Research article Special Issues

Estimating the Consumer Price Index using the lognormal diffusion process with exogenous factors: The Colombian case

  • Received: 10 November 2024 Revised: 02 February 2025 Accepted: 14 February 2025 Published: 21 February 2025
  • MSC : 60J60, 62M20

  • In this paper, a model based on the lognormal diffusion process with exogenous factors was considered, aiming to describe the dynamics of the basic Consumer Price Index (CPI) in Colombia. To this end, a Bayesian procedure was employed for the selection of factors using real data from different economic sources such as the Central Bank (Banco de la República de Colombia), among others. A model with five exogenous factors (economic variables) was obtained, carrying out maximum likelihood estimation for its parameters. Fitting and forecasting procedures under different conditions showed that the proposed model outperformed the predictions made by the Central Bank. In addition, potential future economic scenarios were analyzed for testing purposes. This model provided valuable insight into the main determinants of inflation in Colombia, reflecting the importance of the factors under the control of economic authorities, labor market dynamics, and external economic conditions. This new approach also gave rise to asking questions concerning impact analysis of economic shocks, and the search of possible scenarios for given CPI dynamics.

    Citation: Antonio Barrera, Arnold de la Peña Cuao, Juan José Serrano-Pérez, Francisco Torres-Ruiz. Estimating the Consumer Price Index using the lognormal diffusion process with exogenous factors: The Colombian case[J]. AIMS Mathematics, 2025, 10(2): 3334-3380. doi: 10.3934/math.2025155

    Related Papers:

  • In this paper, a model based on the lognormal diffusion process with exogenous factors was considered, aiming to describe the dynamics of the basic Consumer Price Index (CPI) in Colombia. To this end, a Bayesian procedure was employed for the selection of factors using real data from different economic sources such as the Central Bank (Banco de la República de Colombia), among others. A model with five exogenous factors (economic variables) was obtained, carrying out maximum likelihood estimation for its parameters. Fitting and forecasting procedures under different conditions showed that the proposed model outperformed the predictions made by the Central Bank. In addition, potential future economic scenarios were analyzed for testing purposes. This model provided valuable insight into the main determinants of inflation in Colombia, reflecting the importance of the factors under the control of economic authorities, labor market dynamics, and external economic conditions. This new approach also gave rise to asking questions concerning impact analysis of economic shocks, and the search of possible scenarios for given CPI dynamics.



    加载中


    [1] P. Chávez, G. Rodríguez, Time changing effects of external shocks on macroeconomic fluctuations in Perú: Empirical application using regime-switching VAR models with stochastic volatility, Rev. World Econ., 159 (2023), 505–544. https://doi.org/10.1007/s10290-022-00474-1 doi: 10.1007/s10290-022-00474-1
    [2] P. Clavijo-Cortés, Is unemployment hysteretic or structural? A Bayesian model selection approach, Empir. Econ., 65 (2023), 2837–2866. https://doi.org/10.1007/s00181-023-02433-7 doi: 10.1007/s00181-023-02433-7
    [3] Z. Xie, Research on Bayesian financial panel data model based on BP neural network, In: 2023 International Conference on Electronics and Devices, Computational Science (ICEDCS), 2023,645–648. https://doi.org/10.1109/ICEDCS60513.2023.00124
    [4] J. M. Montaud, J. Dávalos, N. Pécastaing, Socioeconomic risks of extreme El Niño event-related road damages in Perú, Environ. Model Assess., 27 (2022), 831–851. https://doi.org/10.1007/s10666-022-09830-9 doi: 10.1007/s10666-022-09830-9
    [5] F. A. R. Gomes, L. C. M. Melo, G. P. Soave, Flexible markov-switching models with evolving regime-specific parameters: An application to Brazilian business cycles, Appl. Econ., 56 (2024), 1705–1722. https://doi.org/10.1080/00036846.2024.2305621 doi: 10.1080/00036846.2024.2305621
    [6] Q. Cui, S. Rong, F. Zhang, X. Wang, Exploring and predicting China's Consumer Price Index with its influence factors via big data analysis, J. Intell. Fuzzy Syst., 46 (2024), 891–901. https://doi.org/10.3233/JIFS-234102 doi: 10.3233/JIFS-234102
    [7] P. Wang, Y. Shen, L. Zhang, Y. Kang, Equilibrium investment strategy for a DC pension plan with learning about stock return predictability, Insur. Math. Econ., 100 (2021), 384–407. https://doi.org/10.1016/j.insmatheco.2021.07.001 doi: 10.1016/j.insmatheco.2021.07.001
    [8] Y. Zhu, M. Escobar-Anel, M. Davison, A polynomial-affine approximation for dynamic portfolio choice, Comput. Econ., 62 (2023), 1177–1213. https://doi.org/10.1007/s10614-022-10297-9 doi: 10.1007/s10614-022-10297-9
    [9] S. Liu, Y. Yang, H. Zhang, Y. Wu, Variance swap pricing under Markov-modulated jump-diffusion model, Discrete Dyn. Nat. Soc., 2021 (2021), 9814605. https://doi.org/10.1155/2021/9814605 doi: 10.1155/2021/9814605
    [10] L. Tao, Y. Lai, Y. Ji, X. Tao, Asian option pricing under sub-fractional Vasicek model, Quant. Finan. Econ., 7 (2023), 403–419. https://doi.org/10.3934/QFE.2023020 doi: 10.3934/QFE.2023020
    [11] K. Alakkari, S. Yadav, P. Mishra, Measuring economic uncertainty in Syria: An approach to the stochastic volatility model, Indian J. Econ. Dev., 18 (2022), 281–291. https://doi.org/10.35716/IJED/21242 doi: 10.35716/IJED/21242
    [12] D. Liang, B. Ewing, E. Cardella, L. Song, Probabilistic modeling of small business recovery after a hurricane: A case study of 2017 Hurricane Harvey, Nat. Hazards Rev., 24 (2023), 05022012. https://doi.org/10.1061/(asce)nh.1527-6996.0000602 doi: 10.1061/(asce)nh.1527-6996.0000602
    [13] B. Herzog, Modeling inflation dynamics with fractional Brownian motions and Lévy processes, In: Linear and non-linear financial econometrics-theory and practice, 2020. https://doi.org/10.5772/intechopen.92292
    [14] F. Mehrdoust, I. Noorani, Implied higher order moments in the Heston model: A case study of S & P500 index, Decisions Econ. Finan., 46 (2023), 477–504. https://doi.org/10.1007/s10203-023-00396-z doi: 10.1007/s10203-023-00396-z
    [15] A. González, L. Mahadeva, J. D. Prada, D. Rodríguez, Policy analysis tool applied to Colombian needs: Patacon model description, Borradores de Economía, num.656, 2011, Banco de la República de Colombia. https://doi.org/10.32468/be.656
    [16] J. A. Cárdenas-Cárdenas, D. J. Cristiano-Botia, N. Martínez-Cortés, Colombian inflation forecast using long short-term memory approach, Borradores de Economía, num.1241, 2023, Banco de la República de Colombia. https://doi.org/10.32468/be.1241
    [17] H.Y. Rodríguez Pinzón, Estudio del fenómeno de inflación importada vía precios del petróleo y su aplicación al caso colombiano mediante el uso de modelos VAR para el periodo 2000–2009, Estudios Gerenciales, 27 (2011), 79–97. https://doi.org/10.1016/S0123-5923(11)70182-6 doi: 10.1016/S0123-5923(11)70182-6
    [18] E. González Molano, L. F. Melo Velandia, A. G. Olarte, Pronósticos directos de la inflación colombiana, Borradores de Economía, num.458, 2007, Banco de la República de Colombia. https://doi.org/10.32468/be.458
    [19] C. R. Jaramillo Herrera, J. Tovar, Incidencia del impuesto al valor agregado sobre los precios en Colombia, Documentos CEDE 2830, 2007.
    [20] M. C. Aristizábal, Evaluación asimétrica de una red neuronal: Aplicación al caso de la inflación en Colombia, Lecturas de Economía, 65 (2009), 73–116. https://doi.org/10.17533/udea.le.n65a2641 doi: 10.17533/udea.le.n65a2641
    [21] E. Villa, M. A. Misas, A. F. Giraldo, Inflation targeting and an optimal Taylor rule for an open economy: Evidence for Colombia 1990–2011, Lat. Am. J. Econ., 51 (2014), 41–83.
    [22] I. Luz-Sant'Ana, P. Román-Román, F. Torres-Ruiz, Modeling oil production and its peak by means of a stochastic diffusion process based on the Hubbert curve, Energy, 133 (2017), 455–470. http://doi.org/10.1016/j.energy.2017.05.125 doi: 10.1016/j.energy.2017.05.125
    [23] A. Di Crescenzo, P. Paraggio, F. Torres-Ruiz, A Bertalanffy-Richards growth model perturbed by a time-dependent pattern, statistical analysis and applications, Commun. Nonlinear Sci., 139 (2024), 108258. https://doi.org/10.1016/j.cnsns.2024.108258 doi: 10.1016/j.cnsns.2024.108258
    [24] A. Barrera, P. Román-Román, F. Torres-Ruiz, Hyperbolastic models from a stochastic differential equation point of view, Mathematics, 9 (2021), 1835. http://doi.org/10.3390/math9161835 doi: 10.3390/math9161835
    [25] G. Albano, V. Giorno, V., P. Román-Román, F. Torres-Ruiz, Study of a general growth model, Commun. Nonlinear Sci. Numer. Simul., 107 (2022), 106100. http://doi.org/10.1016/j.cnsns.2021.106100 doi: 10.1016/j.cnsns.2021.106100
    [26] P. Román-Román, J. J. Serrano-Pérez, F. Torres-Ruiz, Some notes about inference for the lognormal diffusion process with exogenous factors, Mathematics, 6 (2018), 85. http://doi.org/10.3390/math6050085 doi: 10.3390/math6050085
    [27] G. Tintner, J. K. Sengupta, Stochastic economics: Stochastic processes, control, and programming, New York: Academic Press, 1972. https://doi.org/10.1016/C2013-0-11604-2
    [28] R. Gutiérrez, P. Román, D. Romero, F. Torres, Forecasting for the univariate lognormal diffusion process with exogenous factors, Cybernet. Syst., 34 (2003), 709–724. http://doi.org/10.1080/716100279 doi: 10.1080/716100279
    [29] C. E. Land, Hypothesis tests and interval estimates, In: Lognormal distributions: Theory and applications, New York: Marcel Dekker, 1988, 87–112. https://doi.org/10.1201/9780203748664
    [30] R. Gutiérrez, P. Román, F. Torres, Inference on some parametric functions in the univariate lognormal diffusion process with exogenous factors, Test, 10 (2001), 357–373. http://doi.org/10.1007/bf02595702 doi: 10.1007/bf02595702
    [31] R. Gutiérrez, N. Rico, P. Román, F. Torres, Approximate and generalized confidence bands for the mean and mode functions of the lognormal diffusion process, Comput. Stat. Data An., 51 (2007), 4038–4053. http://doi.org/10.1016/j.csda.2006.12.027 doi: 10.1016/j.csda.2006.12.027
    [32] F. J. Girón, M. L. Martínez, E. Moreno, F. Torres, Objective testing procedures in linear models: Calibration of the p-values, Scand. J. Stat., 33 (2006), 765–784. http://doi.org/10.1111/j.1467-9469.2006.00514.x doi: 10.1111/j.1467-9469.2006.00514.x
    [33] E. Moreno, F. J. Vázquez-Polo, M. A. Negrín, Bayesian cost-effectiveness analysis of medical treatments, Boca Raton: Chapman and Hall/CRC, 2019. https://doi.org/10.1201/9781315188850
    [34] E. Moreno, J. J. Serrano-Pérez, F. Torres-Ruiz, Consistency of Bayes factors for linear models, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 119 (2025), 20. http://doi.org/10.1007/s13398-024-01685-x doi: 10.1007/s13398-024-01685-x
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(344) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(28)  /  Tables(19)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog