh \left( \sqrt {\chi}\upsilon \right) \left( B\cosh \left( \sqrt {\chi}\upsilon \right) +\sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) +i\sqrt {\chi} \right) }}\\ &+{\frac {p _{{2}}{\chi}^{2} \left( -1+i\sinh \left( \sqrt {\chi}\upsilon \right) \right) ^{2}}{ \left( \cosh \left( \sqrt {\chi}\upsilon \right) \right) ^{2} \left( B\cosh \left( \sqrt {\chi}\upsilon \right) +\sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) +i\sqrt {\chi} \right) ^{ 2}}}\\ &+q_{{0}} \left( -\frac{1}{2}\, {\frac {B}{C}}-\frac{1}{2}\, {\frac {\sqrt {\chi} \left( \tanh \left( \sqrt {\chi}\upsilon \right) +i{\rm sech} \left( \sqrt {\chi}\upsilon \right) \right) }{C}} \right) \\ &-\frac{q_{{1}}\chi\, \left( -1+i\sinh \left( \sqrt {\chi}\upsilon \right) \right) \left( -\frac{1}{2}\, {\frac {B}{C}}-\frac{1}{2}\, {\frac {\sqrt {\chi} \left( \tanh \left( \sqrt {\chi}\upsilon \right) +i{\rm sech} \left( \sqrt {\chi}\upsilon \right) \right) }{C}} \right) }{\left( \cosh \left( \sqrt {\chi} \upsilon \right) \right) \left( B\cosh \left( \sqrt {\chi} \upsilon \right) +\sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) +i\sqrt {\chi} \right)} , \end{align} (3.65)
    \begin{align} s_{5, 7}(t, x, y) = & p_{{0}}+{\frac {p_{{1}}\chi\, \left( 1+i\sinh \left( \sqrt {\chi} \upsilon \right) \right) }{\cosh \left( \sqrt {\chi}\upsilon \right) \left( B\cosh \left( \sqrt {\chi}\upsilon \right) +\sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) -i\sqrt {\chi} \right) }}\\ &+{\frac {p _{{2}}{\chi}^{2} \left( 1+i\sinh \left( \sqrt {\chi}\upsilon \right) \right) ^{2}}{ \left( \cosh \left( \sqrt {\chi}\upsilon \right) \right) ^{2} \left( B\cosh \left( \sqrt {\chi}\upsilon \right) +\sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) -i\sqrt {\chi} \right) ^{ 2}}}\\ &+q_{{0}} \left( -\frac{1}{2}\, {\frac {B}{C}}-\frac{1}{2}\, {\frac {\sqrt {\chi} \left( \tanh \left( \sqrt {\chi}\upsilon \right) -i{\rm sech} \left( \sqrt {\chi}\upsilon \right) \right) }{C}} \right) \\ &+\frac{q_{{1}}\chi\, \left( 1+i\sinh \left( \sqrt {\chi}\upsilon \right) \right) \left( - \frac{1}{2}\, {\frac {B}{C}}-\frac{1}{2}\, {\frac {\sqrt {\chi} \left( \tanh \left( \sqrt {\chi}\upsilon \right) -i{\rm sech} \left( \sqrt {\chi}\upsilon \right) \right) }{C}} \right) }{ \left( \cosh \left( \sqrt {\chi} \upsilon \right) \right) \left( B\cosh \left( \sqrt {\chi} \upsilon \right) +\sqrt {\chi}\sinh \left( \sqrt {\chi}\upsilon \right) -i\sqrt {\chi} \right) } , \end{align} (3.66)

    and

    \begin{equation} \begin{split} s_{5, 8}(t, x, y) = & p_{{0}}+\frac{1}{4}\, {\frac {p_{{1}}\chi\, \left( 2\, \left( \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) ^{2}-1 \right) }{\cosh \left( \frac{1}{4} \, \sqrt {\chi}\upsilon \right) \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \left( 2\, B\cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) -\sqrt {\chi} \right) }}\\ &+ \frac{1}{16}\, {\frac {p_{{2}}{\chi}^{2} \left( 2\, \left( \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) ^{2}-1 \right) ^{2}}{ \left( \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) ^{2} \left( \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) ^{2} \left( 2\, B\cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) -\sqrt {\chi} \right) ^{2}}}\\ &+q_{{0}} \left( -\frac{1}{2}\, {\frac {B}{C}}-\frac{1}{4}\, {\frac {\sqrt {\chi} \left( \tanh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) -\coth \left( \frac{1}{4}\, \sqrt {\chi }\upsilon \right) \right) }{C}} \right) \\ &+\frac{\frac{1}{4}\, q_{{1}}\chi\, \left( 2\, \left( \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) ^{2}-1 \right) \left( -\frac{1}{2}\, {\frac {B}{C}}-\frac{1}{4}\, {\frac {\sqrt {\chi} \left( \tanh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) -\coth \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) }{C}} \right)}{ \left( \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) \left( \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \right) \left( 2\, B \cosh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) \sinh \left( \frac{1}{4}\, \sqrt {\chi}\upsilon \right) -\sqrt {\chi} \right) } . \end{split} \end{equation} (3.67)

    Family 5.3. Given {\chi} = 0, {B}\neq0 ,

    \begin{equation} \begin{split} s_{5, 9}(t, x, y) = & p_{{0}}-2\, {\frac {p_{{1}}}{\upsilon\, \left( B\upsilon+2 \right) }}+4 \, {\frac {p_{{2}}}{{\upsilon}^{2} \left( B\upsilon+2 \right) ^{2}}}\\ &-2 \, {\frac {q_{{0}}A \left( B\upsilon+2 \right) }{{B}^{2}\upsilon}}+4\, { \frac {q_{{1}}A}{{B}^{2}{\upsilon}^{2}}} . \end{split} \end{equation} (3.68)

    Family 5.4. Given {\chi} = 0 , in case when {B} = {C} = 0 ,

    \begin{equation} \begin{split} s_{5, 10}(t, x, y) = & p_{{0}}+{\frac {p_{{1}}}{\upsilon}}+{\frac {p_{{2}}}{{\upsilon}^{2}}}+ q_{{0}}A\upsilon+q_{{1}}A . \end{split} \end{equation} (3.69)

    Family 5.5. Given {\chi} = 0 , in case when {B} = {A} = 0 ,

    \begin{equation} \begin{split} s_{5, 11}(t, x, y) = & p_{{0}}-{\frac {p_{{1}}}{\upsilon}}+{\frac {p_{{2}}}{{\upsilon}^{2}}}- {\frac {q_{{0}}}{C\upsilon}}+{\frac {q_{{1}}}{{\upsilon}^{2}C}} . \end{split} \end{equation} (3.70)

    Family 5.6. Given {B} = {n} , {A} = {l}{n}(l\neq0) and {C} = 0 ,

    \begin{equation} \begin{split} s_{5, 12}(t, x, y) = & p_{{0}}+{\frac {p_{{1}}n{{\rm e}^{n\upsilon}}}{{{\rm e}^{n\upsilon}}-l }}+{\frac {p_{{2}}{n}^{2} \left( {{\rm e}^{n\upsilon}} \right) ^{2}}{ \left( {{\rm e}^{n\upsilon}}-l \right) ^{2}}}+q_{{0}} \left( {{\rm e} ^{n\upsilon}}-l \right) +q_{{1}}n{{\rm e}^{n\upsilon}} . \end{split} \end{equation} (3.71)

    Family 5.7. Given {B} = {n} , {C} = {l}{n}(l\neq0) and {A} = 0 ,

    \begin{equation} \begin{split} s_{5, 13}(t, x, y) = & p_{{0}}+{\frac {p_{{1}} \left( -s{{\rm e}^{s\upsilon}}+s{{\rm e}^{s \upsilon+n\upsilon}}l-{{\rm e}^{\upsilon\, \left( s+n \right) }}ln \right) {{\rm e}^{-s\upsilon}}}{-1+l{{\rm e}^{n\upsilon}}}}\\ &+{\frac {p _{{2}} \left( -s{{\rm e}^{s\upsilon}}+s{{\rm e}^{s\upsilon+n\upsilon}} l-{{\rm e}^{\upsilon\, \left( s+n \right) }}ln \right) ^{2} \left( { {\rm e}^{-s\upsilon}} \right) ^{2}}{ \left( -1+l{{\rm e}^{n\upsilon}} \right) ^{2}}}\\ &+{\frac {q_{{0}}{{\rm e}^{s\upsilon}}}{1-l{{\rm e}^{n \upsilon}}}}+{\frac {q_{{1}} \left( -s{{\rm e}^{s\upsilon}}+s{{\rm e}^ {s\upsilon+n\upsilon}}l-{{\rm e}^{\upsilon\, \left( s+n \right) }}ln \right) {{\rm e}^{-s\upsilon}}{{\rm e}^{s\upsilon}}}{ \left( -1+l{ {\rm e}^{n\upsilon}} \right) \left( 1-l{{\rm e}^{n\upsilon}} \right) }} . \end{split} \end{equation} (3.72)

    Family 5.8. Given {A} = 0 , {C}\neq0 and {B}\neq0 ,

    \begin{equation} \begin{split} s_{5, 14}(t, x, y) = & p_{{0}}+{\frac {p_{{1}}B \left( \sinh \left( B\upsilon \right) -\cosh \left( B\upsilon \right) \right) }{-\cosh \left( B\upsilon \right) + \sinh \left( B\upsilon \right) -k_{{2}}}}+{\frac {p_{{2}}{B}^{2} \left( \sinh \left( B\upsilon \right) -\cosh \left( B\upsilon \right) \right) ^{2}}{ \left( -\cosh \left( B\upsilon \right) +\sinh \left( B\upsilon \right) -k_{{2}} \right) ^{2}}}\\ &-{\frac {q_{{0}}k_{{1 }}B}{C \left( \cosh \left( B\upsilon \right) -\sinh \left( B\upsilon \right) +k_{{2}} \right) }}+{\frac {q_{{1}}{B}^{2} \left( \sinh \left( B\upsilon \right) -\cosh \left( B\upsilon \right) \right) k_{ {1}}}{C \left( \cosh \left( B\upsilon \right) -\sinh \left( B\upsilon \right) +k_{{2}} \right)^2 }} , \end{split} \end{equation} (3.73)

    and

    \begin{equation} \begin{split} s_{5, 15}(t, x, y) = & p_{{0}}+{\frac {p_{{1}}Bk_{{2}}}{\cosh \left( B\upsilon \right) +\sinh \left( B\upsilon \right) +k_{{2}}}}+{\frac {p_{{2}}{B}^{2}{k_{{2}}}^{ 2}}{ \left( \cosh \left( B\upsilon \right) +\sinh \left( B\upsilon \right) +k_{{2}} \right) ^{2}}}\\ &-{\frac {q_{{0}}B \left( \cosh \left( B\upsilon \right) +\sinh \left( B\upsilon \right) \right) }{C \left( \cosh \left( B\upsilon \right) +\sinh \left( B\upsilon \right) +k_{{2} } \right) }}-{\frac {q_{{1}}{B}^{2}k_{{2}} \left( \cosh \left( B \upsilon \right) +\sinh \left( B\upsilon \right) \right) }{C \left( \cosh \left( B\upsilon \right) +\sinh \left( B\upsilon \right) +k_{{2} } \right) ^{2}}} . \end{split} \end{equation} (3.74)

    In above all solutions,

    \upsilon = \kappa (x+y- {\omega} t).

    The several kink solitons found in the system under study are shown graphically in this section. Using the RMESEM, we extract and display a variety of wave patterns, most notably dark and bright kink solitons in 2D, contour, and 3D forms. Different parameter choices provide informative and intelligible graphics. Notably, the work's findings are novel, and to the best of our knowledge, no prior literature has reported the use of these mathematical methodologies to the (2+1) -dimensional NNVS. Our present study is peculiar in that we have discovered novel families of soliton solutions, such as periodic, exponential, rational, hyperbolic, and rational-hyperbolic families. The ability to infer solutions obtained by other analytical techniques, like the tan-method, EDAM, F -expansion method, (G'/G) -expansion method, and numerous others, is another unique advantage of our analytical methodology.

    Axiom 4.1. The following transpires after the setup of {p}_1 = {p}_2 = {q}_1 = 0 in Eq (3.4):

    \begin{equation} {S}({\upsilon}) = \frac{{q}_0}{{\psi}({\upsilon})}. \end{equation} (4.1)

    This displays the closed form solution for the F -expansion, EDAM, and tan-function methods. Thus, attaining {p}_1 = {p}_2 = {q}_1 = 0 , our findings may also provide the solutions generated by the F -expansion technique, EDAM, and tan-function method.

    Axiom 4.2. Similarly, after setting up {q}_0 = {q}_1 = 0 in Eq (3.4) the same solution structure emerges:

    \begin{equation} {S}({\upsilon}) = \sum\limits_{{j} = 0}^{2}{p}_{j} \left(\frac{{\psi}'({\upsilon})}{{\psi}({\upsilon})}\right)^{j}. \end{equation} (4.2)

    This is the series-form solution that is produced by using the (G'/G) -expansion method in conjunction with the Riccati equation.

    Moreover, dark and bright kink solitons are two types of the found kink soliton wave phenomena that are essential to the study of the NNVS and associated mathematical frameworks. The presence of only these two types of kink solitons in NNVS solutions can be attributed to physical characteristics since in exponentially localized interactions, dark and bright kinks likely represent the fundamental building blocks of localized waves, governing energy transport and system stability, symmetry constraints because the inner parameter-dependent symmetry criteria of the KP model, from which NNVS derives, might limit soliton solutions to transitions between different background states and integrability properties as NNVS being derived as an isotropic Lax expansion of the KdV equation inherently restricts its soliton families to stable, localized structures like dark and bright kinks. Each of these two types of kink soliton has unique characteristics and implications in the context of nonlinear wave processes. Abrupt field transitions are a common feature of many physical phenomena, including kink waves. Bright solitons are localized wave packets that exhibit a sudden amplitude change that mimics a kink in the waveform character. Typically, they signify a sudden change from a situation with a smaller amplitude to one with a greater amplitude. Bright kink solitons can help us understand how systems move from one phase to another by modeling phase transitions in a range of physical contexts. On the other hand, dark solitons show a dip in their wave pattern due to a regional decrease in their amplitude. They are solutions to nonlinear wave equations that maintain their shape while traveling at constant speeds. Dark solitons are essential for understanding stability in nonlinear systems. Because of their resistance to disruptions, they are ideal for use in communication technologies where signal dependability is crucial. In physical systems, such as Bose-Einstein condensation or certain fluid dynamics scenarios, dark solitons can be employed to represent regions of low density in a medium. Lastly, dark-bright solitons are composite wave patterns composed of a bright and a dark soliton. They often appear in systems when the interplay of two different wave modes produces a stable configuration. Dark-bright solitons are a balance between attracting and repulsive forces in nonlinear media. Understanding the coexistence and interaction of different wave types is crucial in fields like nonlinear optics and plasma physics, and their study helps with this. In conclusion, understanding nonlinear wave processes requires an understanding of all types of kink soliton discovered. Particularly in fields like stability and wave propagation, their interactions and other unique properties provide valuable insights into a variety of physics applications.

    Moreover, Figure 1 is drawn for dark multiple bell-shaped kink soliton solution s_{1, 5}(t, x, y) given in Eq (3.14) with A = 1, B = 5, C = 4, \kappa = 1, \omega = 3, t = 0 . Figure 2 is drawn for bright kink soliton solution s_{1, 9}(t, x, y) given in Eq (3.18) with A = 4, B = 8, C = 4, \kappa = 0.5e-3, \omega = 0.05, t = 1 . Figure 3 is drawn for bright kink soliton solution s_{2, 2}(t, x, y) given in Eq (3.21) with A = 1, B = 1, C = 1, \kappa = 2, \omega = 0.0015, t = 5 . Figure 4 is drawn for dark kink soliton solution s_{2, 8}(t, x, y) given in Eq (3.27) with A = 8, B = 10, C = 2, \kappa = 0.002, \omega = 0.0075, t = 10 . Figure 5 is drawn for dark multiple bell-shaped kink soliton solution s_{3, 5}(t, x, y) given in Eq (3.34) with A = 4, B = 10, C = 4, \kappa = 0.0065, \omega = 0.0115, t = 20 . Figure 6 is drawn for dark bell-shaped kink soliton solution s_{3, 14}(t, x, y) given in Eq (3.43) with A = 0, B = 5, C = 2, \kappa = 0.085, \omega = 0.0215, t = 50, k_2 = 1 . Figure 7 is drawn for bright kink soliton solution s_{4, 1}(t, x, y) given in Eq (3.45) with A = 1, B = 3, C = 5, \kappa = 0.055, \omega = 0.045, t = 100 . Figure 8 is drawn for bright kink soliton solution s_{4, 13}(t, x, y) given in Eq (3.57) with s = 3, l = 2, A = 0, B = s, C = sl, \kappa = 0.0009, \omega = 0.0005, t = 500 . Figure 9 is drawn for dark-bright or lump-like kink soliton solution s_{5, 8}(t, x, y) given in Eq (3.67) with A = 12, B = 13, C = 3, \kappa = 0.001, \omega = 0.0445, t = 10, p_0 = 0, p_1 = 1, p_2 = 1, q_0 = 2, q_1 = 3 . Figure 10 is drawn for bright kink soliton solution s_{5, 11}(t, x, y) given in Eq (3.70) with A = 0, B = 0, C = 5, \kappa = 0.054, \omega = 0.00035, t = 5, p_0 = 1, p_1 = 2, p_2 = 2, q_0 = 3, q_1 = 5 . In a nutshell, bright kinks can represent areas of elevated density, energy, pressure; these are frequently linked to localized amplification or detrimental interference. These solitons are essential for simulating phenomenon like rogue or shock waves because they represent regions where wave interactions intensify local intensities. Dark kink solitons are frequently used to represent areas of decreased densities or energies in physical systems, such as fluid flow or wave propagation, in the setting of exponentially localized structural interactions in NNVS. These solitons indicate dispersive or dissipative areas, which are helpful in comprehending how energy dissipates in fluids or plasmas.

    Figure 1.  The a. 3D, b. contour and c. 2D ( y = 0 ) plots of kink soliton solution s_{1, 5}(t, x, y) in Eq (3.14) are illustrated with A = 1, B = 5, C = 4, \kappa = 1, \omega = 3, t = 0 . Overall, this profile shows dark multiple bell-shaped kink soliton.
    Figure 2.  The a. 3D, b. contour and c. 2D ( y = 0 ) plots of kink soliton solution s_{1, 9}(t, x, y) in Eq (3.18) are illustrated with A = 4, B = 8, C = 4, \kappa = 0.5e-3, \omega = 0.05, t = 1 . Overall, this profile shows bright kink soliton.
    Figure 3.  The a. 3D, b. contour and c. 2D ( y = 1000 ) plots of kink soliton solution s_{2, 2}(t, x, y) in Eq (3.21) are illustrated with A = 1, B = 1, C = 1, \kappa = 2, \omega = 0.0015, t = 5 . Overall, this profile shows bright kink soliton.
    Figure 4.  The a. 3D, b. contour and c. 2D ( y = 0 ) plots of kink soliton solution s_{2, 8}(t, x, y) in Eq (3.27) are illustrated with A = 8, B = 10, C = 2, \kappa = 0.002, \omega = 0.0075, t = 10 . Overall, this profile shows dark kink soliton solution.
    Figure 5.  The a. 3D, b. contour and c. 2D ( y = 10 ) plots of kink soliton solution s_{3, 5}(t, x, y) in Eq (3.34) are illustrated with A = 4, B = 10, C = 4, \kappa = 0.0065, \omega = 0.0115, t = 20 . Overall, this profile shows dark multiple bell-shaped kink soliton.
    Figure 6.  The a. 3D, b. contour and c. 2D ( y = 1 ) plots of kink soliton solution s_{3, 14}(t, x, y) in Eq (3.43) are illustrated with A = 0, B = 5, C = 2, \kappa = 0.085, \omega = 0.0215, t = 50, k_2 = 1 . Overall, this profile shows dark bell-shaped kink soliton.
    Figure 7.  The a. 3D, b. contour and c. 2D ( y = 100 ) plots of kink soliton solution s_{4, 1}(t, x, y) in Eq (3.45) are illustrated with A = 1, B = 3, C = 5, \kappa = 0.055, \omega = 0.045, t = 100 . Overall, this profile shows bright kink soliton.
    Figure 8.  The a. 3D, b. contour and c. 2D ( x = 1 ) plots of kink soliton solution s_{4, 13}(t, x, y) in Eq (3.57) are illustrated with s = 3, l = 2, A = 0, B = s, C = sl, \kappa = 0.0009, \omega = 0.0005, t = 500 . Overall, this profile shows bright kink soliton.
    Figure 9.  The a. 3D, b. contour and c. 2D ( y = 0 ) plots of kink soliton solution s_{5, 8}(t, x, y) in Eq (3.67) are illustrated with A = 12, B = 13, C = 3, \kappa = 0.001, \omega = 0.0445, t = 10, p_0 = 0, p_1 = 1, p_2 = 1, q_0 = 2, q_1 = 3 . Overall, this profile shows dark-bright or lump-like kink soliton.
    Figure 10.  The a. 3D, b. contour and c. 2D ( y = 3 ) plots of kink soliton solution s_{5, 11}(t, x, y) in Eq (3.70) are illustrated with A = 0, B = 0, C = 5, \kappa = 0.054, \omega = 0.00035, t = 5, p_0 = 1, p_1 = 2, p_2 = 2, q_0 = 3, q_1 = 5 . Overall, this profile shows bright kink soliton.

    In this section, our study of the (2+1) -dimensional NNVS produced significant outcomes. Using the RMESEM, we successfully established a broad range of kink soliton solutions for the aimed model which prominently reveal dark and bright kink soliton phenomena. These findings are essential to comprehending the underlying behavior of the NNVS. Some 3D, contour and 2D graphs are plotted for visual representations of these soliton solutions that demonstrate their versatility. With implications for long interior waves, shallow-water waves, and beyond, these findings also advance our knowledge of the dynamics of acoustic waves in incompressible fluids. The importance of the NNVS in theoretical physics and nonlinear dynamics is highlighted in this work, along with its usefulness and the potential for further development in related mathematical models and physical systems. Furthermore, while the RMESEM has greatly advanced our understanding of soliton dynamics and their relationship to the model under study, it is important to acknowledge the limitations of this methodology, particularly, this method fails when dealing with NPDEs with nonlinear terms and highest order derivatives that are not homogeneously balanced. Notwithstanding this limitation, the present investigation demonstrates that the methodology employed in this work is extremely straightforward and efficacious for nonlinear problems in a variety of natural science domains.

    Since we know from Eq (3.2) that:

    \begin{equation} {S}(\upsilon) = {R}(\upsilon) = {Z}(\upsilon). \end{equation} (5.1)

    As a result, as demonstrated in ((3.10)–(3.74)), the solutions of the system given in Eq (1.1) that correspond to the functions {r}(t, x, y) and {z}(t, x, y) are the same as those for {s}(t, x, y) . Therefore, in order to prevent duplication, we do not restate these solutions in the Section 3.

    Naveed Iqbal: Conceptualization, Methodology, Investigation, Writing-review & editing; Meshari Alesemi: Software, Formal analysis, Resources, Writing-review & editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author is thankful to the Deanship of Graduate Studies and Scientific Research at the University of Bisha for supporting this work through the Fast-Track Research Support Program.

    The authors have no conflict of interests regarding the publication of this paper.



    [1] M. Aldandani, A. A. Altherwi, M. M. Abushaega, Propagation patterns of dromion and other solitons in nonlinear Phi-Four ( \phi^4 ) equation, AIMS Math., 9 (2024), 19786–19811. https://doi.org/10.3934/math.2024966 doi: 10.3934/math.2024966
    [2] R. Qahiti, N. M. A. Alsafri, H. Zogan, A. A. Faqihi, Kink soliton solution of integrable Kairat-X equation via two integration algorithms, AIMS Math., 9 (2024), 30153–30173. https://doi.org/10.3934/math.20241456 doi: 10.3934/math.20241456
    [3] M. Y. Almusawa, H. Almusawa, Exploring the diversity of kink solitons in (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation, Mathematics, 12 (2024), 3340. https://doi.org/10.3390/math12213340 doi: 10.3390/math12213340
    [4] M. N. Alshehri, S. Althobaiti, A. Althobaiti, R. I. Nuruddeen, H. S. Sambo, A. F. Aljohani, Solitonic analysis of the newly introduced three-dimensional nonlinear dynamical equations in fluid mediums, Mathematics, 12 (2024), 3205. https://doi.org/10.3390/math12203205 doi: 10.3390/math12203205
    [5] H. Khan, R. Shah, J. F. Gómez-Aguilar, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Phenom., 16 (2021), 32. https://doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016
    [6] G. F. Yu, H. W. Tam, A vector asymmetrical NNV equation: soliton solutions, bilinear Bäcklund transformation and Lax pair, J. Math. Anal. Appl., 344 (2008), 593–600. https://doi.org/10.1016/j.jmaa.2008.02.057 doi: 10.1016/j.jmaa.2008.02.057
    [7] M. A. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998
    [8] V. Matveev, M. A. Salle, Darboux transformations and solitons, Vol. 17, Berlin: Springer, 1991.
    [9] B. Q. Li, Y. L. Ma, Rich soliton structures for the Kraenkel-Manna-Merle (KMM) system in ferromagnetic materials, J. Supercond. Nov. Magn., 31 (2018), 1773–1778. https://doi.org/10.1007/s10948-017-4406-9 doi: 10.1007/s10948-017-4406-9
    [10] B. Li, Y. Ma, The non-traveling wave solutions and novel fractal soliton for the (2+ 1)-dimensional Broer-Kaup equations with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 144–149. https://doi.org/10.1016/j.cnsns.2010.02.011 doi: 10.1016/j.cnsns.2010.02.011
    [11] Y. L. Ma, B. Q. Li, Y. Y. Fu, A series of the solutions for the Heisenberg ferromagnetic spin chain equation, Math. Methods Appl. Sci., 41 (2018), 3316–3322. https://doi.org/10.1002/mma.4818 doi: 10.1002/mma.4818
    [12] Y. Ma, B. Li, C. Wang, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211 (2009), 102–107. https://doi.org/10.1016/j.amc.2009.01.036 doi: 10.1016/j.amc.2009.01.036
    [13] B. Q. Li, Y. L. Ma, Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber, Optik, 144 (2017), 149–155. https://doi.org/10.1016/j.ijleo.2017.06.114 doi: 10.1016/j.ijleo.2017.06.114
    [14] M. Zhang, Y. L. Ma, B. Q. Li, Novel loop-like solitons for the generalized Vakhnenko equation, Chinese Phys. B, 22 (2013), 030511. https://doi.org10.1088/1674-1056/22/3/030511 doi: 10.1088/1674-1056/22/3/030511
    [15] B. Q. Li, Y. L. Ma, Multiple-lump waves for a (3+ 1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204–214. https://doi.org/10.1016/j.camwa.2018.04.015 doi: 10.1016/j.camwa.2018.04.015
    [16] M. S. Osman, Nonlinear interaction of solitary waves described by multi-rational wave solutions of the (2 + 1)-dimensional Kadomtsev-Petviashvili equation with variable coefficientss, Nonlinear Dyn., 87 (2017), 1209–1216. https://doi.org/10.1007/s11071-016-3110-9 doi: 10.1007/s11071-016-3110-9
    [17] H. I. Abdel-Gawad, Towards a unified method for exact solutions of evolution equations. An application to reaction diffusion equations with finite memory transport, J. Stat. Phys., 147 (2012), 506–518. https://doi.org/10.1007/s10955-012-0467-0 doi: 10.1007/s10955-012-0467-0
    [18] C. F. Wei, New solitary wave solutions for the fractional Jaulent-Miodek hierarchy model, Fractals, 31 (2023), 2350060. https://doi.org/10.1142/S0218348X23500603 doi: 10.1142/S0218348X23500603
    [19] S. M. Mirhosseini-Alizamini, H. Rezazadeh, K. Srinivasa, A. Bekir, New closed form solutions of the new coupled Konno-Oono equation using the new extended direct algebraic method, Pramana, 94 (2020), 52. https://doi.org/10.1007/s12043-020-1921-1 doi: 10.1007/s12043-020-1921-1
    [20] N. A. Kudryashov, Seven common errors in finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3507–3529. https://doi.org/10.1016/j.cnsns.2009.01.023 doi: 10.1016/j.cnsns.2009.01.023
    [21] Z. Navickas, M. Ragulskis, Comments on "A new algorithm for automatic computation of solitary wave solutions to nonlinear partial differential equations based on the Exp-function method", Appl. Math. Comput., 243 (2014), 419–425. https://doi.org/10.1016/j.amc.2014.06.029 doi: 10.1016/j.amc.2014.06.029
    [22] A. O. Antonova, N. A. Kudryashov, Generalization of the simplest equation method for nonlinear non-autonomous differential equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4037–4041. https://doi.org/10.1016/j.cnsns.2014.03.035 doi: 10.1016/j.cnsns.2014.03.035
    [23] Z. Navickas, R. Marcinkevicius, I. Telksniene, T. Telksnys, M. Ragulskis, Structural stability of the hepatitis C model with the proliferation of infected and uninfected hepatocytes, Math. Comput. Model. Dyn. Syst., 30 (2024), 51–72. https://doi.org/10.1080/13873954.2024.2304808 doi: 10.1080/13873954.2024.2304808
    [24] Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2021), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
    [25] Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [26] Y. He, Y. Kai, Wave structures, modulation instability analysis and chaotic behaviors to Kudryashov's equation with third-order dispersion, Nonlinear Dyn., 112 (2024), 10355–10371. https://doi.org/10.1007/s11071-024-09635-3 doi: 10.1007/s11071-024-09635-3
    [27] J. Xie, Z. Xie, H. Xu, Z. Li, W. Shi, J. Ren, et al., Resonance and attraction domain analysis of asymmetric duffing systems with fractional damping in two degrees of freedom, Chaos Soliton. Fract., 187 (2024), 115440. https://doi.org/10.1016/j.chaos.2024.115440 doi: 10.1016/j.chaos.2024.115440
    [28] M. S. Iqbal, A. R. Seadawy, M. Z. Baber, Demonstration of unique problems from Soliton solutions to nonlinear Selkov-Schnakenberg system, Chaos Soliton. Fract., 162 (2022), 112485. https://doi.org/10.1016/j.chaos.2022.112485 doi: 10.1016/j.chaos.2022.112485
    [29] M. S. Alber, R. Camassa, D. D. Holm, J. E. Marsden, On the link between umbilic geodesics and soliton solutions of nonlinear PDEs, Proc. R. Soc. London. Ser. A: Math. Phys. Sci., 450 (1995), 677–692. https://doi.org/10.1098/rspa.1995.0107 doi: 10.1098/rspa.1995.0107
    [30] W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simul., 43 (1997), 13–27. https://doi.org/10.1016/S0378-4754(96)00053-5 doi: 10.1016/S0378-4754(96)00053-5
    [31] Z. Zhao, Y. Chen, B. Han, Lump soliton, mixed lump stripe and periodic lump solutions of a (2+ 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Mod. Phys. Lett. B, 31 (2017), 1750157. https://doi.org/10.1142/S0217984917501573 doi: 10.1142/S0217984917501573
    [32] W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 379 (2015), 1975–1978. https://doi.org/10.1016/j.physleta.2015.06.061 doi: 10.1016/j.physleta.2015.06.061
    [33] J. Y. Yang, W. X. Ma, Lump solutions to the BKP equation by symbolic computation, Int. J. Mod. Phys. B, 30 (2016), 1640028. https://doi.org/10.1142/S0217979216400282 doi: 10.1142/S0217979216400282
    [34] M. A. Helal, Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos Soliton. Fract., 13 (2002), 1917–1929. https://doi.org/10.1016/S0960-0779(01)00189-8 doi: 10.1016/S0960-0779(01)00189-8
    [35] N. C. Freeman, Soliton solutions of non-linear evolution equations, IMA J. Appl. Math., 32 (1984), 125–145. https://doi.org/10.1093/imamat/32.1-3.125 doi: 10.1093/imamat/32.1-3.125
    [36] S. Javeed, K. Saleem Alimgeer, S. Nawaz, A. Waheed, M. Suleman, D. Baleanu, et al., Soliton solutions of mathematical physics models using the exponential function technique, Symmetry, 12 (2020), 176. https://doi.org/10.3390/sym12010176 doi: 10.3390/sym12010176
    [37] Z. Y. Wang, S. F. Tian, J. Cheng, The \partial^{-}-dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021), 093510. https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806
    [38] S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [39] Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the n-component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
    [40] Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
    [41] T. Aktürk, Ç. Kubal, Analysis of wave solutions of (2+ 1)-dimensional Nizhnik-Novikov-Veselov equation, Ordu Univ. J. Sci. Tecnol., 11 (2021), 13–24.
    [42] P. G. Estévez, S. Leble, A wave equation in 2+ 1: Painlevé analysis and solutions, Inverse Probl., 11 (1995), 925. https://doi.org10.1088/0266-5611/11/4/018 doi: 10.1088/0266-5611/11/4/018
    [43] Y. Ren, H. Zhang, New generalized hyperbolic functions and auto-Bácklund transformation to find new exact solutions of the (2+ 1)-dimensional NNV equation, Phys. Lett. A, 357 (2006), 438–448. https://doi.org/10.1016/j.physleta.2006.04.082 doi: 10.1016/j.physleta.2006.04.082
    [44] L. P. Nizhnik, Integration of multidimensional nonlinear equations by the method of the inverse problem, Doklady Akademii Nauk, Russian Academy of Sciences, 254 (1980), 332–335.
    [45] M. B. Hossen, H. O. Roshid, M. Z. Ali, Multi-soliton, breathers, lumps and interaction solution to the (2+ 1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation, Heliyon, 5 (2019), e02548. https://doi.org/10.1016/j.heliyon.2019.e02548 doi: 10.1016/j.heliyon.2019.e02548
    [46] M. S. Osman, H. I. Abdel-Gawad, Multi-wave solutions of the (2+ 1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients, Eur. Phys. J. Plus, 130 (2015), 215. https://doi.org/10.1140/epjp/i2015-15215-1 doi: 10.1140/epjp/i2015-15215-1
    [47] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(316) PDF downloads(41) Cited by(0)

Figures and Tables

Figures(10)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog