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1. Introduction

Clifford-valued neural networks (NNs) are the NNs whose state variables, connection weights
and external inputs are Clifford numbers. They are generalizations of real-valued, complex-valued
and quaternion-valued neural networks. In recent years, due to their advantages over real-valued
networks and their potential application values in many fields, they have attracted the attention of
many researchers [1-12]. However, because the multiplication of Clifford numbers does not satisfy the
commutative law, it is difficult to study the dynamics of Clifford-valued NNs. At this stage, there are
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few results on the dynamics of Clifford-valued NNs [8—14]. In addition, it is worth noting that in most
of the existing results [5,7-9, 14], the coefficients of the leakage terms in neural networks are assumed
to be real numbers.

On the one hand, it is well known that high-order Hopfield NNs have more advantages than low-
order Hopfield NNs. Therefore, in the past few decades, many scholars have done a lot of research
on the dynamics of high-order Hopfield NN [13, 15-18]. This is because the application of neural
networks in various fields largely depends on their dynamic performance. Moreover, the use of neural
networks with complex or even chaotic dynamic behaviors in information processing is expected to
improve the efficiency and flexibility of information processing.

In addition, noise interference is the main source of neural network instability, which can lead to
poor neural network performance. In the real nervous system, synaptic transmission is a noisy process,
caused by random fluctuations in neurotransmitter release and other probabilistic reasons. As we all
know, neural networks can be stable or unstable through some random inputs [19]. For this reason,
stochastic neural networks are widely studied [20-26].

Besides, we know that the existence and stability of equilibrium points are important dynamics of
autonomous neural networks. For nonautonomous neural networks, there are generally no equilibrium
points. Therefore, the existence and stability of periodic or almost periodic solutions are important
dynamics. Since almost periodicity is more common than periodicity, in the past few decades,
many scholars have studied the almost periodic solutions of deterministic neural networks [7,27-29].
However, the existing results on the existence of almost periodic solutions of stochastic neural
networks are almost all about mean-square almost periodic solutions. Unfortunately, in [30], some
counterexamples show that the nontrivial solutions of some stochastic differential equations with
almost periodic coefficients cannot be mean-square almost periodic. Therefore, it is more reasonable
to study the almost periodic solutions in distribution of stochastic differential equations. Random
almost periodic oscillation is a complex oscillation phenomenon. However, so far, no papers have been
published on almost periodic solutions in distribution of Clifford-valued stochastic high-order Hopfield
NNs. Therefore, it is necessary to study this issue.

Inspired by the above discussion, and considering the fact that time delay is inevitable, in this work,
we consider the following Clifford-valued stochastic high-order Hopfield NN with time varying-delays:

n

dxy(t) =[ = (D) (0) + Y () fy iyt = Tpg(1))

gq=1
+ Z Z bpql(t)gq(xq(t - O-pql(t)))gl(-xl(t - qul(t)))
g=1 I=1
F 1O+ gyt = Vpg(D))dewy (1), (1.1)
g=1
where p € {1,2,...,n} := D, nis the number of neurons in layers; x,(f) € A is the state variable of the

pth unit at time ¢ and A is a Clifford algebra; c,(r) € A is the coeflicient of the leakage term, which
represents the rate with which the pth unit will reset its potential to the resting state in isolation when
disconnected from the network and external inputs; a,,(t), b,u(t) € A are the first-order and second-
order connection weights of the neural network; 7,,(1) > 0, 0,u(t) > 0, v,,(t) > 0 and y,,() > 0
correspond to the transmission delays; /,(f) € A denotes the external inputs at time f; f,, g, : A — A
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are the activation functions of signal transmission; w(f) = (w;(£), w1 (1), . .., w,(?))! is an n-dimensional
Brownian motion defined on a complete probability space; 6,, : A — A is a Borel measurable
function.

Let (Q, F,{F:}>0, P) be a complete probability space with a natural filtration {F,},»o satisfying
the usual conditions. Denote by CBg([—0,0], A") the family of all bounded, (-measurable,
C([-p, 0], A™")-valued random variables ¢.

The initial values of system (1.1) are given by

xp(8) = ¢p(s), s €[-0,0], pe D, (1.2)

where ¢, € CBg ([—0,0], A").

The main purpose of this paper is to study the existence and global exponential stability of almost
periodic solutions in distribution of system (1.1). The innovations of this paper are as follows: (1) This
is the first paper that uses a non-decomposition method to study stochastic NNs whose coeflicients are
all Clifford numbers except for time delays. (2) This is the first time to study almost periodic solutions
in distribution of Clifford-valued stochastic high-order Hopfield NNs. (3) The method of dealing with
time-varying delays in this paper can be used to study the corresponding problems of other types of
stochastic NNs with time-varying delays. (4) When the system we consider degenerates into real-
valued system, complex-valued system or quaternion-valued system, the results of this paper are also
new.

The rest of this paper is organized as follows. In Sect. 2, we recollect some basic definitions and
lemmas. In Sect. 3, based on the principle of contractive mapping, we establish the existence of almost
periodic solutions in distribution for system (1.1). In Sect. 4, we study the global exponential stability
of the almost periodic solution in distribution of system (1.1) by inequality techniques. In Sect. 5, we
give an example to illustrate the feasibility of the theoretical results obtained in this paper. In Sect. 6,
we give a concise conclusion to end this paper.

2. Preliminaries
The real Clifford algebra over R™ is defined as

A=Y Hesrt e r),

Aell

where I = {0,1,2,...,A,...,12---m}, ey = ¢g = 1 and e,,p = 1,2,...,m are called the Clifford
generators and satisfy there exits an ¢ (0 < ¢ < m) such that

1, p=12,...,1
-1, p=t+1,t+2,....m,
epgte, =0, 1<p,g<mp#q.

e
e

TS N

For x = Y xey € A, let ||x|lx = max{| x* |}, where 3 and max are short for ) and max,
A A A A Aell A€ell

respectively. For y = (y1,y2,...,y,)! € A", we define ||y||, = max{||y,lla}. Then (A,|| - ||,) is a Banach
space. For more information on Clifford analysis, see [31].

Throughout this paper, for x = 3 x*e, € A, we denote x° = Y, xe, and x? = x — x°.
A A0
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Definition 2.1. [6] Let BC(R, A") denote the set of all bounded continuous functions from R to A". A
function f € BC(R, A") is said to be almost periodic, if for every € > O there exists a positive number
€ such that every interval of length € contains a number T such that

If(t+1)— fOll. <&, t€R.

The 1 is called the e-translation number of f. Denote by AP(R, A") the set of all such functions.

Let (Q, 7, {F:}>0, P) be a complete probability space with a natural filtration {F};5 satisfying the
usual conditions.

A stochastic process X = {X(t) : t > 0} (or, simply X;) is called adapted to the filtration {F};»¢ if X,
is F;-measurable for all # > 0.

Let (E, d) be a separable, complete metric space and B(E) be the o-algebra of Borel sets of E. We
denote by P(E) the set of all probability measures defined on B(E) and by CB(E) the set of all bounded
continuous functions f : E — R with || f||c := sup,z | f(x) |< oo.

For f € CB(E), u,v € P(E), we define

o | f(@) = f(D) | _
1Al = SUp =y 1Al = max{l| flleo, [LF1I},

dp(p,v) := sup | | fdu—-v)|.

Ifler<l  JE

It is well known that the metric space (P(E), dp;) is a Polish space [32]. For a random variable
X : (Q,F,P) — E, we will denote by u(X) := P o X~! its law and by E(X) its expectation.
Let £2(Q, A") be the space of all A"-valued random variables such that

E(IXIP) = f IX|2dP < co.
Q

For X € L2(Q, A"), we denote

IXI2 = ( f IXIZaP)  and  EIXI; = f IXIRdP.
Q Q

Definition 2.2. [33] A stochastic process X : R — L*(Q,A") is said to be L*-continuous if for any
th € R,

lim E[|X(1) = X(to)|I? = 0.

t—ty

It is said to be L*-bounded if sup E||X(1)||? < oo.
teR

Definition 2.3. [34] An L>-continuous stochastic process X : R — L*(Q, A") is said to be square-
mean almost periodic if for every € > 0, there exist a positive number € such that every interval of
length € contains a number T such that

EIXt+1)-X®)|? <e, teR.
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Definition 2.4. [35] A stochastic process X : R — A" is said to be almost periodic in distribution if
the mapping
t— py = p(X(0)
is almost periodic, where u(X(t)) = P o [X(1)]™! is the law of X(t) under P, that is to say, if for every
g > 0, there exists a positive number € such that every interval of length € contains a number T such
that
dp(Po[X(t+D] ", Po[X()] ™) <e.

From Remark 2.12 in [33], one can deduce that

Lemma 2.1. If an L*-continuous stochastic process X(t) is square-mean almost periodic, then X(t) is
almost periodic in distribution; but the converse is not true.

Lemma 2.2. [36] Let g : R — R be a continuous function such that, for every t € R,

t
0<g)<a +,Bf e g(s5)ds,
where a, 3,6 > 0 are constants and 6 > . Then we have g(t) < a5 B'

In the rest part of this paper, we will adopt the following notation:
-3 5 -0 0 0 _ ; 0
&) = supllch(Dlla, € = sup | €h(0) I, ¢ =inf [ (1) |, aj, = supllay (Dl
teR teR teR

by = $up byl Iy = sup L (Dllr, T, = SUP T (1)
teR teR

Tyt = SUP T pgt(D)s Vi = SUPVpai(D), ¥y = SUP Y py (1)
teR teR teR
Throughout this paper, we assume that

(H,) For p,q,l € D, c‘b € AP(R,R*) with co > 0, cf,,apq,bpql,l € AP(R,A), Tpg» Tpgis Vgl Vg €
APR,R")YNC! (R R), there exist posmve constants qu, such that 7,,(7) < T <1,
Tpqi(t) 0 < L Vpg(0) <V < 1 ypg(0) < 7, < 1

(H,) For g € D, f,,h, € C(A, A), there exist constants Lg , L%, M5 such that

pql’ pql > ypq

1520 = faOlla < Lllx = Ylas 112 (x) = 8l < LEllx = ylla,

164(xX) = SpgWlla < Liygllx = Yl llgg()lla < M,

for all x,y € A, and f,(0) = g,(0) = 6,,(0) =
(H3)
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P::rzraleaﬁ({ @)+ 262( @) Z( f) = Sczpn

—qu

[Z(bpql)
g=1 " I=1

£®V+ 0)0.+ 2607+
e-r pql pql 5 e =r’'ri
<) (Mgu;’ M )] +26n Z(L;q) .

+
=1 qul pql g=1 Vb

(Hs)

c ol Sy St m (S

=1

(0]
X ; (L + (M;’Lg)2)) + nzﬁ Z(L;q)z]} <.

3. The existence of almost periodic solutions in distribution

We denote by UCB(R, L*(Q, A")) the space of all L2-bounded and uniformly £?-continuous
functions from R to L2(Q, A"). Let B = UCB(R, L*(Q, A")) with the norm ||x||z = (sup E(llx(t)llﬁ))2 ,
teR

then B is a Banach space.

Set x0 = (x%,x3,...,x)7, where xg(t) = f_too e C%(”)dulp(s)ds, t € R, p € O and take a constant k
such that ||x°||z < «.

Definition 3.1. An F,-progressively measurable stochastic process x(t) is called a mild solution of
system (1.1), if x(t) satisfies the following stochastic integral equation

!
" Pawd _ (.0
x,() =x,(tp)e Jo 5 "+f e fs%")d"@,,(s, x)ds
fo
t
Y )
+ f e L GWUT (5, dw,(s),
fo

where t > ty, p € D,

(5, %) = = S()x,(5) + Z g (5) Fy (5 = Tpg(s))) + Z Z bgi(s)

qg=1 I=1
X gq(xq(s - O-pql(s)))gl(xl(s - qul(s))) + Ip(s)’

Tp(5, ) = D 855 = ¥pg(5)).
g=1

Theorem 3.1. Assume that (Hy)-(H,) hold, then system (1.1) has a unique almost periodic solution in
distribution in the closed ball B, = {x | x € B, ||x — x°||z < «}.
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Proof. According to Definition 3.1, taking the limit as 7y — —oco, we obtain

! !
x,(1) = f e "?’(”)d”Gp(s, x)ds + f ek "?’(”)durp(s, x)dwy(s), p € D, (3.1)

which is a mild solution of system (1.1).
Define an operator @ : B, — B, by

Ox = (Dx), (Dx), - -+, (Dx),)],

where fort € R, p € D,

! !
(®x),(t) = f e~ L (s, x)ds + f e~ kWA (5, X)dw,(s).

—00

Firstly, we will prove that the operator ® is well defined.

In fact, for x = (x1, X2, ..., x,)! € B,, one has
(3.2)

0 0
lIxlle < [lx7lls +llx — x7|ls <2«

and

0112
|Dx — x7|I5

!
<4 sup max {E” f e cg(”)d”c?,(s)xp(s)ds

teR PED

}
A
n

+ 4 sup max {E" f o Ji e Z g (8) fo(xy(5 — Tpg(8)))ds

2
€D }
teR P g=1 A

t n n
+ 4 sup max {E" f o~ [ cpwdu Z Z b pgi($)84(X4(s = T pg(5)))

€D
1R P =1 =1

J

; n
+ 4 sup max {E" f ¢~ b e Z 0pg(Xg(s = ¥pqg($)))dwq(s)
—oo p

teR PED

X gl(X[(S - qul(s)))ds

J

I:Al + A2 + A3 + A4. (33)

By the Cauchy-Schwarz inequality, we have

! - 2
A, <4 sup max {E(f e s C!’(”)duégllpoBds) }
teR peD —o0

4(20)?
(3.4)

<max

< may {@}nxné

and

! ‘o n 2
Ay s4supmax{E( f e I BONN" () | ||Jz<xq<s—rpq(s)»||ﬂds)}

eD
teR P 0 g=1
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t n 2
— [ Dwdu f ) }
<4 ilelﬂg r;aezgi {E( \[oo e Jsr E apqulleBds

g=1
4 n . n
<max {@ ;mpq)z ;@z,‘f}nxné. (3.5)
Similarly, we have
As < max | (cq,)z > (Z“’Zx) Z(M% )Z(m . (3.6)

Moreover, by the It6 isometry, we obtain

f
A4 =4 sup max {E [ f e 2k cptwdu

teR PED

qZ:‘ 0 pg(x4(s — ;ds]}

<max{i Z(U IR (3.7)

pE
=P g=1
Substituting (3.4)—(3.7) into (3.3), by (3.2) and (H3), we have

|Ox — x°|I2
@S 2N, NN 2\ 2
S%‘{(gg)z [(CP) +Z;(a,+,q) Z_;(Lq) +Z;(Z(b;q,) Z(Mf))
= 9= q=1 " I=1 =1
- nc® 2 .
2 —P 2 2 ) _
IR YT btz = Kie < j@e2 = .

For any x € B, and ¢, t, € R with #; > 1,, we derive that

EII(CDX)(tl) - (@x)(t2)||2

= max ” o S ewdu _ = [ ¢ ?,(u)du]
peD

x [ — A (s)xy(s) + ; 1y () f (35 = Tpg(5))

0 gt (Xl = Tpu(Gx(s = V() + 1p<s>]ds

g=1 I=1
+f e Js Cf’(”)d”[ Ci(S)Xp(S) + Zapq(s)fq(xq(s = Tpg(5)))
) g=1
£ gt (Xl = Tpu( G5 = V() + ’p(s)]ds
g=1 I=1

%) +
+f [e—fslcop)(u)du I cp(uW Zépq(xq(s Yra(SN)dw,(s)
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11 1 «
+ f e )i podug Z 0pq(Xg(5 = Vpg($)))dw(s)
gq=1

n

2
i
2 .0 2 0
<max (£ f eI — o I i (B +Zap,,Lz,‘||x||B
—0o0

+ Z Z b, LM |Ixlls + I;)ds + f ek (”)d“(c [|x(|z

g=1 I=1 iz

# D an Lhlixlls + Y > bh LM |xlls + I;)ds
g=1

g=1 I=1

15}
+ f | e f;l c?,(u)du —e f;z c?,(u)du |
—00

pq(xq(s - 7pq(s)))dwq(s)
- f e K epwdug g Z 0 pg(Xg(S = Vpo()))dw,(s)

2
: )
sﬂ%lo[Z(apq L2k +ZZ(qung2K)2+I;][( f e

15)
=1 I=1 o

"2 2 " ) 2
X | f ch(uydu — f c‘j’,(u)dmds) +( f ek c?,(u)duds)]
s 1]
+10n max Z( 42K [ f e~ 212-9)¢,

(o)

153 f )
X|f C?,(M)du—f C?,(u)dulst+f ‘zflco(u)duds]

< max {10[((: 20 + Z(apq LI2) + Z Z(bpqug2k)2 +1; ]

g=1 I=1
(
x [(2—5)2 F1+ Z(Lf,qzkf( e

)
—(2-9)c,

_?))2)]} |t — o

+max 10nZ( |f1—l‘2|

SA1|t1—f2| +A2|f1—l2 l,

where

Ay = max{lO[(c 2k)* + Z(apq L)2k)* + Z Z(b},,q,b"ﬁk)2 +1,
g=1

g=1 I=1

|G e Sonar(ZE)
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_ + 2
Ao =max {108 ;(quk) 3
Consequently, we deduce that E||(Dx)(t;) — (d)x)(tz)llé — 0 as t; — tp, which implies ®x is uniformly

L2-continuous. Therefore, we gain ®(B,) C B,, that is, @ is well defined.
Next, we will show that @ is a contraction operator. Actually, for every x,y € B,, one has

2
j[}
+ 4 sup max {EH f ¢ K ehtwdu Z apq(s)(fq(xq(s — Tpq($)))

cD
teR P =1
2 }
A

+ 4 sup max {EH [t o K ehtwdu an an bpql(s)(gq(xq(s — T pai(5)))

cD
teR P =1 =1
2 }
A

|Dx — @yli3

!
<4 sup max {EH f el “?"(”)d”cg(s)(xp(s) - yp(s))ds

teR PeD

— £y 0q(s = Tpg(s))))dss

X 1(X1(5 = Vpai(5)) = 8gg(s = T (LIS = Vpau(s))) )ds

t n
+ 4 sup max {EH f e i cptwdu Z (5pq(xq(5 — Vpg(5)))
—00 (1:1

teR PeD
}
A

e RS YCEDYTIES Y DYDY
=p =1 =1 g=1 " I=1 I=1

n nc®
X DR + 8 D LR e 51 = Kibe - 2.
q=1 q=1

= 8pg (g5 = Vpg(5))) )dewg(s)

Hence,
1
|[Ox — Oylls < VK]lx —ylls < Ellx = yllz,

which implies that ® is a contraction mapping. Therefore, ® has a unique fixed point x in B,, that is,
system (1.1) possesses a unique solution x in B,.

Finally, we will show that the unique solution x of system (1.1) in B, is almost periodic in
distribution.

From the above discussion, we know that x € UCB(R, L2(Q, A")). Hence, for given € > 0, there
exists 6 € (0, €) such that, when | #; — t, |< 0, we have E||x(#;) — x(t2)||(2) < €. According to (H,), we see
that, for the 6 above, there exists / > 0 such that in every interval of length / of R, we can find a number
¢ suchthatfort e R, p,q € D,

| qu(t + §) - qu(t) |< 6’ | O-pql(t + S') - O-pql(t) |< 5’ | qul(t + g) - qul(t) |< 5a
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| Ypat + €)= VpgD 1< 6, 18 +6) =D 1<6, 130 +6) - SDIG <6,
lapg(t + €)= apg@DI <6, Wil +6) = byl < 8, (1 +6) = LI < 6,

and hence, we have
E|lx(t = Tpg(t + €)) = x(t = T < €, Ellx(t = vpau(t + §)) — x(t = vpu(O)II; < €,

E|Ix(t = 0 pg(t + €)) — x(t — T pgO < €, Ellx(t — ¥y (t + §)) = X(t = Y (DI> < €.

By (3.1), we get
xp(t+¢)

_ I I J;Wu[ = B)Xp(5) + ) pg(5) fy (x5 = Tpy(5)))

0 (985 = T (IG5 = Vpau(s)) + 1 (s) |ds

g=1 I=1

1+¢ 1+g | -
. f o I B Z Opq(Xg($ = ¥V pg($)))dwy(s)
_ g=1

. n
— f e_fs c?,(u+§)dul: - C?)(S + §‘)xp(5 + g) + Z apq(s + g)

q=1

X fy0tg(5 + 6 = Tpg(s + N + D > bpgils + €)gg(xy(5 + § = Tpgi(s +6))

g=1 I=1

X G5 + 6 = vpg(s + ) + L(s + g)]ds

+ f e [ cpturuu Z 6Pq(xq(s +¢— 7’1761(5 + g)))d[wq(s +¢) - a)q(g‘)],

oo g=1

where p € D, w,(s + ¢) — w,(s) i1s a Brownian motion with the same distribution as w,(s).
Let us consider the process

xp(t+¢)

. n
— lcw u
— f e fg P(u+§)d [ - C?)(S + g)xp(s + g) + Z apq(s + g)

X fy(ig(s + 6 = Tpg(s + N + D > bpg(s + €8y (Xg(s + 6§ = (s +6)))

g=1 I=1

X G0 + 6 = V(s + ) + L(s + g)]ds

: n
+ f e J; c%(u+§)du Z 5pq(xq(s +¢— ')’pq(s + g)))dwq(s)

q=1
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Then

Ellx(t + ) — x(0)I2

¢ 2
- 1 Sre)du .5 _
<13 rlglea%E ’ Im e | epturs c,(s + g)(xp(s +6) xp(s))ds B
t 2
—J: Aure)duf 6 _ 0
+13 max E Im e ko (Cp(s +9) cp(s))xp(s)ds B

!
) (o
+ 13max E f (e ki epurerdu _ o= ] Cl’(”)d”)c?,(S)xp(S)ds

2
peD A

¢ n
- tCo u u
+ 13max E f e Js cplure)d E Apg(s + g)(]}(xq(s +¢ = Tp(s+5))

peED
g=1

2

= fa¥y(s = Tp(s))ds

A
n

t
' f e~ Js cpturordu Z (apq(s +)

q=1
2

+ 13 max E
peD

= apg(9)) fy(xg(s = Tpg($)))ds

A

t
' f (€_ f; c?,(u+§)du —e f; C?,(u)du)

[

+ 13max E
peD

X D apg()f; (g5 = Tpg(5))ds
g=1

2
A

+13 I;L%(E ' Iw o I o Z; ZZ; bpg(s + g)(gq(xq(s +6—0pu(s+6))
q=1 I=
2
X gl(-xl(s +¢ - qul(s + g))) - gq(-xq(s - O-pql(s)))gl(-xl(s - qul(s))))ds .

n

' f - f; c?,(u+§)du Z (bpql(s + g) — bpq[(S))gq(xq(S - O'pql(S)))

=1
! r.0 r0
‘ (e_fé cplut)du _ e Js c],(u)du)
—00

+ 13max E
peD

2

X g1(x1(s = vpgu($)ds|| + 13 max E
A pED

Y 2
% Z bpqi($)84(xg(s = 0 pai(5)) X gi(xi(s = Vpqi(5)))d's
I=1 7
' 0 2
+ 13max E f ek Cf’(“g)d”(lp(s +¢)— Ip(S))ds
peD oo 7
' 2
1 E = [l epturerdu _ o= [[ cpodu g
Hone L,(e ’ e b (s)ds|
! n
— " O (ur)du
+ 13 r;gg E Iw e~ Js cputs) Z ((Spq(xq(s + 6= V(s +5)))

q=1
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2
— B pq(xy(s - ypq<s>)))dwq<s>

'f p(u+§)du e Js ,,(u)du)

n 2
X > g% (5 = ¥pg())dewy(s) .
q

+ 13max E
peD

= 8,0, (3.8)

According to the Cauchy-Schwarz inequality, we have that

t ’ 2
S () =13 max EH f e~ LD (5 1 §)(x,(s + 6) — x,(5))ds
peD oo A

peD

13 !

< max {—0(52)2 f e_Qg(t_s)Ellx(s +¢)— x(s)ll%ds}, (3.9
c
=p —00

13 ' - tc u u
S5 (f) Smax{c—m f PRAGEL E||c§,(s+g)—cg(s)||;E||x(s)||3ds}
p —00

peD

Smax{

(26) e} (3.10)

(ch)?

't T 2
Ss(f) Sl?’rll;leaZ%( {(f |€_J;‘ A u+g)du —e_fx D (u)du | dS) (E?))ZE”)C(S)”(Z)}

! ! 2
<13 max I K f | b+ §)du = G0 | duds) @) (20?)

P
<max{(c®)4(c Peerel (3.11)
Similarly, we can get
S<(0) <max{ 10)2 Z(Lf (26) ne} (3.12)
S (1) <max{(clg3)4 ; at,y Z(Lf) el (3.13)
30 <max { (61;2 ;@g) @0’ Z(M% e} (3.14)
So(0) <max (1 = qn (Z(b;q» Z(M% )Z(L% e (3.15)
100 <max | (1 e (3.16)
11(;)<max{ M,e} (3.17)
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Note that

t
)

26 C ~D(1-s
s <max {55 D3 Y] e B+ oo mts v o
=p g=1 g=1 -
= X(5 — Tpy(s + g))ll(z)ds

+ f e‘gﬁ(’_s)Ellx(s = Tpg(s +¢)) — x(s5 — qu(s))lléds]},

(o)

letu = s — 7,,(s + ¢), we obtain

26 < , n o 1~ T pg(1+6) e—gg(t—u—rpq(ﬁg))
a0 <max {55 an Dty —
=p g=1 g=1 -0 Pq
X Ellx(u + ¢) — x(w)|2du + i@]}
C
4
26\ L o X 2 A - (t-s) 2
<max {5 D (@) P [ S IEG + ) - x(o)lRds
PR ACp o =1 T Tpg J-oo
2 S Sy o
(CQ)Z al’q q € :
=P’ g=1 g=1

By a same method, one gets

g t ! t
S7(r) <13 max {EH[ f e ) CQﬂ)(”““g)d“a’s][ f ¢~ cpture)du
peD —oo —o0

X (Z Z bpi(s + g)(gq(xq(s +6 = pa(s + §)))GIXI(s + ¢ = Vpa(s +6)))

g=1 I=1
j{}

2
= 855 = (MR = V() | |

13n ! ) 4 §
<max E{ — e_f5 cp(u+§')du (b+ )2
) 0 z : z : rql
=P g=1 "~ I=1

—00

X O (ML s + 6 = Vpals + 6 = 165 = V(s + Dl
=1

+ [[xi(s = Vpu(s + €)) — xi(s = Vpa(s)lla))
+ MfLﬁ(llxq(s +¢— O-pql(s + S')) - )Cq(S - O-pql(s + g))”ﬂ

2
1y (5 = T put(s +€)) = x5 — crpqxs))nﬂ))) ]ds}

520 (" isordn O [
el [ e S
Zp - =1

(%) q:1

X (ML s + 6 = Vpuls + )
=1
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- .X[(S - qul(s + g))”?ﬂ + ”xl(s - qul(s + g)) - )C[(S - qul(s))llé))
+ M}ng(”xq(s +¢— o_pql(s + §')) - xq(s - O-pql(s + g))”?ﬂ

11, (5 = O pyi(s +6)) — xq<s - apqms))n;)))]ds}
@

X D (MELFENCs + 6 = (s + ) = 5 = V(s + IR
=1

+ M}ngE”X(S + 6= 0pu(s +6) — x(s — 0 pu(s + S‘))H%
+ MgL‘lge + Mnge)]ds}

= IIIJIE%( {52" Z [Z(b+ql) Z (Mng f _Eg(t_S)E”x(s + 6= Vpa(s +¢))

()
= x(s = Vpq(s + )llgds + M7 LS f SEIVE|x(s + 6 = (s + )

—00

) MiLie + MfLje
x5 — 0 pg(s + S)Rds + y )]ds}
=p
0 -+
7p p ecpo—pql
(25 S S )
Pq
! Mng Mng
X f e_gg(t_s)EHx(s +¢) = x(s)llgds + %e)]} (3.19)
c
oo <
Similar to (3.18) and by the Ito isometry, one has
e2£p7pq f 0
S1a(r) <max {26n Z( ) —— f e U VE||x(s + ) — x(s)I[3ds
= Vig J-o
13
L Z(L el (3.20)
—P g=1
and
S13(8) < max{ 0)4 Z(L"’ ) (ZK)2€2} (3.21)

Substituting (3.9)—(3.21) into (3.8), we get
f

El|x(t + 1) - x(t)ll,% < Ne+ Pf e_c_(’_S)Ellx(s +71)— x(s)llﬁds,

—00

where ¢~ = min{c®
pED{ b

N :Te%({(c@)z [(2K) + 2Z(apq) Z(Lf) + Z(Lf) (2K)*n

g=1
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+4n Z ( (b;ql)z Z(MgLf + MlgLﬁ)) + Z(L§)2(2K)2 Z(Mf)lnz
g=1 I=1 =1 g=1 =1
y 13
0 + 32
+ 1+ ne, ;(qu) ] + (E?i)4

+ Z (znkb;q,)z i(Mf)z) zn:(Lg)ZQK)ZE + e +n Zn:(L;q)z(zk)zE]},
g=1 =1 =1 q=1 g=1

Thus, by Lemma 2.2, we conclude that

|@anre+ Y @) Y L)reore
q=1 q=1

Ellx(t + ) = x| < Ne——,

c—P
which implies that x(¢) is square-mean almost periodic. According to Lemma 2.1, we deduce that x(r)
1s almost periodic in distribution. The proof is complete. O

4. Global exponential stability in mean square

Definition 4.1. [37] Let x be an almost periodic solution in distribution of (1.1) with the initial value
@. If there exist positive constants A > 0 and M > 0 such that for every solution y with initial value
satisfies

Ellx(t) = y@)Il; < MEllp - ¢lize ™, 1> 0,
where ||¢ — </>||§ = sup |lg(s) — ¢(s)|, then the almost periodic solution x(t) in distribution of (1.1) is

5€[-6.0]
said to be globally exponentially stable.

Theorem 4.1. Assume that (H,)—(H,) hold, then the unique almost periodic solution in distribution of
system (1.1) is globally exponentially stable.

Proof. From Theorem 3.1, we know that system (1.1) has a unique almost periodic solution x in
distribution with the initial value ¢. Suppose that y is an arbitrary solution of (1.1) with initial value .
Set z = x — y, then from (1.1), we get

de(t) :[ - Cg(l)Zp(l) - Ci;(t)zp(t) + Z apq(t)(fq(xq(t - qu(t)))

q=1

— Fi0at = TpgD) + D bpgr(D)(24 (et = (1))

g=1 I=1

X gl(xl(t - qul(t))) - gq(yq(t - O-pql(t)))gl()/l(t - qul(t))))]dt

+ > (Bt = g 0) = 60t = ¥pg(ON)dwy (), p € D. (4.1)

gq=1
Let T, : R — R be defined as follows:

Ty(@) =¢,(c, ~ @) ~@ =5 [(52)2 * an(alc)z an(bé yieh + 2 Z ( Zn:(”;ﬂ)z
q=1 I=1

g=1 q=1
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% ((Mng)Z vaql + (Mng)2 wO'I,ql ) + — Z( )Zewy;;‘ljl.
=1

By (H,4), we have T',(0) > 0. Due to the continuity of ', on [0, +c0) and the fact that Y ,(w) — —oo,
as w — +oo, there exists ¢, > 0 such that T\,(¢,) = 0 and Y ,(w) > 0 for w € (0,5,). Consequently,
one can take a positive constant 0 < A < min;<,<,{s, gg} such that T(1) > 0, p € D, which implies

that
£12 0 2
. (CO [ )2 +Z(apq) Z(L) +2nZ(Z(b;ql)
g=1 =1
X nc@ n .
% Z ((MELEe i + (MELEYe %qz)) + = ;(L )Ze%] <1.
CQ) 2
Let M = max {("’ ) }, where
peD P
Yy =@+ Y ar,? YD 420 ) (Db D (ML + (L))
gq=1 q=1 g=1 I=1 =1
nc@ n
=N
=Y

g=1

then by (H,), we know M > 1, and further, we can deduce that

% C@(le 3 [(—6) + Z(apq) Z(Lf)Z ATy 4 ZnZ(Z(b ql)

« 7 (ML + (ML) )+ Z(L pev| <o,
=1
Hence, for any € > 0, it is easy to see that
E|lO)l; < Ellp — yl; + €
and for any ¢ € [—p, 0],
Ellz(0ll; < (Elle = ¢llg + ©e™ < M(Ellp = ¢l + e)e™.
We assert that
Ellz0)lly < M(Ellp = llg + €)™, 1> 0.

On the contrary, there exists a certain #; > 0 such that

Ellz(t)I? = M(Elle — )% + €)e™,

(4.2)

4.3)
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Ellz0)Il; < M(Elle — pllg + &)™, 1< 1. (4.4)

Multiplying (4.1) by eh pwdn gpd integrating it over the interval [0, 7], we deduce that, for p € D,
t
2p(1) =z,(0)e™ b P f e b n] - 3(5)z,(s)
0

+ Z apq(s)(fq(xq(s - qu(S))) - fq(yq(s - qu(S))))
q=1

+ Z Z bpql(s)(gq(xq(s - O_pql(s)))gl(xl(s - qul(s)))

g=1 I=1

— 2405 = Tpg(SNIZIGI(S = Vpgi(5))) |d's
+ fo & KD (505 = Vg (5)) = 6pg g5 = Vpg()))dew(s).
g=1

From the above equation, we have

2
- 1 C0M u
Ellz, (DI <5E||z,(0)e b cwd

1]
2 — M O (w)du
At SEHfo e~ It epwd C?;(S)Zp(s)ds

A

+ SE' f e I o Z apq(s)(fq(xq(s — Tpg(5)))
0 =1
2
— £, = Tpy(5)))ds ;

* SE] f e BN bgr(5)( 4 (kg5 = Tpar( NG = V()
0 g=1 =1
2
— 240048 = TGS = Vpau(s))))ds ;
+ SE' f e [ ehwadu Z (6pq(xq(s — ¥pq(5)))
0 =1
2
= 8pg (g5 = ¥pg(5))Jdwy(s) ;
5
=% F (4.5)
i=1

By the Cauchy-Schwarz inequality, (4.3) and (4.4), one can get

5 . d (1 0
2, <)% | e b pWME|Z()|2ds
P C@ 14 0 n

=p

5 "
<5 @) f e BBy - gl + e (4-0)
c 0

=P

-
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5 :
E c_@ apq) Z(Lf)Ze/lqu f e_fxl cg(u)duE”Z(s)HrQst
_p :

3 Y — [M (O w)-)du -
=3 (a5,)’ Z(Lf Vel f e~ L @-Ddug g M(E |y — ¢l2 + e)e ",
p =1 0

[I]

[Z(b ql) Z Mng)Z /IV,,qz +(Mng)2 /la'pq/)]
q=1

X f o F1 - g M|y - Il + e)e .
0

By the It6 isometry, one gets

+ g 1 ¢0
< — (L )ze’lypq f e L @puo-Ddug o pp (Elly — @2 + €)e™.
q=1 0

Substituting (4.6)—(4.9) into (4.5), one has

151 .
Ellzp(t)I% <5(Ellg — ¥I + ©)e™" + M(Ellp — ¥l + e)e™ f g™ L et
0

x —[(c Y+ Z(a,,q) Z@f)z e Y (D,

g=1 " I=1
X Zn: ((Mng)Z e/lV,,qz + (Mng)Z /lo-pql)) + n_;ﬁ) Zn:(lfr )ze/b’pq]
=1

g=1

1 1 n n
SM(E”I,& - (p”g + E)e_ﬂt‘{S[M - M((Ei)z + Z(a;q)z Z(Lf)ze/l'qu
=P =D gq=1 g=1

+2n Z ( Z pql) Z (Mng)2 e/lV,,qz + (Mng)Z /l‘qul))

=1

& Z(L;qfe‘”q)]e““'ﬁ”' @ | Z(a@
% Z(Lf)z A5, +2n Z ( i(b ql) Z Mé’Lg)z o + (Mng)2 /lapqz))
g=1 I=1

<M(E|l - ¢l + e)e™ .

Therefore,
Ellz@)ll; < MEIly — ¢l + €)e™,
which contradicts (4.3). Thus, (4.2) holds. Letting € — 0%, by (4.2), one has

Ellz)ll; < MEIY — ¢lige™", 1> 0.

4.7)

(4.8)

4.9)
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Consequently, the almost periodic solution in distribution of system (1.1) is globally exponentially
stable. This completes the proof. O

Remark 4.1. In [37], a class of Clifford-valued stochastic recurrent neural networks whose leakage
term coefficients are real numbers are considered. In this paper, we consider a class of Clifford-valued
stochastic high-order Hopfield neural networks whose leakage term coefficients are also Clifford
numbers. Therefore, even if the c,(t) in (1.1) is a real-valued function, the conclusions of theorems
3.1 and 4.1 in this paper cannot be obtained from the corresponding results in [37].

5. A numerical example

Our example is as follow.

Example 5.1. In system (1.1), let m =n =2, =1, and for p,q,l = 1,2, take

_ .0 1 2 12
Xp = X,e0 + X €1+ x,61+ x,"e1n € A,

fr(xp) =0.021¢ sin(x; + 2x'?) + 0.038e arctan(3x,, + x7)
+ 0.2, tanh(x)) — x,7) + 0.05ey; sin x,

gp(x,) =0.034¢ sin(x) + x'?) + 0.1¢ tanh(3x,” — 2x))
+0.1e sin 5x), + 0.02¢y; sin 2x),,

Spg(xp) = 0.02¢ tanh(x, + x'%) + 0.01e; tanh(6x), — 3x)) + 0.03¢1; sin 3x,,
a11() = ap(r) = 0.05¢q sin V2 — 0.009¢; cos V7t + 0.05¢; cos V31 + 0.007¢, tanh 7,
a21 (1) = ax(f) = 0.07¢y cos 1 — 0.09¢; sin V37 + 0.05¢, sin V27 — 0.009¢,, cos V71,
bi,(t) = 0.05¢9 sin V7t — 0.01e; cos Y3z + 0.027e; arctan V7t + 0.034e), tanh 21,
boy(t) = 0.056€ sin V2t — 0.06¢; sin V7z + 0.012¢, sin V21 — 0.009¢;, cos V71,
c1(f) = (1.2 + 0.2 sin f)eg + 0.01e; cos V2r + 0.0036e;, tanh V21,

(1) = (3 —2sint)eg + 0.02¢; sin V3t + 0.01e, arctan \/Et, Tpg(t) = 0.04 + 0.01 sin 0.17,
T pat(1) = 0.9 + 0.1 08 0.41, Vpu(r) = 0.5 + 0.1 c0s 0.1¢, y,,(2) = 0.05 + 0.01 sin 0.0001z,
I(t) = 2epsint + e cos V3t + 0.1e, sin V21 + 2e1, COS \/it,

L (t) = 4epsint + 2e; sin V1t + 0.5¢; sin V2r + €17 COS t.

By a simple calculation, we have

d=d=1,¢c=17¢=001, ¢=002 L/ =02, Lt =0.1,

M:=0.1, L, =0.03, 7,,=0.05, 7, =0.001, O-;ql =1,

= 0.04, vi, =06, v, =001, ¥ = 0.06, 7, = 0.000001,

rql pql — p
ay, = aj, = 0.05, a3, = a3, = 0.09, by, =0.05, by, = 0.06,
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K ~0.014 < %, P=0287<c, C=0.009 < 1.

Therefore, all of the conditions of Theorem 4.1 are satisfied. Hence, system (1.1) has a unique
almost periodic solution in distribution that is globally exponentially stable (see Figures 1-10).

x9(s)=10, s€[-0.1,0]

xf(s)=5, s€[-0.1,0]

®

x}(s)=1, s€[-0.1,0]

X:2(S)=3, se[-0.1,0]

12
[
T

(t) and x

2
1

Figure 1. States (x%, x], x7, x;*)” of (1.1) with initial values x)(s) = 10, x](s) = 1, x}(s) = 5
and x;?(s) = 3 for s € [-0.1, 0], respectively.

x2(s)=-8, s€[-0.1,0] x2(s)=7, s€[-0.1,0]

= 4 x}(s)=-4, s€[-0.1,0] x22(s)=-2, s€[-0.1,0]

Figure 2. States (x, x,, x5, x,>)" of (1.1) with initial values x)(s) = —8, x;(s) = —4, x3(s) =7
and x}%(s) = =2 for s € [-0.1, 0], respectively.

o

x9(s)=-10, s€[-0.1,0] |

x?(s)=1 0, s€[-0.1,0] ||

0
1

®© & A M O N A O ®
I

[=]

t
Figure 3. Global exponential stability of state x(l) of (1.1) with different initial values x(l’(s) =

10 or xV(s) = —10 for s € [-0.1,0].

o
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0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

x](s)=-1, s€[-0.1,0]
x}(s)=1, s€[-0.1,0]

5 10 15 20

t

25

30

35 40

Figure 4. Global exponential stability of state xi of (1.1) with different initial values x{(s) =
1 or x{(s) = —1 for s € [-0.1,0].

2
1
GO A b M LA 0 2N @ A oG

x#(s)=-5, s€[-0.1,0] ||

xf(s)=5, s€[-0.1,0] |

o

30

35

40 45 50

Figure S. Global exponential stability of state xf of (1.1) with different initial values x%(s) =
5 or x7(s) = =5 for s € [-0.1,0].

x12(3)=—3, se€[-0.1,0]

x}%(s)=3, s€[-0.1,0] | |

35

40 45 50

Figure 6. Global exponential stability of state x;* of (1.1) with different initial values x}*(s) =
3 or xj%(s) = =3 for s € [-0.1,0].
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x3(s)=-8, s€[-0.1,0]
x2(s)=8, s€[-0.1,0]

Figure 7. Global exponential stability of state x(z) of (1.1) with different initial values xg(s) =
8 or x9(s) = —8 for s € [-0.1,0].

x3(s)=-4, s€[-0.1,0]

x3(s)=4, s€[-0.1,0]

Figure 8. Global exponential stability of state x% of (1.1) with different initial values xé(s) =
4 or x3(s) = —4 for s € [-0.1,0].

x2(s)=7, s€[-0.1,0]

R i
x2(s)=-7, s€[-0.1,0]

Figure 9. Global exponential stability of state x% of (1.1) with different initial values x%(s) =
7 or x3(s) = =7 for s € [-0.1,0].
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T T
x22(s)=-2, s€[-0.1,0] | |

x2%(s)=2, s€[-0.1,0] |

I
o 5 10 15 20 25 30 35 40 45 50

t
Figure 10. Global exponential stability of state x}* of (1.1) with different initial values
xy2(s) = 2 or x’(s) = =2 for s € [-0.1,0].

Remark 5.1. The results of Example 5.1 cannot be deduced from the existing results.

6. Conclusions

In this work, we use a direct method to prove the existence and global exponential stability of
almost periodic solutions in distribution for Clifford-valued stochastic higher-order Hopfield neural
networks with all parameters being Clifford numbers except time delays. Even when the neural network
considered in this paper degenerates into real-valued, complex-valued and quaternion-valued neural
networks, our results are new. In addition, the method proposed in this paper can be used to study the
almost periodic solutions in distribution for other types of Clifford-valued stochastic neural networks
with time-varying delays.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No.
11861072, the Natural Science Foundation of Anhui Province under Grant No. 2108085QA10 and the
Applied Basic Research Foundation of Yunnan Province under Grant No. 2019FB003.

Contflict of interest

The authors declare that they have no competing interests.

References

1. J. Pearson, D. Bisset, Neural networks in the Clifford domain, Proceedings of 1994
IEEE International Conference on Neural Networks (ICNN’94), 1994, 1465-1469. doi:
10.1109/ICNN.1994.374502.

2. E. Bayro-Corrochano, R. Vallejo, N. Arana-Daniel, Geometric preprocessing, geometric
feedforward neural networks and Clifford support vector machines for visual learning,
Neurocomputing, 67 (2005), 54-105. doi: 10.1016/j.neucom.2004.11.041.

AIMS Mathematics Volume 7, Issue 3, 3653-3679.



3677

10.

11.

12.

13.

14.

15.

16.

17.

S. Buchholz, G. Sommer, On Clifford neurons and Clifford multi-layer perceptrons, Neural
Networks, 21 (2008), 925-935. doi: 10.1016/j.neunet.2008.03.004.

E. Hitzer, T. Nitta, Y. Kuroe, Applications of Clifford’s geometric algebra, Adv. Appl. Clifford
Algebras, 23 (2013), 377-404. doi: 10.1007/s00006-013-0378-4.

Y. Liu, P. Xu, J. Lu, J. Liang, Global stability of Clifford-valued recurrent neural networks with
time delays, Nonlinear Dyn., 84 (2016), 767-777. doi: 10.1007/s11071-015-2526-y.

Y. Li, Y. Wang, B. Li, The existence and global exponential stability of u-pseudo almost periodic
solutions of Clifford-valued semi-linear delay differential equations and an application, Adv. Appl.
Clifford Algebras, 29 (2019), 105. doi: 10.1007/s00006-019-1025-5.

S. Shen, Y. Li, S 7-almost periodic solutions of Clifford-valued fuzzy cellular neural networks with
time-varying delays, Neural Process. Lett., 51 (2020), 1749-1769. doi: 10.1007/s11063-019-
10176-9.

Y. Li, N. Huo, B. Li, On u-pseudo almost periodic solutions for Clifford-valued neutral type neural
networks with delays in the leakage term, IEEE T. Neur. Net. Lear., 32 (2021), 1365-1374. doi:
10.1109/TNNLS.2020.2984655.

G. Rajchakit, R. Sriraman, P. Vignesh, C. P. Lim, Impulsive effects on Clifford-valued neural
networks with time-varying delays: An asymptotic stability analysis, Appl. Math. Comput., 407
(2021), 126309. doi: 10.1016/j.amc.2021.126309.

A. Chaouki, F. Touati, Global dissipativity of Clifford-valued multidirectional associative memory
neural networks with mixed delays, Comp. Appl. Math., 39 (2020), 310. doi: 10.1007/s40314-
020-01367-5.

C. Aouiti, I. Gharbia, Dynamics behavior for second-order neutral Clifford differential equations:
inertial neural networks with mixed delays, Comp. Appl. Math., 39 (2020), 120. doi:
10.1007/s40314-020-01148-0.

C. Aouiti, F. Dridi, Weighted pseudo almost automorphic solutions for neutral type fuzzy cellular
neural networks with mixed delays and D operator in Clifford algebra, Int. J. Syst. Sci., 51 (2020),
1759-1781. doi: 10.1080/00207721.2020.1777345.

S. Shen, Y. Li, Weighted pseudo almost periodic solutions for Clifford-valued neutral-type neural
networks with leakage delays on time scales, Adv. Differ. Equ., 2020 (2020), 286. doi:
10.1186/s13662-020-02754-2.

N. Huo, B. Li, Y. Li, Anti-periodic solutions for Clifford-valued high-order Hopfield neural
networks with state-dependent and leakage delays, Int. J. Appl. Math. Comput. Sci., 30 (2020),
83-98. doi: 10.34768/amcs-2020-0007.

X. Liu, Q. Wang, Impulsive stabilization of high-order Hopfield-type neural networks with time-
varying delays, IEEE Trans. Neural Networ, 19 (2008), 71-79. doi: 10.1109/TNN.2007.902725.

C. Ou, Anti-periodic solutions for high-order Hopfield neural networks, Comput. Math. Appl., 56
(2008), 1838-1844. doi: 10.1016/j.camwa.2008.04.029.

Z. He, C. Li, H. Li, Q. Zhang, Global exponential stability of high-order Hopfield neural networks
with state-dependent impulses, Physica A, 542 (2020), 123434. doi: 10.1016/j.physa.2019.123434.

AIMS Mathematics Volume 7, Issue 3, 3653-3679.



3678

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.
32.
33.

X. Meng, Y. Li, Pseudo almost periodic solutions for quaternion-valued high-order Hopfield neural
networks with time-varying delays and leakage delays on time scales, AIMS Mathematics, 6
(2021), 10070-10091. doi: 10.3934/math.2021585.

S. Blythe, X. Mao, X. Liao, Stability of stochastic delay neural networks, J. Franklin I., 338
(2001), 481-495. doi: 10.1016/S0016-0032(01)00016-3.

Y. Ren, Q. He, Y. Gu, R. Sakthivel, Mean-square stability of delayed stochastic neural networks
with impulsive effects driven by G-Brownian motion, Stat. Probabil. Lett., 143 (2018), 56—66. doi:
10.1016/j.spl.2018.07.024.

L. Liu, A. Wu, Z. Zeng, T. Huang, Global mean square exponential stability of stochastic neural
networks with retarded and advanced argument, Neurocomputing, 247 (2017), 156-164. doi:
10.1016/j.neucom.2017.03.057.

R. Suresh, A. Manivannan, Robust stability analysis of delayed stochastic neural networks
via Wirtinger-based integral inequality, Neural Comput., 33 (2021), 227-243. doi:
10.1162/neco_a_01344.

Y. Wang, J. Lou, H. Yan, J. Lu, Stability criteria for stochastic neural networks with
unstable subnetworks under mixed switchings, Neurocomputing, 452 (2021), 827-833. doi:
10.1016/j.neucom.2019.10.119.

Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and
the event-triggered feedback control, IEEE Trans. Auto. Control, 64 (2019), 3764-3771. doi:
10.1109/TAC.2018.2882067.

Q. Zhu, T. Huang, Stability analysis for a class of stochastic delay nonlinear systems driven by G-
Brownian motion, Syst. Control Lett., 140 (2020), 104699. doi: 10.1016/j.sysconle.2020.104699.

H. Wang, Q. Zhu, Global stabilization of a class of stochastic nonlinear time-delay systems
with SISS inverse dynamics, [EEE Trans. Auto. Control, 65 (2020), 4448-4455. doi:
10.1109/TAC.2020.3005149.

R. Rajan, V. Gandhi, P. Soundharajan, Y. Joo, Almost periodic dynamics of memristive
inertial neural networks with mixed delays, Inform. Sciences, 536 (2020), 332-350. doi:
10.1016/j.ins.2020.05.055.

P. Wan, D. Sun, M. Zhao, S. Huang, Multistability for almost-periodic solutions of takagi-sugeno
fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying
delays, IEEE T. Fuzzy Syst., 29 (2021), 400-414. doi: 10.1109/TFUZZ.2019.2955886.

M. Bohner, G. Stamoyv, I. Stamova, Almost periodic solutions of Cohen-Grossberg neural networks
with time-varying delay and variable impulsive perturbations, Commun. Nonlinear Sci., 80 (2020),
104952. doi: 10.1016/j.cnsns.2019.104952.

O. Mellah, P. Fitte, Counterexamples to mean square almost periodicity of the solutions of some
SDESs with almost periodic coefficients, Electron. J. Differ. Eq., 2013 (2013), 1-7.

F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, Boston: Pitman Books Limited, 1982.
A. Klenke, Probability theory: a comprehensive course, Berlin: Springer, 2008.

Z. Liu, K. Sun, Almost automorphic solutions for stochastic differential equations driven by Lévy
noise, J. Funct. Anal., 266 (2014), 1115-1149. doi: 10.1016/j.jfa.2013.11.011.

AIMS Mathematics Volume 7, Issue 3, 3653-3679.



3679

34. P. H. Bezandry, T. Diagana, Almost periodic stochastic processes, New York: Springer, 2011.

35. T. Morozan, C. Tudor, Almost periodic solutions of affine Itd equations, Stoch. Anal. Appl., 7
(1989), 451-474. doi: 10.1080/07362998908809194.

36. M. Kamenskii, O. Mellah, P. Raynaud-de-Fitte, Weak averaging of semilinear stochastic
differential equations with almost periodic coefficients, J. Math. Anal. Appl., 427 (2015), 336—
364. doi: 10.1016/j.jmaa.2015.02.036.

37.Y. Li, X. Wang, Almost periodic solutions in distribution of Clifford-valued stochastic recurrent
neural networks with time-varying delays, Chaos Soliton. Fract., 153 (2021), 111536. doi:
10.1016/j.chaos.2021.111536.

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 7, Issue 3, 3653-3679.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	The existence of almost periodic solutions in distribution
	Global exponential stability in mean square
	A numerical example
	Conclusions

